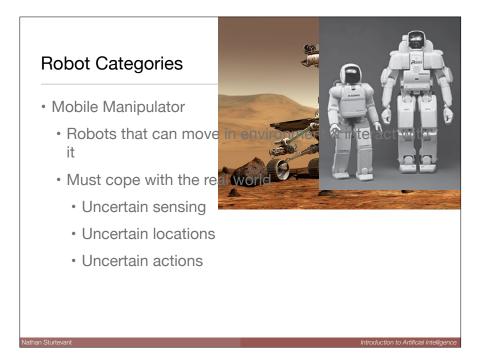
Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 16: Robotics

Prof. Nathan Sturtevant

Today

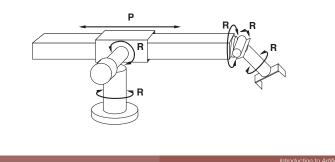

- Finish up examples of RL
- Robotics
 - · Most a high-level overview of concepts

Robotics (Ch 25)

- · So far we have only talked about software agents
- Robots are physical agents
 - · Move and manipulate objects in the physical world
 - A variety of sensors
 - · Cameras (Ch 24 vision)
 - Laser range-finders
 - Gyroscopes, accelerometers
 - Getting much cheaper

Robot Categories

- Manipulators (robot arms)
 - Anchored to work space
 - Manipulable joints (turn
 - · Widely used in manufacturing, growing in medicine
- Mobile robots
 - Used for loading docks in Australia
 - Mars exploration rovers
 - Unmanned air vehicles (UAVs)



Robot Hardware - Sensors

- Passive
 - · Cameras capture observations
- Active
 - Sonar, laser range finders actively probe
 - GPS

Robot Hardware - Effectors

- Means of manipulating robot & environment
- Effectors have degrees of freedom (DOF)
 - Represent location with 3-d location & 3 rotations

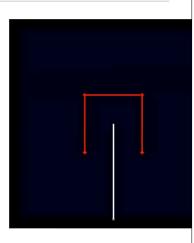
Robot Hardware - Effectors

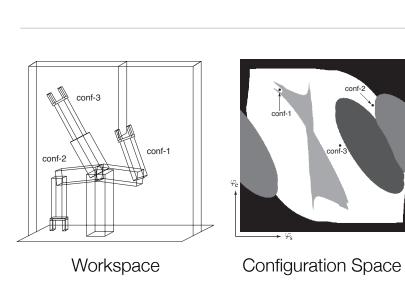
- · Mobile robots may be limited by hardware
 - A car has three effective degrees of freedom
 - Can only control two at once
 - Thus is nonholonomic
 - · A round robot with differential drive can turn in place
 - Is it holonomic?

Robot Hardware - Effectors

- A robot is statically stable if it can remain upright when not moving
- A robot is dynamically stable if it can remain upright when moving around

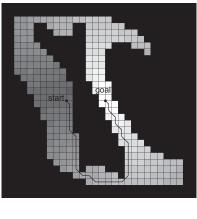
Robotic Perception

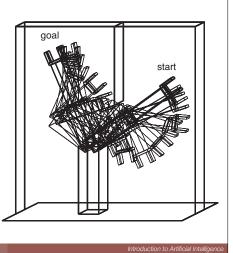

- Robotic measurements are noisy
 - · Difficult to compare to "ground truth"
 - Use techniques from Ch 15
 - Kalman filters, hidden markov models
 - Estimate current location


Robotic Perception

- Common tasks include
 - Localization
 - · Finding obstacles and location relative to obstacles
 - Mapping
 - · Building a model of the world
- Many SLAM algorithms
 - Perform both simultaneosly

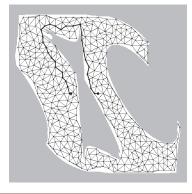
Robotic Planning


- Consider moving a robotic arm
- Workspace representation
 - x/y coordinates of arm
- Configuration representation
 - Angles of joints
- Often need to switch between representations



Possible Representations

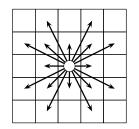
Cell decomposition



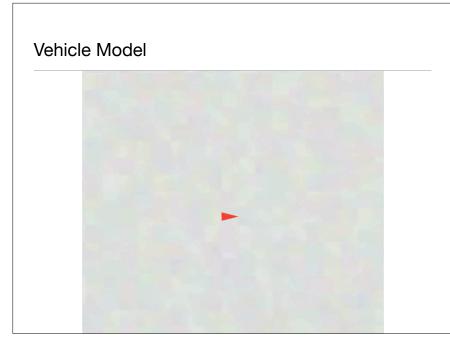
Possible Representations

- Skeletonization
 - Voronoi graphs / probabilistic roadmaps

Nathan S

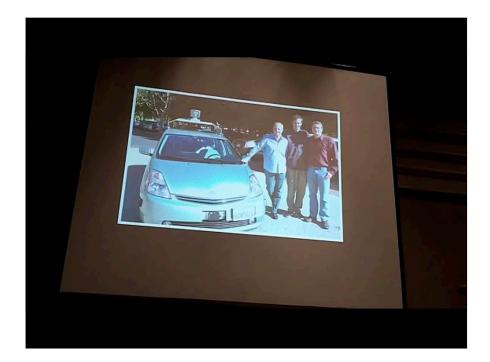

Motion Planning

- Planning space is possibly real-valued
- Use high-level primi model possible mov
- Expensive to plan m short distances



Vehicle Model

- 16 possible headings (22.5°)
- Move forward/reverse
 - 5 possible speeds:
 - {-1, 0, 1, 2, 3}
 - Change speed by 2 per action
 - Possible turns:
 - {2, 0, 3, 1, 0}
- 80x blow-up of search space



Grand Challenges

- DARPA Challenges
 - 2004, 2005
 - Desert
 - 2007
 - Urban Challenge
- Google Car

