Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 15: Reinforcement Learning

Prof. Nathan Sturtevant

Today

- Demo from last time
- Making complex decisions (17.1, 17.2, 17.3)
 - Background for Reinforcement Learning
- Reinforcement Learning (Ch 21)

Limitations

- Previous approaches learn a function or a classifier
 - How would you learn to move in an environment?
 - A* works on deterministic domains
 - Need more advanced approaches for more complex domains

What happens if the world is more stochastic?

- Assume a 4x3 grid world
 - The agent has 2 goal states
 - Assume the world is fully observable
 - Actions: Left, Right, Up, Down

-1			+1
			-1
Start	Start		

		+1	
		-1	
Start			

What is the chance of reaching a goal?

Transition model

- Previously, actions were deterministic
 - Now, actions have probabilities:
 - P(s' | s, a)
 - Probability of ending in state s' given that we take action *a* in state s

Markov

- An environment is Markov (Ch 15) if:
 - The current state only depends on a finite number of previous states
 - 1-Markov: on requires history of one state
 - Also implies optimal policy doesn't rely on history

Utility

- The utility function depends on the full history
- Reward for each step in the world (-0.04)
 - Terminal states have reward -1/1
- · Utility is cost of path until a goal state is reached
 - Negative reward at each step encourages short paths

Markov Decision Process (MDP)

- Markov Decision Process
 - Initial state s₀
 - A set of states
 - A set of actions for each state ACTIONS(s)
 - A transition model P(s' | s, a)
 - A reward function R(s)

Solving a MDP

- What does a solution to a MDP look like?
 - Cannot be a fixed set of actions
 - ${\boldsymbol{\cdot}}$ Need a general policy for each state, π
 - Policy in a state is π(s)
- · Each policy has an expected utility
 - Average reward over executions of policy
- The optimal policy, $\pi^{*},$ has maximum utility

Reward models

- Additive rewards
 - $R(s_0) + R(s_1) + R(s_2) \dots$
- Discounted rewards
 - $R(s_0) + \gamma \cdot R(s_1) + \gamma^2 \cdot R(s_2) \dots$
 - $0 \le \gamma \le 1$ is a discount factor
 - $\gamma = 1$ is equivalent to additive rewards

Discounted rewards

- Discounted rewards are needed if there are infinite sequences
 - Can bound the total utility:

$$\sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \sum_{t=0}^{\infty} \gamma^t R_{max} = \frac{R_{max}}{1-\gamma}$$

than Sturteva

Expected utility of a policy

- · We can now formally define the utility of a policy
 - Let the initial state be s_0
 - Let S_t be the state reached at time *t* when following policy π

 $U^{\pi}(s_0) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t)\right]$

Optimal policy π*:

$$\pi_{s_0}^* = \operatorname*{argmax}_{\pi} U_{\pi}(s)$$

• But, policy independent of s₀

Testing for optimal policies

• The Bellman equation defines when a policy is optimal

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

- But, how do we find the optimal policy?
 - Initialize utilities to 0, then iterative update:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U_i(s')$$

• Called value iteration (Often use V(s), not U(s))

Policy iteration

- Policy is much coarser than value function
- Policy iteration involves:
 - Evaluation: Given policy $\pi_i,$ find $U^{\pi i}$
 - Improvement: Compute π_{i+1} based on U_i

$$\pi_{s_0}^* = \operatorname*{argmax}_{\pi} U_{\pi}(s)$$

Performing policy iteration

- Policy can be "solved" as a linear equation
- Policy can be incrementally updated
 - ${\boldsymbol{\cdot}}$ Replace action with policy, π

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) U_i(s')$$

• Now we are ready to tackle Reinforcement Learning!

Reinforcement Learning

- What if we don't have any source of training examples?
 - Can we learn directly from experiences in the world?
 - Must receive feedback for good/bad experiences
 - · Called rewards or reinforcement
 - Assume that reward input is known
 - eg don't have to figure out that a particular sensory input corresponds to reward

Reinforcement Learning

- Previously we assumed a complete model of the environment and reward function
 - Can we really give up this assumption?

