Chapter 3: JavaScript

3.1 Introduction

JavaScript is a programming language typically used to give the browser instructions on responding to user input. Such programs, called client side programs, get information from the user with HTML forms or popup boxes. The program uses that information to customize the page. The source code for the page, viewable by the user, includes the client side programs. 

Web designers use client side programs to do tasks that depend only on the information provided by the user and for which only the user needs the result. A main application is data validation. For example, if the page requires a date of birth in dd/mm/yyyy format, a JavaScript program can warn the user if the date wasn’t supplied correctly. Client side programs can also present and score questionnaires when only the user gets the results. For example, students in an online course can take practice tests given by a client side program. The actual test would require a server side program, to hide the scoring method from the student, and to record students’ grades for the instructor.  A client side program runs without consulting the server. For the developer, this means that the program can be written and tested on the developer’s own computer, like HTML code. For the user, this means that there is no need to wait for a busy server, or for additional downloading.

Our goal is not to explain the entire JavaScript language. In fact, we will barely scratch the surface. Our intent is to convey the basics of programming. Due to its integration with HTML and its ease of use, JavaScript is a rewarding language to learn.

In order for a program to be useful, it must interact with the outside world in some way. Usually, the program takes input from the user, computes some result, and then outputs the result to the user. A JavaScript program can use the input from HTML forms, or prompt the user for input using a popup box. The program computes results by operating on variables. The basic operations are very like those of other modern programming languages. The program can then output the results using HTML, or more popup boxes.

Of course, to learn to program in JavaScript, you must write programs. Tradition suggests that the first JavaScript program here should display “Hello World!” to the user.  Do this by creating and opening the following HTML file.

<html>

<head>

<title>greeting</title>

</head>

<body>

<script language=”JavaScript”>

<!--

document.write(“Hello World!”);

//-->

</script>

</body>

</html>

The script tag informs the browser that the code between the tags is in JavaScript. Though HTML and JavaScript aren’t case sensitive, the language name must be written as shown here. The starting  <!-- instructs browsers without JavaScript to ignore the code. The document.write is a JavaScript command that tells the browser, among other possibilities, to treat the text in the parentheses and quotation marks as HTML code and display it.  The // is the JavaScript command that makes the rest of the line a comment. The --> reawakens browsers without JavaScript.  The whole program is embedded in an HTML page. 

3.2 Output

Starting with output is more logical than it seems at first. Without a way to output results, we can’t tell if the rest of a program works. There are several basic output techniques for client side JavaScript. The document.write command is one. JavaScript also has a command to create an alert, a popup box containing text that the user must acknowledge. JavaScript code can also change the values in text boxes or text areas in an HTML form. 

The following program displays the “Hello World!” message using an alert.

<html>

<head>

<title>greeting</title>

</head>

<body>

<script language=”JavaScript”>

<!--

alert(“Hello World!”);

//-->

</script>

</body>

</html>

Using JavaScript to change a value isn’t a particularly natural way to display a static  message, but this method will prove very useful later.

<html>

<head>

<title>greeting</title>

<script language=”JavaScript”>

<!--

var salutation=”Hello World!”

//-->

</script>

</head>

<body>

<form name=”greeting”>

<input type=”text” name=”hi”>

<br>

Click the button to see the greeting.

<input type=”button” onclick=”document.greeting.hi.value=salutation”

</body>

</html>

Here the JavaScript between the script tags made ‘salutation’ a name for the “Hello World!”  greeting. The value of the onclick attribute for the button is a JavaScript command to set the value of the textbox to salutation, hence “Hello World!”

3.3 Variables

In addition to presenting output to the user, we also need a way to get input from the user.  Before the program asks the user the question, the program needs to be prepared to remember the answer. Otherwise, why bother? A program remembers, or stores, information in variables. A variable is an information container. You can use your backpack to store books, walkmans, gameboys, money, etc.  Like a backpack, a variable is used to store information, text, numbers, etc., within the virtual world of a computer program. 

