Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 7: Logic and Inference

Prof. Nathan Sturtevant

Class Overview

- Review from Wednesday
- Inference in propositional logic
- Propositional logic agents
- First-Order Logic (Ch 8)

Entailment

- α entails β or $\alpha \models \beta$
 - β follows logically from α
 - In every model in which α is true, β is also true
 - $M(\alpha) \subseteq M(\beta)$

Entailment examples?

Propositional Logic Syntax

- Sentence → AtomicSentence | ComplexSentence
- AtomicSentence \rightarrow True | False | P | Q | R | ...
- Complex Sentence → (Sentence) | [Sentence]
 - | ¬ Sentence | Sentence ∧ Sentence

 $| Sentence \lor Sentence | Sentence \Rightarrow Sentence$

| Sentence \Leftrightarrow Sentence

• Operator precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow

Example statements

- There is no pit in [1, 1]
- A square is breezy iff there is a pit in a neighboring square
- If there is no smell in [1, 1], there can't be a wumpus in [1, 2]

Model checking

- How does it work?
- What is the running time?
- What is the space required?

Theorem proving [7.5]

- No longer consult models
 - Derive inferences (entailment) directly from KB
- In some ways this mimics algebraic theorem proving
 - Start with the known
 - Apply rules/transformations
 - Reach the desired result (if possible)

Logical equivalence

- Two statements are logically equivalent if they are true in the same set of models
 - $\alpha \equiv \beta$
 - $\alpha = \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

Standard logical equivalences

• $(\alpha \land \beta) \equiv (\beta \land \alpha)$ • $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ • $((\alpha \land \beta) \land \gamma) \equiv (a \land (\beta \land \gamma))$ • $((\alpha \lor \beta) \lor \gamma) \equiv (a \lor (\beta \lor \gamma))$ • $\neg (\neg \alpha) \equiv \alpha$

Standard logical equivalences

- $(\alpha \Rightarrow \beta) = (\neg \beta \Rightarrow \neg \alpha)$
- $(\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta)$
- $(\alpha \Leftrightarrow \beta) = ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$
- $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$
- $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$

Standard logical equivalences

- $(\alpha \land (\beta \lor \gamma)) = ((\alpha \land \beta) \lor (\alpha \land \gamma))$
- $(\alpha \lor (\beta \land \gamma)) = ((\alpha \lor \beta) \land (\alpha \lor \gamma))$

Validity

- A sentence is valid if it is true in all models
 - $\bullet ~ P \lor \neg ~ P$
 - Q \Rightarrow Q
- Valid sentences are tautologies
- Deduction theorem
 - For any sentences α and β , $\alpha \vDash \beta$ iff ($\alpha \Rightarrow \beta$) is valid
 - Essence of model checking algorithm

Satisfiability

- A sentence is satisfiable if it is true in some model
 - Abbreviated as SAT
 - Can we find a variable assignment that makes some statement true

Validity and Satisfiability

- α is satisfiable iff $\neg \alpha$ is not valid
- $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - **Proof?** [Hint: $\alpha \vDash \beta$ iff $(a \Rightarrow \beta)$ is valid]
- This is the logical basis of proof by contradiction

Validity and Satisfiability (Proof)

- α is satisfiable iff $\neg\alpha$ is not valid
 - if α is unsatisfiable, $\neg\alpha$ is valid
 - if $\neg \alpha$ is unsatisfiable, α is valid
- $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff ($\alpha \Rightarrow \beta$) is valid
 - $\alpha \models \beta$ iff $\neg(\alpha \Rightarrow \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $\neg(\neg \alpha \lor \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable

Book Examples

• Question 7.4

Search

- We can formulate theorem proving as a search problem
 - Initial state: KB
 - Actions: all inference rules that apply (top of rule)
 - Result: inference in bottom of rule added to KB
 - · Goal: sentence we want to prove

Monotonicity

- The set of entailed sentences can only *increase* as information is added to the KB
 - if KB $\vDash a$ then KB $\land \beta \vDash a$
 - Adding β to our KB will not decrease what we can entail from the KB

Inference: sound & complete

- The previous inference rules were all sound
 - · Derive entailed sentences
- Are they complete? No
 - There are some things they can't derive
 - (Example?)

Unit Resolution

$$\frac{\ell_1 \vee \ell_2, \quad \neg \ell_2}{\ell_1}$$

• Can be generalized to more clauses (see book)

Resolution

· Generalized resolution can handle more clauses

$$\frac{\ell_1 \vee \ell_2, \quad \neg \ell_2 \vee \ell_3}{\ell_1 \vee \ell_3}$$

• Completely general form in the book

Examples

Conjunctive Normal Form (CNF)

- Resolution only applies to clauses with disjunction (v)
 - All propositional logic can be reduce to clauses or conjunctive normal form (CNF)

Example

- $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
- $\bullet \hspace{0.1cm} B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1}) \land (P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}$
- $(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
 - $(\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}$
 - (($B_{1,1} \lor \neg P_{1,2}$) \land ($B_{1,1} \lor \neg P_{2,1}$))
- $\bullet \ (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (B_{1,1} \lor \neg P_{1,2}) \land (B_{1,1} \lor \neg P_{2,1}) \\$

Using resolution

- · Proofs using resolution are proofs by contradiction
 - $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
- Assume we want to prove $\alpha \models \beta$
 - Add $\neg \beta$ to KB
 - If we can infer false, we have a contradiction
 - If we can't, then $\alpha \nvDash \beta$

Example

- R1: dog_{fred} \Rightarrow likesbones_{fred}; R2: dog_{fred}
- R3: ¬dog_{fred} ∨ likesbones_{fred}
- Prove: likesbones_{fred}
- Add R4: ¬likesbones_{fred} to KB
- Resolve R4 and R3: R5: ¬dog_{fred}
- Resolve R5 and R2: (null)
 - Contradiction!

Special Case: Horn & definite Clauses

- A Horn clause is a disjunction of literals of which *at most one* is positive
 - $\bullet \neg A \lor \neg B \lor C$
 - In Definite clause exactly one is positive
- · Definite clauses correspond to implications
 - $\bullet \; A \land B \Rightarrow C$
- Modus Ponens is sound and complete with Horn clauses

Building Logic Agents

- · Can we now build propositional logic agents?
 - There are a few important details!
- All percepts depend on the current time/location of the agent
 - Frame problem: need to reason about what does/ does not change as time goes forward
 - This tremendously complicates writing proper logical descriptions of the world

Building Logic Agents

- · Can now build an agent
 - Use A* to plan movement
 - · Use logical inference to decide where to go
- Caveat: planning gets more expensive as more time passes, even if the agent just moves around the know part of the state space
- Harder to build an agent that generates a full plan

First-Order Logic: Motivation

- Returning to fred likes bones:
 - · Expensive to have to specify if everyone likes bones
 - Works in wumpus world, but can be computationally infeasable
 - Cannot make statements like:
 - "All dogs like bones"

First-Order Logic

- · Propositional logic only has variables
 - These are true or false
- First-order logic adds objects, functions and relations
- Also adds quantifiers:
 - ∃: There exists
 - ∀: For all

First-Order Logic Examples

- Occupation(p, o); Boss(p1, p2); Customer(p1, p2)
- Emily; Doctor, Surgeon, Lawyer
- Emily is either a surgeon or a lawyer.
- All surgeons are doctors.
- Emily has a boss who is a lawyer.
- Every surgeon has a lawyer.

Homework: 8.10