Diffie-Hellman-Merkle

Ramki Thurimella
Key Exchange Protocol

- Establishing secret keys for N people
 - Requires $N(N-1)/2$ separate keys
 - This is a quadratic function that grows rapidly
 - For e.g., when $N=30$, you need 435 keys

- DH protocol was invented to reduce this complexity
 - Two people communication over an insecure line
 - Can agree on the same key
 - Eavesdropper cannot figure out the key
Groups

- p is a large prime (2000 – 4000 bits long)
- DH protocol uses \mathbb{Z}_p^*, multiplicative group mod p
- For an element g from the group, let q be the smallest positive integer value such that $g^q = 1 \mod p$
 - q is the order of g
- Example: Consider \mathbb{Z}_7^* and let g be 4. Then the powers of 4 are $4^1 \mod 7 = 4$, $4^2 \mod 7 = 2$, $4^3 \mod 7 = 64 \mod 7 = 1$. So, $q = 3$.
- Example: Let g be 3. $3^1 \mod 7 = 3$, $3^2 \mod 7 = 2$, $3^3 \mod 7 = 27 \mod 7 = 6$, $3^4 \mod 7 = 81 \mod 7 = 4$, $3^5 \mod 7 = 243 \mod 7 = 5$, $3^6 \mod 7 = (((3^3 \mod 7) \times (3^3 \mod 7)) \mod 7 = 36 \mod 7 = 1$.
 So, $q = 6$.
Groups (cont.)

- An element whose order is \(p-1 \) is a \textit{primitive element} of the group, i.e. it generates the whole group.
- In the previous example, \(3 \) is primitive but not \(4 \).
- Some mathematical facts
 - For any \(g \), the order of \(g \) is a divisor of \(p-1 \).
 - For any \(a \) of the group, \(a^{p-1} = 1 \).
 - Proof:
 - Let \(g \) be a generator of \(\mathbb{Z}_p^* \).
 - Let \(x \) be such that \(g^x = a \) (\(\therefore g \) is a generator, such an \(x \) must exist).
 - \[a^{p-1} = g^{x(p-1)} = (g^{p-1})^x = (1)^x = 1 \] \(\Box \)
Fact: \((g^a \mod p)^b \mod p = (g^b \mod p)^a \mod p\)

All computations over a group of integers modulo \(p\) for some large prime \(p\)

Easy to compute powers mod a prime but hard to reverse, for large integers (*discrete log* problem)

- \(p\) a prime > 300 digits, \(a\) and \(b\) > 100 digits, even the best algorithms could not find \(a\) given \(g\), \(p\), and \(g^a \mod p\), even using all of mankind's computing power. \(g = 2\) or 5
Diffie-Hellman (DH) cont.

- Alice and Bob agree on a large prime p and a generator g
- Alice picks a random number a, $0 < a < p$
- sends g^a to Bob, and keeps a secret
- Bob picks a random number b, $0 < b < p$, sends g^b to Alice, and keeps b secret
- Alice computes $(g^b)^a$
- Bob computes $(g^a)^b$
(g^b)^a and (g^a)^b are equal because multiplication in groups is associative.

Only a, b and g^{ab} = g^{ba} \mod p are kept secret.

All the other values—p, g, g^a \mod p, and g^b \mod p—are sent in the clear.
Man-In-The-Middle (MITM)

\[x \in \mathbb{Z}_p^* \]
\[g^x \]
\[v \in \mathbb{Z}_p^* \]
\[g^v \]
\[y \in \mathbb{Z}_p^* \]
\[g^v \]
\[w \in \mathbb{Z}_p^* \]
\[g^w \]
\[k = (g^w)^x \]
\[k = (g^x)^w \]
\[k = (g^y)^v \]

Random member \(\in \mathcal{R} \)
MITM defense for a special case

- If the key \(k \) is being used to encrypt voice or video link
- Have Bob read the first few bits of \(h(k) \)
- Have Alice read the next few bits of \(h(k) \)
- Assume Alice and Bob can recognize each other, they can verify that they have the same key
- Eve cannot compute the preimage of \(h(k) \)
Pitfalls

- What if Eve replaces g^x and g^y with 1 while they are in transit?
 - The key would be 1!
 - Check that these values are not 1

- What if order q of g is much smaller than $p-1$?
 - The key k would come from a small set
 $\{1, g^1, \ldots, g^q\}$
 - Check that p is prime and that order of g is $p-1$
Safe Primes

- To avoid problems with subgroups, pick a *safe prime*
- A *safe prime* is a large prime p of the form $2q+1$ where q is also prime
- Such \mathbb{Z}_p^* has 4 subgroups, one corresponding to each of the divisors of $p-1$ or $2q$
 - $\{1\}$
 - $\{1,p-1\}$
 - $\{1,2,...,q\}$
 - $\{1,2,...,2q\}$
Safe Primes Example

- Let $p = 23$, then $q = 11$
- Such \mathbb{Z}_{23}^* has 4 subgroups, one corresponding to each of the divisors of $p-1$ or 22
 - $\{1\}$
 - $\{1,22\}$ note: $222 \% 23 = 1$
 - $\{1,2,3,4,6,8,9,12,13,16,18\}$
 - Order of this subgroup is 11
 - Verify that this subgroup is closed under $*$ (i.e. for any x,y from this subgroup $(x*y)\%23$ should also be in the subgroup)
 - $\{1,2,\ldots,22\}$