In order to use the contents of a container, you have to be able to find the container. Finding a variable in the virtual world of a computer is easy. You give the variable a name when you make it. Whenever you want to use the information in that variable, you just call its name.  A variable can have any name that starts with a letter, and uses just letters and numbers. For example, neo, foo, inputString, and year2003 are acceptable variable names, but 007Bond is not. In general, variable names that describe the contents make the code easier to read. If a variable holds an average daily temperature, then meanTemperature makes a good name. 

Unlike variables in some other programming languages, JavaScript variables are flexible. The same variable can store a string (a bunch of characters) at one point, then a number, either whole or with a decimal point, then a string, and so on. 

As an example, consider the command  var salutation=”Hello World!”

 in the program at the end of the last section. The part  var salutation creates a variable named salutation. The =”Hello World!” part puts the string Hello World! in the variable.

3.4 JavaScript Comments

Complex programs generally need some explanation. Skipping this is a common trap. The programmer figures the code is perfectly clear, or will never need to be changed. Then, possibly years, even decades later, the programmer or someone else wants to modify the program. Remember Y2K? Programmers had to go into old programs in largely obsolete programming languages to make changes so a date of 00 wouldn’t crash the program. Reams of code, with no explanations and with uninformative variable names like x , could be a nightmare. 

Comments in programs are text that appears in the source code but does not affect the computer’s execution of the code. Use them to make explanatory notes.  JavaScript provides two methods for creating comments //, and /*…*/. The // makes the rest of the line to the right into a comment. Everything between a /* and the next */ becomes a comment. Comments appear in the next examples.

3.5 Input

Forms in HTML and a type of popup box called a prompt box are ways of asking the user for information to be used in a JavaScript program. Forms have the advantage of allowing the programmer easily to control the type of input, be it text, true/false, or a selection from options. Forms can stay on the screen after the user has responded. Prompt boxes are shorter to write. They disappear after the user responds.

We have seen forms in HTML, but until now have not had any way to use the information they gather. The available methods for gathering a piece of information from a form depend on the input type used to request that information. For example, if the input type is text, you can use the full name of the value of that input directly, or store the value in a variable. The following example uses both methods, just for illustration.

<html>


<head>



<!-- (html comment, remember?) 



This program writes a form in which the



user enters several words. When the user clicks the button, 



the program writes a sentence with the words in designated 

spots.



-->


<title>MadLib</title>


<script language= "JavaScript">



<!--



var noun2,verb1,verb2;



/*************************************************************

The function below does the main work of the page. The browser carries out this sequence of commands when it reads the command 

‘writeSentence()’. Each of the lines ends with a semicolon. With the exception of certain compound statements, JavaScript statements should end with a semicolon. By the way, all but one of the asterisks above is just a comment. But the line of them really makes comments easy to spot. They’re a nice technique for extended comments.

**************************************************************/



function writeSentence() 

{




/*




The next three commands put values from 

the form in the previously defined variables.




*/




noun2=words.Noun2.value;




verb1=words.Verb1.value;




verb2=words.Verb2.value;




/* 




the next command uses the full name of the value




directly.




*/




document.write(words.Noun1.value);




document.write(" would not be much use if all we");




document.write(" could do is ");




document.write(verb1);




document.write(" ");




document.write(noun2);




document.write(" and ");




document.write(verb2);




document.write(" it back.");




//comment out the end of the html comment tag -->



}


</script>

</head>

<body>

<form name="words">


Please enter a plural noun, capitalized:


<input type="text" name="Noun1" value="Computers" >

<p>

Please enter a verb:

<input type="text" name="Verb1" value="get">

<p>

Please enter a noun:

<input type="text" name="Noun2" value="input" >

<p>

Please enter a verb:

