
Introduction to Artificial Intelligence

COMP 3501 / COMP 4704-4

Lecture 15: Reinforcement Learning

Prof. Nathan Sturtevant

Nathan Sturtevant Introduction to Artificial Intelligence

Today

• Demo from last time

• Making complex decisions (17.1, 17.2, 17.3)

• Background for Reinforcement Learning

• Reinforcement Learning (Ch 21)

Nathan Sturtevant Introduction to Artificial Intelligence

Limitations

• Previous approaches learn a function or a classifier

• How would you learn to move in an environment?

• A* works on deterministic domains

• Need more advanced approaches for more complex

domains

Nathan Sturtevant Introduction to Artificial Intelligence

What happens if the world is more stochastic?

• Assume a 4x3 grid world

• The agent has 2 goal states

• Assume the world is fully observable

• Actions: Left, Right, Up, Down

What if actions are non-deterministic?

+1

-1

START

What if actions are deterministic?

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

+1

-1

START

What is the chance of reaching a goal?
Nathan Sturtevant Introduction to Artificial Intelligence

Transition model

• Previously, actions were deterministic

• Now, actions have probabilities:

• P(s’ | s, a)

• Probability of ending in state s’ given that we take

action a in state s

Nathan Sturtevant Introduction to Artificial Intelligence

Markov

• An environment is Markov (Ch 15) if:

• The current state only depends on a finite number of

previous states

• 1-Markov: on requires history of one state

• Also implies optimal policy doesn’t rely on history

Nathan Sturtevant Introduction to Artificial Intelligence

Utility

• The utility function depends on the full history

• Reward for each step in the world (-0.04)

• Terminal states have reward -1/1

• Utility is cost of path until a goal state is reached

• Negative reward at each step encourages short paths

Nathan Sturtevant Introduction to Artificial Intelligence

Markov Decision Process (MDP)

• Markov Decision Process

• Initial state s0

• A set of states

• A set of actions for each state ACTIONS(s)

• A transition model P(s’ | s, a)

• A reward function R(s)

Nathan Sturtevant Introduction to Artificial Intelligence

Solving a MDP

• What does a solution to a MDP look like?

• Cannot be a fixed set of actions

• Need a general policy for each state, π

• Policy in a state is π(s)

• Each policy has an expected utility

• Average reward over executions of policy

• The optimal policy, π*, has maximum utility

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

Optimal Policy Other policies

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

Nathan Sturtevant Introduction to Artificial Intelligence

Reward models

• Additive rewards

• R(s0) + R(s1) + R(s2) …

• Discounted rewards

• R(s0) + γ·R(s1) + γ2·R(s2) …

• 0 ≤ γ ≤ 1 is a discount factor

• γ = 1 is equivalent to additive rewards

Nathan Sturtevant Introduction to Artificial Intelligence

Discounted rewards

• Discounted rewards are needed if there are infinite
sequences

• Can bound the total utility:

1X

t=0

�tR(s
t

)
1X

t=0

�tR
max

=
R

max

1� �

Nathan Sturtevant Introduction to Artificial Intelligence

Expected utility of a policy

• We can now formally define the utility of a policy

• Let the initial state be s0

• Let St be the state reached at time t when following

policy π

!

!

• Optimal policy π*:

!

• But, policy independent of s0

U⇡(s0) = E

" 1X

t=0

�tR(St)

#

⇡⇤
s0 = argmax

⇡
U⇡(s)

Nathan Sturtevant Introduction to Artificial Intelligence

Testing for optimal policies

• The Bellman equation defines when a policy is optimal

!

!

• But, how do we find the optimal policy?

• Initialize utilities to 0, then iterative update:

!

!

• Called value iteration (Often use V(s), not U(s))

U(s) = R(s) + � max

a2A(s)

X

s0

P (s0|s, a)U(s0)

Ui+1(s) R(s) + � max

a2A(s)

X

s0

P (s0|s, a)Ui(s
0
)

Nathan Sturtevant Introduction to Artificial Intelligence

Value Iteration example - is [1,1] optimal?

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

Nathan Sturtevant Introduction to Artificial Intelligence

Value Iteration example

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

• U(1, 1) = -0.04 + γ max
 [0.8 U(1, 2) + 0.1 U(2, 1) + 0.1 U(1, 1),
 0.9 U(1, 1) + 0.1 U(1, 2),
 0.9 U(1, 1) + 0.1 U(2, 1),
 0.8 U(2, 1) + 0.1 U(1, 2) + 0.1 U(1, 1)]

Nathan Sturtevant Introduction to Artificial Intelligence

Policy iteration

• Policy is much coarser than value function

• Policy iteration involves:

• Evaluation: Given policy πi, find Uπi

• Improvement: Compute πi+1 based on Ui

⇡⇤
s0 = argmax

⇡
U⇡(s)

Nathan Sturtevant Introduction to Artificial Intelligence

Performing policy iteration

• Policy can be “solved” as a linear equation

• Policy can be incrementally updated

• Replace action with policy, π

!

!

!

!

• Now we are ready to tackle Reinforcement Learning!

Ui+1(s) R(s) + �
X

s0

P (s0|s,⇡i(s))Ui(s
0)

Nathan Sturtevant Introduction to Artificial Intelligence

Reinforcement Learning

• What if we don’t have any source of training examples?

• Can we learn directly from experiences in the world?

• Must receive feedback for good/bad experiences

• Called rewards or reinforcement

• Assume that reward input is known

• eg don’t have to figure out that a particular sensory

input corresponds to reward

Nathan Sturtevant Introduction to Artificial Intelligence

Reinforcement Learning

• Previously we assumed a complete model of the
environment and reward function

• Can we really give up this assumption?

