Chapter 4: Computer Organization and Hardware

Under most circumstances, the programmer can view the computer abstractly as a device that responds in a predetermined way to a set of instructions. The programmer arranges sequences of those instructions. The computer duly carries them out. Never mind how.

Circumstances arise when this view proves inadequate. When the programmer goes to shop for new software or a new computer, words like RAM and 40GB hard drive, and 2.40GHz processor crop up. Or the programmer notices that the programming language has some kinks: statements that logically could be combined will not work together in practice. One might need know what will be lost if the battery runs down. These situations aren’t covered by the abstract view. We need to know about the components of the computer to buy a computer suitable for its intended purpose. We need to understand the process of turning a program into machine operations to understand the limitations of a language. We need to understand a little about the physical construction of the components for practical reasons. Simple curiosity might drive a person to investigate how this ubiquitous machine gets from moving electrons around to correcting grammar.

4.1 Architecture

Conceptually, a computer consists of five components: memory, a logic and arithmetic unit (ALU), a controller, and input devices and output devices. The same device may function as an input device and an output device, so these last two are grouped as I/O devices.

A computer running a program carries out a list of instructions. The computer cycles through the process of fetching an instruction, decoding the instruction, retrieving the data needed to carry out the instruction, carrying out the instruction, and returning the results. A clock in the computer sets the pace. The control unit coordinates the components of the computer to carry out the cycle. The instructions are in machine language. They reside in main memory. The control unit retrieves the instruction from memory. It communicates the required data from memory to the arithmetic and logic unit (ALU) and retrieves the result, possibly storing it in memory.

The main memory thus stores the program, that is, the instructions in the fetch/execute cycle, and data. This memory contains a large number of semiconductor storage cells, organized into successive locations, each with an associated numerical address. This memory is called random access memory or RAM, because the contents of any address can be accessed in a short, fixed amount of time.

For the consumer, there are two issues associated with RAM: space and time. Computer literature specifies the space available for storage in terms of bytes, or, currently, megabytes. A byte is a collection of memory with capacity to store a number between 0 and 255, meaning that it has 256 different possible settings. A megabyte is approximately one million bytes; 1,048,576 bytes, to be exact. At the time of this writing, 256-512 megabytes of RAM is fairly standard in new personal computers. The time required to access a location may appear in the computer’s description in terms of MHz, or megahertz. A hertz is a unit of frequency. One hertz denotes one occurrence per second. A megahertz denotes one million repetitions per second. Thus a 400 MHz RAM allows for 400,000,000 accesses per second. Main memory is volatile. The contents are destroyed when power is cut. Stored programs and data reside in secondary memory, such as the hard drive, for installed programs and current files. Floppy disks and compact disks provide portable storage. In contrast to main memory, the hard drive and the disk drives are I/O devices.

As the name suggests, the ALU performs the arithmetic operations and logic operations necessary for carrying out the machine language instructions. The ALU has circuits for addition, multiplication, comparison, and each data operation in the machine language. Combinations of these basic operations form the operations available in a programming language. The ALU performs the operations on data provided to it by the control unit.

The control unit controls the flow of signals to and from the other components. The control unit uses the current instruction and the address of the next instruction. This address may be altered during the execution of the current instruction. The decoder within the control unit converts the current instruction, which is in machine language, into electrical signals that cause the other components to carry out the instruction. Also part of the control unit, a clock generates the timing signals that determine when an action takes place. The control unit uses the timing signals to put operations in the correct sequence. For example, the control unit puts a result in memory only after the ALU has fully computed the result.

The processor consists of the ALU and the control unit. The specifications of a computer will typically include the name and clock speed of the processor, in expressions like “Intel Pentium 4, 2.40GHz processor.” The clock speed does not provide detailed information about the speed of the computer in executing a program, partly because the computer may execute fewer that one instruction per cycle, or, by running multiple instructions concurrently, more than one instruction per cycle. One computer having half the clock speed of another may perform better if its other components and software are better. However, a very slow clock speed will produce noticeable delays, and may make strongly time dependent applications, like some games, run intolerably badly.

The devices that supply I/O for the computer are also called peripherals. They include the mouse, keyboard, and scanner as purely input devices, the monitor, printer and speakers as output devices, and disk drives, which function in both capacities. The hard disk is very closely tied to the computer. Though data and programs reside in main memory when in use, they are stored magnetically on the hard drive. They persist when the power is off. The computer moves programs, or parts of programs in and out of the hard drive as needed. You can hear this when you open a large application. The hard drive typically is much larger and slower than RAM. Some peripheral devices literally plug in to the computer. They provide basic encoding of signals to or from the computer. Software called, reasonably enough, device drivers process these signals for use.