<input type="text" name="Verb2" value="echo">

<p>

<input type="button" value="Write the sentence." onclick="writeSentence();">

<!- When the user selects the button, the browser carries out the commands in ‘writeSentence’() from the JavaScript above.->

</form>

</body>

</html>

Note also that the example includes a function declaration. Though functions can do a great deal more, here we will just use them to group JavaScript statements under a single name. The syntax for declaring such a function is, as you saw,

function nameOfTheFunction(){

execute these JavaScript statements

}

Once you define the function, you can execute all its statements with the single statement that follows:

nameOfTheFunction();

Using a function as the value of an event handler avoids problems caused by quotation marks within the quotation marks around the value.

Prompt boxes used in succession can take the place of the form. In the example above. The syntax 

var somename=prompt(“message to user”, ”default text”);

declares a variable called somename or whatever name you choose. It also creates a prompt box with the text in the parentheses before the comma as a message about the purpose of the box. The text after the comma appears in the answer position on the box, until the user changes it. To leave the answer position blank, use “” for the text after the comma.  

<html>


<head>



<!-- This program prompts the user for four words then 



displays those words in a sentence.



-->



<title>prompt example</title>


</head>


<body>


<script language= "JavaScript">



<!--



/********************************************************



Create the variables and get the user to fill them.



********************************************************/



var noun1=prompt("Please enter a plural noun, capitalized: ","Computers"); 



var verb1=prompt("Please enter a verb: ","get");



var noun2=prompt("Please enter a noun: ","input"); 



var verb2=prompt("Please enter a verb: ","echo");



/********************************************************



Print out the contents of the variables in appropriate 



places in a sentence.



********************************************************/




document.write(noun1);




document.write(" would not be much use if all we");




document.write(" could do is ");




document.write(verb1);




document.write(" ");




document.write(noun2);




document.write(" and ");




document.write(verb2);




document.write(" it back.")


</script>


</body>

</html>

Incidentally, neither of these examples was particularly efficient. For example, the many write statements can be avoided using operations on strings that are available in JavaScript. 

3.6 Debugging

Debugging refers to the process of making a seemingly reasonable program actually work. Several techniques can make debugging easier. 

When programming, edit a program that already works to write your new program. This makes sure that the main tags are in place and written correctly. If the old program bears some resemblance to the new, you save some writing, and avoid some opportunities for mistakes.

Have a plan for the structure of the program before you start typing statements. At least think about how you intend to organize gathering data, processing the data, and outputting the results before you write. You may find that outlining your approach in advance is helpful. 

Write the program in successive steps, testing as you go along. If the program has several parts, test each part separately. For example, once you have written the portion of the code to get input, test it by simply echoing the input. If bugs crop up as you assemble the parts, you can turn groups of statements that seem to be causing trouble into comments and test the result. If you plan to make major revisions, save the file under a new name so you can still go back to the old version.

The problem with a program may be that the browser is unable to interpret the code. This is due to mistakes in following the correct format, or syntax, in statements. One symptom of this is that little or nothing happens when you run the program. Popular syntax errors involve omitting semicolons, or halves of parentheses or quotation marks. The actual syntax error may be a little above or a little below the spot that the browser identifies as the problem. In desperation, you may actually find that retyping the offending area solves the problem, probably because you corrected a mistake that you didn’t notice.

The program may run with no error messages, but not perform as intended. This may be due to a flaw in the concept. Carefully trace through the steps you are asking the computer to take, acting in place of the browser. Keep track of the values of the variables. If the organization still seems sound, the bug may be due to incorrect syntax again. This can cause you to be saying things that the browser understands differently than you intended. 

Plan for time to debug. Beginning programmers will usually get bugs in any programs over twelve lines. With intensive experience, advanced programmers can push this to seventeen lines. 

There are software tools available for debugging. If there is a syntax error in your program, clicking on an alert icon may produce a dialog box that mentions a line number and a problem and asks if you want to debug. Choosing to debug will open one of these tools. Do explore this, but it isn’t necessary for programs of modest size.