Nathan Sturtevant Introduction to Artificial Intelligence

Two types of reinforcement learning

• Value-based (utility)

• Learn the value of states to select best

• Q-learning

• Learn the value of actions in a state

Nathan Sturtevant Introduction to Artificial Intelligence

Passive learning

• Assume a observable agent & a fixed policy, π

• How can we learn the value of π? [Uπ(s)]

• Similar to policy iteration

• Unknown transition model: P(s’ | s, a)

• As before, by definition:

U⇡(s) = E

"
t=0X

1
�tR(St)

#

Nathan Sturtevant Introduction to Artificial Intelligence

Direct utility estimation

• Each trial of the agent provides a sample of the utility

• Run a trial

• For each state, update the utility according to the

average utility seen so far on all trials

• What is the drawback of this approach?

• Is there information that can improve it?

+1

-1

START

Nathan Sturtevant Introduction to Artificial Intelligence

Direct utility estimation

• This approach ignores that the values of states are
correlated

• If we knew the transition probabilities, we could use the
bellman equation to easily solve the problem

• Also called Monte-Carlo Policy Estimation

Nathan Sturtevant Introduction to Artificial Intelligence

Modified Policy Iteration

• Update the utility of each state with the Bellman
equation

• Estimate the probabilities given the history

• Called Adaptive Dynamic Programming if we solve the
MDP directly instead of sampling it

+1

-1

START

Nathan Sturtevant Introduction to Artificial Intelligence

Temporal Difference Learning

• Version 1 (from book)

• Uπ(s) ← Uπ(s) + α(R(s) + γUπ(s’) - Uπ(s))

!

• Note that the update only considers the next state

• But, when running over many trials, the frequency of

next states will approach the true distribution

!

• Compare with ADP which estimates prob. directly

Nathan Sturtevant Introduction to Artificial Intelligence

Active Reinforcement Learning

• Now, consider learning the policy while we learn the
value of states

!

!

• What if we always act according to these utilities?

• May not converge

• Need exploration (eg soft-max)

• Note that we also need to learn the model of P(…)

U(s) = R(s) + � max

a2A(s)

X

s0

P (s0|s, a)U(s0)

Nathan Sturtevant Introduction to Artificial Intelligence

Q learning

• Q-learning learns Q(s, a) instead of utilities [V(s)/U(s)]

• Q(s, a) is the value of taking action a in state s
•

• Q-learners do not need a model of the world

• They directly learn actions

U(s) = max

a
Q(s, a)

Nathan Sturtevant Introduction to Artificial Intelligence

Q-learning

• Equivalence of bellman equation for Q(s, a):

!

!

• Can convert into a TD update, which doesn’t require P()

Q(s, a) = R(s) + �
X

s0

P (s0|s, a)max

a0
Q(s0, a0)

Q(s, a) Q(s, a) + ↵(R(s) + �Q(s0, a0)�Q(s, a))

Nathan Sturtevant Introduction to Artificial Intelligence

Generalization

• These approaches require that we represent every state
in the state space

• Many problems far too large to fit into memory

• Simple policies exist in a lower-dimensional space

• Generate features of the state space & learn from
features as if they were the states themselves

Nathan Sturtevant Introduction to Artificial Intelligence

Temporal Difference Learning in practice

• [Departing slightly from book here]

• TD learning learns directly from exploring the world

• Often described as TD(λ)

• Different views of TD(λ):

• Are we exploring the world and dynamically learning?

• Do we have traces of exploration in the world from

which we are learning?

• Focus on the second case

Nathan Sturtevant Introduction to Artificial Intelligence

Eligibility Traces

• An eligibility trace is a sample of the plays that were
made in a game from the beginning to the end

• Training can occur on eligibility traces

• Have an associated payoff

• For our purposes, payoff is only at the end

• Models a game

• Not difficult to extend to payoffs at every state

Nathan Sturtevant Introduction to Artificial Intelligence

Monte-Carlo

• Play a game with the current value function

• Often use a soft-max (small probability of a random

move) instead of a pure maximization

• Gives some chance of exploration and reaching every

state in the game

• At the end of the game, take note of the score

• Train all the states in the history of moves to predict

the final score of the game

• This won’t work if it is hard/impossible to reach the end

of the game
Nathan Sturtevant Introduction to Artificial Intelligence

Monte-Carlo

• Given a eligibility trace s1, a1, s2, a2, … an-1, sn

• Followed by a reward r.

• Train function approximator with:

• output(ƒ(si)) ← r

• ƒ is the features associated with state i

!

• Note that this is supervised learning

Nathan Sturtevant Introduction to Artificial Intelligence

Dynamic Programming

• Given a eligibility trace s1, a1, s2, a2, … an-1, sn

• Followed by a reward r.

• Train function approximator with:

• output(ƒ(si)) ← output(ƒ(si+1))

• where first training is output(ƒ(sn)) ← r

• (from i = n to i = 1)

Nathan Sturtevant Introduction to Artificial Intelligence

• Combination of the two approaches

• Given a eligibility trace s1, a1, s2, a2, … an-1, sn

• Followed by a reward r.

• Train function approximator with:

•

•

• In general over i steps:

TD(λ)

R(i) = (1� �)output(f(si)) + �R(i+ 1)

R(n) = r

output(f(sn)) r

output(f(sn�1)) (1� �)output(f(sn)) + �r

output(f(si)) R(i)

