Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 6: Intro to Propositional Logic

Prof. Nathan Sturtevant

Lecture Overview [7.1-7.4]

- Logical Agents
- Wumpus World
- Propositional Logic
- Inference
- Theorem Proving via model checking

Motivation

- Existing techniques help us solve:
 - Shortest path problems
 - · Some classes of optimization problems
- What about problems that require logical reasoning?
 - eg creating a Sherlock Holmes agent
 - "When you have eliminated the impossible, whatever remains, however improbable, must be the truth."

Logical Agents

- Maintain representation of knowledge of the world
- Use factored state representation
 - States are assignments of values to variables
- Like CSPs can generalize to many different problems
- Can also generalize to different goals

Knowledge-based agents

- · Logical agents maintain world knowledge
 - Knowledge base (KB)
- Knowledge stored in sentences
 - Each sentence represents knowledge about the world
 - Sherlock Holmes was a fictional detective

Knowledge-based agents

- Add knowledge: TELL
- Query knowledge: ASK
- Agent loop:
 - TELL KB about perceptions
 - ASK actions to perform
- · ASK not necessarily formulated explicitly

Knowledge

- Declarative:
 - TELL an agent what is needed
 - No extra knowledge
- Procedural:
 - Encode knowledge in program code
- SAS is often procedural
- · Generalized planning is declarative

Wumpus World

- Performance
 - 1000 for getting gold and returning to start
 - -1000 for dying
 - -10 for shooting the arrow
 - -1 for each action

Wumpus World

- Environment
 - 4x4 grid of rooms
 - Agent has heading
 - Agent starts at [1, 1]
 - Gold & wumpus randomly placed
 - Probability 0.2 of a pit

Wumpus World

- Actuators
 - Turn right
 - Turn left
 - Forward
 - Shoot
 - Grab
- Exit

11

Wumpus World (WW)

- Sensors
 - Can perceive *stench* from location adjoining (vertically/horizontally) a wumpus
 - Can perceive breeze from location adjoining a pit
 - Can perceive glitter in cell with gold
 - Can perceive scream when wumpus dies

Logic

- Syntax: defines well-formed sentences
- · Semantics: what sentences mean
 - x + y = 4 is true when x = 2 and y = 2
- Model: possible world
 - Includes all assignments of values to x/y
 - If a is true in m: m satisfies a
 - M(α) is the set of all models of α
- What models exist for WW problem?

Entailment

- α entails β or $\alpha \models \beta$
 - β follows logically from α
 - In every model in which α is true, β is also true
 - $M(\alpha) \subseteq M(\beta)$

Entailment examples

- Reminder $a \models \beta$; β follows logically from a; $M(a) \subseteq M(\beta)$
- $a = (x = 0), \beta = (xy = 0)$
- α = (AI lectures on only Wednesday), β = (No AI lectures on the weekends)
- α = (dogs have tails), β = (Fido has a tail)
- α = (girls like flowers; Rachel is a girl), β = (Rachel likes flowers)
- Everyone in class give their own example

Entailment

- This shows how entailment can be used to derive conclusions about the world
 - Performing logical inference
- Model checking
 - · Generate all possible models
 - Must be a finite number of models
 - Check if hypothesis is true

Inference

- KB $F_i \alpha$
 - α is derived from KB by inference algorithm *i*
 - A *sound* inference algorithm only derives entailed sentences
 - A *complete* inference algorithm can derive any entailed sentence
- Model checking is sound & complete (when applicable)

Propositional Logic

- Simple form of logic
- Can seem limited, but more complex forms of logic can be reduced to propositional logic

Propositional Logic: Symbols

- Not: ¬
- And: \wedge
- Or: \lor
- Implies: \Rightarrow or \rightarrow
- If and only if: \Leftrightarrow

Prop. Logic Syntax

- Sentence → AtomicSentence | ComplexSentence
- AtomicSentence \rightarrow True | False | P | Q | R | ...
- Complex Sentence → (Sentence) | [Sentence]
- $| \neg$ Sentence | Sentence \land Sentence
- | Sentence \lor Sentence | Sentence \Rightarrow Sentence
- | Sentence ⇔ Sentence
- Operator precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow

Prop. Logic Semantics

- A model fixes the values of all variables to true or false
- True/False are always True/False
- · Variables have their values defined in a model
- ¬P is true iff P is false in model
- $P \land Q$ is true iff P and Q are both true in model
- $P \lor Q$ is true iff P or Q or both true in model
- $P \Rightarrow Q$ is true iff P is false or P&Q are both true in model
- $P \Leftrightarrow Q$ is true iff P&Q have the same values in model

Semantics

- \Rightarrow and \Leftrightarrow not strictly needed
 - A \Rightarrow B is the same as \neg A \lor B
 - A \Leftrightarrow B is the same as (A \Rightarrow B) \land (B \Rightarrow A)

Task

- Can our agent safely walk to (1, 2).
- Solution Steps:
 - Build KB (α)
 - Build Query (ß)
 - Test if $\alpha \models \beta$
 - Using model checking

Construct WW KB

- $P_{x, y}$ is true if there is a pit in [x, y]
- W_{x, y} is true if there is a wumpus in [x, y]
- B_{x, y} is true if the agent perceives breeze in [x, y]
- $S_{x, y}$ is true if the agent perceives stench in [x, y]

25

26

WW KB

WW KB

- There is no pit in [1, 1]
 - R1: ¬P1, 1

WW KB

- There is no pit in [1, 1]
 - R1: ¬P1, 1
- A square is breezy iff there is a pit in a neighboring square

WW KB

- There is no pit in [1, 1]
 - R₁: ¬P_{1, 1}
- A square is breezy iff there is a pit in a neighboring square
 - R₂: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})

28

WW KB

- There is no pit in [1, 1]
 - R1: ¬P1, 1
- A square is breezy iff there is a pit in a neighboring square
 - R₂: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})
 - R₃: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})

WW KB

- There is no pit in [1, 1]
 - R1: ¬P1, 1
- A square is breezy iff there is a pit in a neighboring square
 - R₂: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})
 - R₃: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})
- Percepts:

WW KB

- There is no pit in [1, 1]
 - R1: ¬P1, 1
- A square is breezy iff there is a pit in a neighboring square
 - R₂: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})
 - R₃: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})
- Percepts:
 - R4: ¬B1,1

WW KB

- There is no pit in [1, 1]
 - R1: ¬P1, 1
- A square is breezy iff there is a pit in a neighboring square
 - R₂: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})
 - R₃: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})
- Percepts:
 - R₄: ¬B_{1,1}
 - R5: B2,1

Prop. Logic: Simple inference

- How many variables? How many models?
- In how many is KB true?

Selection of possible models

B11	B ₂₁	P ₁₁	P ₁₂	P ₂₁	P ₂₂	P ₃₁	R₁	R_2	R ₃	R ₄	R ₅	KB
F	F	F	F	F	F	F						
F	Т	F	F	F	F	Т						
F	Т	F	F	F	Т	F						
F	Т	F	F	F	Т	Т						

Simple model checking

- How could we turn this into an algorithm?
- What is the running time?

Homework: 7.14(a)

gence 31

29

30