A brief summary of the size prefixes in common in discussions of computer capabilities follows. Putting one of the prefixes in front of a unit of measure multiplies that unit by the amount in the multiplier column. For example, an old joke notes that Helen of Troy’s face is said to have launched a thousand ships. Using 1 Helen as the unit of beauty needed to launch 1000 ships, 1milliHelen will launch 1 ship. Sorry. A nanosecond is one billionth of a second. A kilometer is 1000 meters, and so on.

	prefix
	Multiplier
	Multiplier (binary context)

	kilo
	1000
	1,024

	mega
	1,000,000
	1,048,576

	giga
	1,000,000,000
	1,073,741,824

	tera
	1,000,000,000,000
	1,099,511,627,776

	milli
	.001
	-

	micro
	.000,001
	-

	nano
	.000,000,001
	-

	pico
	.000,000,000,001
	-

4.2 Software Basics

State of the art hardware does nothing without some software. The software responsible for starting up the computer, managing its memory, and allowing it to communicate with peripherals is called the operating system. Three types of operating systems are in wide use: Windows in all its varieties, MacOs, and Unix and its various forms, including Linux. Each has its partisans. (Microsoft Word’s spell checker doesn’t recognize MacOs as a word, by the way.) A user interacts directly with the operating system when creating, moving, or deleting files. The operating system also supplies the services of memory management and interaction with peripherals to the other programs run on the machine.

These application programs are usually written in a high level programming language, far removed from the machine language used by the control unit. Software converts programs in more humanly readable languages such as C++, Perl, JavaScript, and so on, to assembly language, a language closely related to machine language. This happens in one of two ways. In an interpreted language, a program called the interpreter converts the source code to assembly language one line of source code at a time. In a compiled language, software called a compiler takes the program as input, and produces a file of assembly language commands as output. Someone wanting to run the program runs this file, called the executable file. More software, called an assembler, converts assembly language to machine code. The control unit executes the machine code.

JavaScript is an interpreted language. This explains why the source code available to the user viewing the source of a web page. The fact that some browsers incorrectly interpret JavaScript with quotation marks after event handlers in forms is due to the

JavaScript /HTML interpreter’s mistaking the quotation marks in the code for the terminal quotation marks. In general, interpreted languages run more slowly, because the interpretation time adds to the execution time. Debugging is often easier than with a compiled language, because the relation between the source code and what the machine does is more direct. By contrast, C++ is compiled.

4.3 Logic and Arithmetic

The computer carries out control operations and calculations and stores data with signals which can be in one of two states, off or on for electrical impulses. Binary logic and binary arithmetic hold the key to understanding, in the abstract, how the computer performs these functions. Assuming, for this section, that circuits that perform basic Boolean logic operations can be built, we look at how they can be arranged to perform the tasks indicated by the architecture.

4.3.1 truth tables

The ancient study of mathematical logic examines how the truth of statements changes when they are combined. A truth table displays how the truth of a compound statement depends on the truth or falsity of the basic statements combined with Boolean operators to form it. The basic statements, called primitive propositions, are the single letters in the table. For typographic convenience, and to connect logic with arithmetic, let’s use 0 and 1 instead of T and F. The primitive propositions in a truth table correspond to the inputs to a logic circuit. The inputs are essentially wires in which current is flowing or not flowing, corresponding to 1 or 0. The circuit itself, with its built in Boolean operators on the currents, corresponds to the compound statement in the truth table. The output of the circuit is essentially a wire in which current is flowing or not, depending on the details of the circuit and the input. The output corresponds to the truth value of the compound statement. We can understand the design of logic circuits for various functions by studying the underlying logical statement.

Before assembling them into more elaborate operations, let’s revisit the Boolean operators AND, OR and NOT (&&, ||, and !, in JavaScript). Using 1 in place of true and 0 in place of false, the operators have the following tables. The first columns in the first row show the initial statements. Here p and q stand for any Boolean statements. The last column shows the result of the operation. The rows show each possible set of values.

AND:

	p
	q
	p&&q

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

OR:

	p
	q
	p||q

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

NOT

	p
	!p

	0
	1

	1
	0

Tables such as these facilitate computation of the behavior of longer compound statements. For example, to examine the dependence of the value of (p&&!q)||(!p&&q) on the values of p and q, consider the following table.

	p
	q
	!p
	!q
	p&&!q
	!p&&q
	(p&&!q)||(!p&&q)

	0
	0
	1
	1
	0
	0
	0

	0
	1
	1
	0
	0
	1
	1

	1
	0
	0
	1
	1
	0
	1

	1
	1
	0
	0
	0
	0
	0

4.3.2 numbers in base 2

These logical operations relate closely to addition and multiplication of numbers represented in base 2. A number represented in base 2 consists of a string of 1’s and 0’s. The 1’s and 0’s tell how many of each power of 2 to add to make the number, just as the digits of a number in base 10 tell how many of each power of 10 to add. For example, in base 10, the string 107 represents 1*102+0*101+7*100=1*102+0*10+7*1.