3.7 Data Manipulation

Computers would not be much use if all we could do were to get input and echo it back. We usually want to modify the input or perform calculations based on the input. Let’s start with some simple mathematical manipulations. The = operator assigns the value on the right to a variable on the left.

The following code fragment assigns values to two variables and puts the sum of the two variables in a variable appropriately named sum :

var num1, num2, num3, sum;

num1=10;

num2=8;

sum=num1+num2;
In the last command above, num1 and num2 are called the left and right operands, and the + is called the operator. As you would expect, you use the operator – for subtraction, * for multiplication, and / for division. For example, at the end of the code below, num1 will contain 45, num2 will contain 90, and num3 will contain 2. Try it.

num1=15*3;

num2=2*num1;

num3=(10-2)/4;

Note the use of parentheses in the last command. Without the parentheses, num3 would be 9.5.  This is because the computer evaluates expressions in parentheses first, and then evaluates multiplications and divisions in order from left to right. Finally it evaluates additions and subtractions in order from left to right. Thus if the command was 

num3=10-2/4;

first the 2/4 would evaluate to 0.5, then 10-0.5 would be evaluated to get 9.5.

Any decent modern programming language comes with a collection of predefined mathematical functions. JavaScript is no exception. To compute more sophisticated math functions, you use the math methods, some of which are listed below.

num1=Math.sqrt(144); //return the square root of  144

num1=Math.sin(90);
//return the sine of 90 degrees

num1=Math.abs(-1);
//return the absolute value of –1

num1=Math.max(num2,num3);
//return the maximum of num2 and num3

num1=Math.max(17,8.2);
//return the maximum of two supplied values.

num1=Math.pow(x,y);
//return x to the y power

num1=Math.floor(x);
//return the argument truncated to an integer

num1=Math.ceil(1.23);
//return the argument rounded up to the nearest integer

num1=Math.round(x);
//return the argument rounded to the nearest integer

num1=Math.random();
//return a pseudorandom number between 0 and 1

num1=exp(x);
//returns e raised to the x power
In addition to manipulating numbers, programs need to be able to manipulate text. Often we want to modify a string based on user input. Consider the next two commands:


var age=prompt(“Please enter your age”,””);


var outputString=”You don’t look “+age+” years old.”;

The first command assigns the user input to the variable age. The next command is an example of text manipulation. It creates a new string by concatenating (appending end to end) three strings together. The three concatenated strings follow.

1. “You don’t look “

2. the contents of the variable age

3. “ years old.”

The + operator concatenates strings and adds numerical values. It concatenates numerical values and strings.

This example makes use of numerical operations and string concatenation. It uses the onchange event handler to update the value of  a variable when the user changes the contents of the corresponding form element.

<html>

<head>


<title>buy photos</title>


<script language= "JavaScript">



<!--



var numExch=0, numWall=0, numGrand=0,totalCost=0;



function tally(){




totalCost=numExch*.25+numWall*.50+numGrand*5;




order.total.value=totalCost+" dollars";



}


//-->


</script>

<!---------------------------------------------------------------------

This page allows the user to state a number of each photo size. It returns the cost of the photos selected by the user. The program does not check if the text the user enters is actually a number.

---------------------------------------------------------------------->

</head>

<body>


<form name="order">



<h1>Welcome to the school portrait information page.</h1>



<p>



Please enter the number you would like of each type of print:



<p>



exchange size:



<p>



<input type="text" name="exch" value=0 onchange="numExch=this.value;">$.25 each



<p>



wallet size:



<p>



<input type="text" name="wall" value=0 onchange="numWall=this.value;">$.50 each



<p>



grandparent gift size:



<input type="text" name="grand" value=0 onchange="numGrand=this.value;">$5 each



<p>



<input type="button" value="done" onclick="tally()">



<p>



Your total cost is



<input type="text" name="total" >.



