Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 5: CSP

Prof. Nathan Sturtevant

CSP Definition

- CSP has:
 - Set of variables {X1...Xn}
 - Set of domains {D₁...D_n}
 - Set of constraints (scope, relation)
 - Scope is the variables $\{X_1, X_2\}$
 - Relation can vary; eg ≠
- Goal is to find a complete, consistent assignment of variables to values

Constraint Satisfaction Problems (CSP)

- CSP's are our first work on factored representations
 - State is no longer a black box
 - · State has variables that we can reason about
- Many different problems can be represented as CSP
 - Solved with a single solver

SAT vs. CSP

- SAT and CSP have the same representative power
 - SAT is a sparser representation
 - CSP has rich constraints

CSP

- Variables:
 - {A, B, C, D, E, F, G}
- Domains:
 - {Red, Green, Blue}
- Constraints
 - $\bullet \ \langle \{A, \, B\}, \, \neq \rangle, \, \langle \{B, \, C\}, \, \neq \rangle, \, \langle \{C, \, D\}, \, \neq \rangle, \, \langle \{D, \, E\}, \, \neq \rangle$
 - $\bullet \ \langle \{A,\,F\},\, \neq \rangle, \ \langle \{B,\,F\},\, \neq \rangle, \ \langle \{C,\,F\},\, \neq \rangle, \ \langle \{D,\,F\},\, \neq \rangle, \ \langle \{E,\,F\},\, \neq \rangle$

Types of constraints

- · Unary constraints: restrict a single variable
- Binary constraint: restricts two variables / graph edge
- · Global constraint: restricts more variables

Example: Cryptarithmetic

- · Require that all letters represent different numbers
 - Alldiff constraint

	SEND		DONALD		FIFTY		BASE
F	MORE	+	GERALD	+	STATES	+	BALL
-							
ľ	MONEY		ROBERT	I	AMERICA	(GAMES

Solving CSPs

- Two possibilities
 - A mix of both are often used
 - Constraint inference
 - Propagate constraints without explicit search
 - Backtracking search (DFS)

Constraint Inference

- Node consistency
 - Use unary constraints to remove variables from the domain of a node
- Arc consistency
 - Use the constraints on an edge to limit the domain of nodes connected by the edge
 - Compares two variables

Arc Consistency Example

- Works on simple problems
- Doesn't work when trying to 2-color Australia

Constraint Inference

Path Consistency

- · Compares three variables and two constraints
- For each assignment of two variables, ensure that the third variable has legal values (reduce to legal values)
- Will detect that Australia can't be 2-colored
- k-Consistency
 - Look at any *k-1* variable and make sure the *k*th is consistent

Global Constraints

- Different global constraints can be defined with special propagation rules
 - Alldiff If there are *m* variables and *n* distinct values
 - If m > n, then all diff cannot be satisfied

Sudoku

- What is Sudoku
- How should Sudoku be encoded?

Backtracking Search

- DFS in which each node in the tree corresponds to the assignment of a value to a variable
 - Fix the variable chosen at each node in the tree
 - The order we choose variables can make a big difference
 - What if we choose the wrong order for Australia?

Variable & Value ordering

- · Choose the most constrained variable first
 - If a variable only has 1 value, there is no choice
 - If one variable has 10 values and another has 2
 - Choose the one with 2 values, as it has tighter constraints to be met
- · Choose the least constraining value first
 - If possible, avoid constraining the remaining solution
 - · Doesn't matter if we want all solutions

Forward checking

- Each variable assignment means new inference can take place
- MAC algorithm (Maintaining Arc Consistency)
 - Re-performs arc consistency
 - · Instead of all arcs, only arcs for neighbors

Backtracking

- Simple approach:
 - Backtrack to last variable assignment
- Better approach:
 - Backtrack to last conflicting variable assignment

No-goods

- We can learn new constraints during search
 - · Find combinations of variables that cause failure
 - Store them in a "no-good"

Local search

- · An alternate approach is local search
 - · Select a conflicting variable
 - Choose the value which minimizes constraints
 - min-conflicts heuristic
 - Tabu search: avoid recent states
- Already analyzed in 8-queen puzzle
 - How to represent 8-queens as a CSP?