Similarly, in base 2, the string 1101011 represents 1*26+1*25+0*24+1*23+0*22+1*21+1*20, or, giving the powers of 2 their base 10 representation, 1*64+1*32+0*16+1*8+0*4+1*2+1*1=107. The 1’s and 0’s are called bits.

Notice that you can represent any number in base 2 notation. The most obvious way compute the base two representation of a number may be as follows. Find the highest power of 2 that is less than or equal to the value, note this with a 1 in the appropriate position. Subtract 2 to that power from the number you are writing in base 2. Find the highest power of 2 less than or equal to what is left. Put a 1 in the appropriate position, subtract, and so on, until you have just 0 or 1 left. Record the 0 or 1 as the rightmost bit.

For example, to write 53 in base 2, note that 25=32 is the highest power of 2 less than or equal to 53. You now know that your number is 6 bits long, and the leftmost, or most significant, bit is 1. So far, we know that the base 2 representation is 1*****, where the *’s stand for bits you haven’t computed yet. Subtract 32 from 53, leaving 21. The highest power of 2 less than or equal to 21 is 24=16. Now the representation is 11****. Subtracting 16 from 21 leaves 5. The highest power of 2 less than or equal to 5 is 22=4. Update the representation to 1101**. Subtract 4 from 5, leaving 1. Record this as the rightmost, least significant, bit. The string 110101 represents 53 in base 2.

There is a computationally simpler, conceptually trickier, method. This uses successive divisions by 2 of the number to be converted. For example, to write 22 in base two, divide by 2. The quotient is 11, and the remainder is 0. Record the remainder, 0, as the rightmost bit. We know that there are 11 2’s in 22. Now divide 11 by 2. This tells us the number of 4’s in 22. The quotient is 5, and the remainder is 1. Record a 1 to the left of the bit most recently computed. The representation is 10, so far. Divide 5 by 2. The quotient is 2, and the remainder is 1. Record the remainder to the left of the representation so far: 110. Divide 2 by 2. The quotient is 1 and the remainder is 0. The updated representation is 0110. Divide 1 by 2. The quotient is 0, and the remainder is 1. Record the 1 at the left of the representation, giving 10110. Once the quotient reaches 0, the representation is complete.

Arithmetic in base 2 is quite simple, though the numbers tend to get rather long. A child learning to add and multiply base 10 has to learn a comparatively large addition table. Having mastered that and carrying, the child can add any two whole numbers. The base 2 addition table is quite small:

	+
	0
	1

	0
	0
	1

	1
	1
	10

 Now our binary child adds 111+10=1101 by starting at the right and working left, “1+0 is 1. Write 1. 1+1 is 10. Write 0, and carry 1. 1+1 is 10, and that is the end, so write 10.” Try this with the numbers written one below the other, as for hand computation base 10.

	
	1
	
	

	
	1
	1
	1

	+
	
	1
	0

	1
	0
	0
	1

Adding 1 and 1 is relaxing compared to many activities required of us, so let’s do another: 1011+111.

	
	
	1
	1
	

	
	1
	0
	1
	1

	+
	
	1
	1
	1

	1
	0
	0
	1
	0

To multiply in base 10 by hand you multiply one factor by each digit of the other factor, putting 0’s to the right of this subproduct to show the column from which the digit came. Then add the separate products. For example, 53*27 produces the following computation.

	
	
	
	5
	3

	x
	
	
	2
	7

	
	
	3
	7
	1

	+
	1
	0
	6
	0

	
	1
	4
	3
	1

The base 2 multiplication table shows four products.

	x
	0
	1

	0
	0
	0

	1
	0
	1

Computing products of larger numbers base 2 parallels the base 10 computation.

	
	
	1
	0
	1
	1

	
	x
	
	1
	0
	1

	
	
	1
	0
	1
	1

	
	0
	0
	0
	0
	

	1
	0
	1
	1
	
	

	1
	1
	0
	1
	1
	1

By the way, the computer’s use of base 2 representations explains why memory is measured in bytes, and why a megabyte is 1,048,576 bytes. A byte is the number of different strings that 8 bits can represent: 00000000, 00000001, …11111111. Those are the numbers 0 through 255: 256 different values. The computer uses numbers in base 2 as addresses for locations in memory. Every additional bit used in an address doubles the number of available addresses. Using 20 bits gives 220=1,048,576 addresses. The binary context multipliers are all exact powers of 2. The use of base 8 and base 16 in some applications is due to the computer’s underlying use of base 2. Conversions between these bases are particularly simple.