Please bring that amount on portrait day.

</form>

</body>

</html>

For comparison, consider this page that conveys the same information while eliminating many of the event handlers. The page gets data from the user in form elements. The function called by the onclick event handler collects the values from the form elements into variables, performs operations using those variables, then returns a result in a text area.  This general structure is simple and flexible. For example, the page that collected words from the user then combined them in a sentence can be written in this way. Create a text box for each word from the user. Provide a ‘done’ button whose onclick collects the words, assembles them into a string, and assigns the value of the string to the value of a text area

<html>

<head>


<title>buy photos</title>


<script language= "JavaScript">



<!--



function tally(){

var numExch=order.exch.value, numWall=order.wall.value, numGrand=order.grand.value,totalCost,

message="Your total cost is $";




totalCost=numExch*.25+numWall*.50+numGrand*5;




message=message+totalCost

message=message+".\nPlease bring $"+totalCost

message=message+" on portrait day.";




order.response.value=message;



}


//-->


</script>

<!---------------------------------------------------------------------

This organization uses the tally function to load the variables and to display the result in the text area.

---------------------------------------------------------------------->

</head>

<body>


<form name="order">



<h1>Welcome to the school portrait information page.</h1>



<p>



Please enter the number you would like of each type of print:



<p>



exchange size:



<p>



<input type="text" name="exch" value=0 >$.25 each



<p>



wallet size:



<p>



<input type="text" name="wall" value=0 >$.50 each



<p>



grandparent gift size:



<input type="text" name="grand" value=0 >$5 each



<p>



<input type="button" value="done" onclick="tally()">



<p>



<textarea rows=2 cols=40 name=response>Your total here</textarea>

</form>

</body>

</html>

3.8 Conditional Statements

In some applications, the commands a program executes and how many times it executes them must depend on the input. The next several sections present commands to control which JavaScript commands are carried out during when the programs runs on various inputs.

The statement

if(some condition is true)

{do this collection of statements} 

causes the statements in the curly brackets to be carried out if and only if the condition in parentheses holds. (Note that you must not put a semicolon after the closing curly bracket.) For example, we could make this refinement to the computer’s response to the user’s entered age:

var age=prompt(“Please enter your age”,””);

var outputString=”Your age is ”+age+”.”;

if(age>105)

{outputString=”You don’t look “+age+” years old.”;}

This changes the neutral outputString  ”Your age is ”+age+”.” to the skeptical  ”You don’t look “+age+” years old.” if the age entered is greater than 105.

Sometimes you want to run one set of statements if the condition is true and another set of statements if the condition is false. Follow the if statement with an else statement to do this.

var age=prompt(“Please enter your age”,””);

var yearsToGo=65;

var outputString=”Your age is ”+age+”.”;

if(age>65)

{

document.write(“You qualify for the senior discount.”);

yearsToGo=0;

}

else

{

document.write(“I’m sorry, you don’t qualify for”);

document.write(“the senior discount.”);

var yearsToGo=65-age;

}
Now if the user enters an age over 65, the message announcing the discount is displayed and the variable yearsToGo is set to 0. If the age is not over 65, the message apologizing for no discount is displayed and yearsToGo is set to the number of years before the user reaches 65. 

The if..else commands can be nested. In fact nesting a sequence of them is a standard technique for producing different behavior for several cases of input values.  For example, to elaborate on the age code, we could offer a children’s discount if the user enters an age under 12.

var age=prompt(“Please enter your age”,””);

var outputString=”Your age is ”+age+”.”;

if(age>65)

document.write(“You qualify for the senior discount.”);

else

{

if(age<12){

document.write(“You qualify for the “);

document.write(“child’s discount.”);

}

else{

document.write(“I’m sorry, you don’t qualify for ”);

document.write(“any discount.”);

}

}
This offers a senior discount if the age is over 65, a child’s discount if the age is under twelve, and no discount otherwise. Note that the curly brackets are optional when the action to be done if the condition is true is a single statement.