Two types of reinforcement learning

- Value-based (utility)
 - · Learn the value of states to select best
- Q-learning
 - · Learn the value of actions in a state

Passive learning

- \bullet Assume a observable agent & a fixed policy, π
- How can we learn the value of π ? [U^{π}(s)]
 - Similar to policy iteration
 - Unknown transition model: P(s' | s, a)
- As before, by definition:

$$U^{\pi}(s) = E\left[\sum_{\infty}^{t=0} \gamma^{t} R(S_{t})\right]$$

Direct utility estimation

- Each trial of the agent provides a sample of the utility
 - Run a trial
 - For each state, update the utility according to the average utility seen so far on all trials
- What is the drawback of this approach?
 - Is there information that can improve it?

Direct utility estimation

- This approach ignores that the values of states are correlated
- If we knew the transition probabilities, we could use the bellman equation to easily solve the problem
- Also called Monte-Carlo Policy Estimation

Modified Policy Iteration

- Update the utility of each state with the Bellman equation
 - Estimate the probabilities given the history
- Called Adaptive Dynamic Programming if we solve the MDP directly instead of sampling it

Temporal Difference Learning

- Version 1 (from book)
 - $U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') U^{\pi}(s))$
- Note that the update only considers the next state
 - But, when running over many trials, the frequency of next states will approach the true distribution
- Compare with ADP which estimates prob. directly

Active Reinforcement Learning

• Now, consider learning the policy *while* we learn the value of states

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

- · What if we always act according to these utilities?
 - May not converge
 - Need exploration (eg soft-max)
- Note that we also need to learn the model of P(...)

Q learning

- Q-learning learns Q(s, a) instead of utilities [V(s)/U(s)]
 - Q(s, a) is the value of taking action a in state s
 - $U(s) = \max_{a} Q(s, a)$
- · Q-learners do not need a model of the world
 - They directly learn actions

Q-learning

• Equivalence of bellman equation for Q(s, a):

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')$$

• Can convert into a TD update, which doesn't require P()

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma Q(s',a') - Q(s,a))$$

Generalization

- These approaches require that we represent every state in the state space
- Many problems far too large to fit into memory
 - Simple policies exist in a lower-dimensional space
- Generate features of the state space & learn from features as if they were the states themselves

Temporal Difference Learning in practice

- [Departing slightly from book here]
- TD learning learns directly from exploring the world
 - Often described as $TD(\lambda)$
- Different views of TD(λ):
 - Are we exploring the world and dynamically learning?
 - Do we have traces of exploration in the world from which we are learning?
- Focus on the second case

Eligibility Traces

- An eligibility trace is a sample of the plays that were made in a game from the beginning to the end
- Training can occur on eligibility traces
 - Have an associated payoff
 - · For our purposes, payoff is only at the end
 - Models a game
 - · Not difficult to extend to payoffs at every state

Monte-Carlo

- Play a game with the current value function
 - Often use a soft-max (small probability of a random move) instead of a pure maximization
 - Gives some chance of exploration and reaching every state in the game
- · At the end of the game, take note of the score
 - Train all the states in the history of moves to predict the final score of the game
- This won't work if it is hard/impossible to reach the end of the game

Monte-Carlo

- Given a eligibility trace s_1 , a_1 , s_2 , a_2 , ... a_{n-1} , s_n
- Followed by a reward r.
- Train function approximator with:
 - $output(f(s_i)) \leftarrow r$
 - f is the features associated with state i
 - · Note that this is supervised learning

Dynamic Programming

- Given a eligibility trace $s_1,\,a_1,\,s_2,\,a_2,\,\ldots\,a_{n\text{-}1},\,s_n$
- Followed by a reward r.
- Train function approximator with:
 - $output(f(s_i)) \leftarrow output(f(s_{i+1}))$
 - where first training is $output(f(s_n)) \leftarrow r$
 - (from i = n to i = 1)

TD(λ)

- Combination of the two approaches
 - Given a eligibility trace s_1 , a_1 , s_2 , a_2 , ... a_{n-1} , s_n
 - Followed by a reward r.
 - Train function approximator with:
 - $output(f(s_n)) \leftarrow r$
 - $\label{eq:output} \bullet \ \textit{output}(f(s_{n-1})) \leftarrow (1-\lambda)\textit{output}(f(s_n)) + \lambda r$
 - In general over *i* steps:

$$R(i) = (1 - \lambda)output(f(s_i)) + \lambda R(i + 1)$$

$$R(n) = r \quad output(f(s_i)) \leftarrow R(i)$$