The condition in parentheses after the if or the else must be a claim that is either true or false, written in JavaScript. Such a claim is called a Boolean condition. JavaScript has several basic operators to produce Boolean statements: < for less than, > for greater than, <= for less than or equal to, >= for greater than or equal to, and == for equals. Note the double equal sign tests for equality, while a single equals sign assigns the value on the right to the variable on the left.

In addition buttons and check boxes have the checked attribute. For example, an input of checkbox type named tShirt in a form named roadrace has an associated Boolean statement,

roadrace.tShirt.checked

which is true if the box is checked.

JavaScript also provides operators to make compound Boolean conditions. Joining two conditions with a double ampersand, as in 

income>40000 && savings>80000

makes a condition that is true if and only the left and right conditions are both true.

Joining two conditions with a || (typed with two uppercase backslashes) makes a compound condition that is true if at least one, possibly both of original conditions is true. For example, to write a condition that is true if at least one of the variables income and spouseIncome is over 40,000, write

income>40000||spouseIncome>40000 .

A ! in front of a Boolean expression reverses the truth value of the expression. For example 

!(num1==num2)

is true exactly when the values of num1 and num2 are not equal.

3.9 Iteration

Computers can repeat the same, or nearly the same task, many times. To harness this ability, programming languages include control structures to direct the computer to perform variations on a task until reaching a specific goal. For example, a scientist can generate solutions of equations by having a computer calculate successive approximations until the approximations stop changing. A registrar can review every student’s record and identify those qualified to graduate. A spammer can send millions of copies of the same ad. 

The while statement instructs the computer to perform a set of statements repeatedly until a particular condition is no longer true. The syntax in JavaScript

while(condition is true){

execute this set of statements

}
sets up what is called a while loop. If the condition is true, the computer executes each statement in the braces, then checks again to see if the condition is true. If it is, the computer again executes the statements in the curly brackets, and again checks if the condition is true. The computer will loop through the instructions in the curly brackets until the condition is no longer true. Only then does it move on to statements after the brackets.

A while loop works well for data validation. A program can prompt the user for information as long as that information is missing. For example, suppose a form named subject has a text box named yob in which the user is supposed to enter a year of birth in yyyy form.  The function

function validation(){

while(subject.yob.value<1000)

{

subject.yob.value=prompt("Please enter a 4 digit year of birth.",year.yob.value);

}

}

will prompt the user for the date until getting a number that is (at least) four digits long for subject.yob.value. Set the onchange attribute of yob to validation() to ensure that the user does not enter a date in yy form.

If improperly written, a while loop can give a user an annoying brush with infinity. Consider the behavior of the following code.

var counter=10

while(counter>0){

counter=counter+5;

}

The value of the variable is greater than 0, so control enters the while loop. The statement increases the value of the variable to 15, which is still greater than 0. The loop repeats. The value variable increases to 20, still greater than 0, and so on, ad infinitum. 

The for statement first instructs the computer to set a counter variable to a start value. Then the computer repeats the process of checking that the counter is in the required range and if so, executing a group of statements; updating the counter; checking the range; executing the statements, etc. The looping continues until the counter goes out of range.

In JavaScript, the syntax 

for(counter=starting value; counter is in range; counter update){

execute this group of statements

}
sets up a for loop.


For example, a for loop to print out the numbers 0, 5, 10, 15, 20…50 could be written as follows:

for(index=0;index<11;index=index+1){

document.write(5*index+”<p>”);

}

or

for(index=0;index<=50;index=index+5){

document.write(index+”<p>”);

}

or any variety of other ways. The operation of increasing the counter variable is so common that there is a shortcut for it: counter++. Thus

for(index=0;index<11;index++){

document.write(5*index+”<p>”);

}

is yet another way to write 0 through 50 by fives.
PAGE  
20