4.3.3 base 2 computations with Boolean operators

The computer basically stores numbers as bit strings using the base 2 representation. The machine uses combinations of Boolean operators to add and multiply these numbers. To illustrate how this can be done, we will build up a collection of Boolean statements whose results represent the sum of a pair of two bit numbers.

Given the numbers a and b with bit strings a1 a0 and b1 b0, the Boolean operators should produce s1 s0, the two rightmost bits in the sum, and an overflow indicator s2, which holds the leftmost bit of a+b, Here a1 and a0 are the left and right bits of the base 2 representation of a, likewise for b. The bits s1 and s0 are the two rightmost bits of a+b. The overflow indicator will be 1 if a+b overflows two bits. That will happen if, in adding a+b, there was a carry from the sum of the leftmost bits.

Beginning with the least significant bits, the addition operator should produce a 1 for the least significant bit when exactly one of a0 and b0 equals 1. Otherwise the addition operator should produce a 0. The logical statement (p&&!q)||(!p&&q) examined in 4.3.1 has this property. It is 1 exactly when p and q are different. View this statement as a function of p and q and denote it by H(p,q). Begin the computation of a+b with H(a0,b0). The result is the rightmost bit of the sum, s0.

Still considering the least significant bits, we need to know if we have to carry a 1 to the addition of the next bits. We carry a 1 if a0 and b0 are both 1, and 0 otherwise. A simple && does the carry computation. Set C(a0,b0)=a0&&b0. In general, denote p&&q by C(p,q).

In the computer, a device called a half adder takes a0 and b0 as input and outputs H(a0,b0), and C(a0,b0). Denote H(a0,b0) by s0, and C(a0,b0) by c1.

Finding s1 requires adding a1, b1, and c1. First add a1 and b1 by computing H(a1,b1). To determine s1, add c1 to H(a1,b1): s1=H(c1,H(a1,b1)).

To determine s2, the overflow of the sum into a third bit, note that if a1+b1 carries 1, then s2 should be 1. Test for this with C(a1,b1). If a1+b1=1, and c1=1, then again s2 should be 1. Test for this with C(c1,H(a1,b1)). Thus s2 equals 1 exactly when C(a1,b1)||C(c1,H(a1,b1)) equals 1.

In the computer, a device called a one bit full adder takes three inputs, say c1, a0 and b0, and produces two outputs, s1=H(c1,H(a1,b1)) and s2=C(a1,b1)||C(c1,H(a1,b1)). More generally, a full adder takes three inputs ci, ai, and ri, and produces the outputs si=H(ci,H(ai,bi)) and ci+1=C(ai,bi)||C(ci,H(ai,bi))

Summarizing, so to speak, given the inputs a=a1 a0 and b=b1 b0, the computer produces the sum s=s2 s1 s0 by linking a half adder and a full adder. The bit s0 equals H(a0,b0), one output of the half adder on input a0 and b0. The other output of the half adder, c1, together with a1 and b1 are the input for a full adder. The bit s1 equals H(c1,H(a1,b1)), one of the outputs of the full adder. The overflow bit s2 equals C(a1,b1)||C(c1,H(a1,b1)), the other output.

These computations generalize to longer numbers. For example, to handle a+b=s for a=a2 a1 a0, b=b2 b1 b0, and s=s3 s2 s1 s0, use a0 and b0 as inputs for a half adder. Record the s0 result as the rightmost bit for the sum. Use the c1 result and a1 and b1 as inputs for a full adder. Record s1 as the next bit of the sum. Use the output c2 of this full adder, together with a2 and b2 as the input for the next full adder. The output s2 is the bit in the 4’2 place in the sum. The output c3 is the bit in the 8’s place in the sum.

In general, addition takes place bit by bit from right to left. For every bit but the first, the bit addition has three inputs: the two bits to be added, and the value carried from the addition of the two bits immediately to the right of the current bits. The addition has two outputs: the bit in the current position in the sum, and the value to carry to the next bitwise addition to the left. This latter value becomes the overflow bit when the leftmost bits are added. Because the operations are the same each time, the computer uses the same logical operations each time, embodied in a one bit full adder, changing just the inputs. An ALU will have many of these, and logical circuits for other calculation as well.

4.3.4 control operations with Boolean statements

The control unit must be able to choose which of various available values to send to another location. It must also be able to select among various locations. The selection among available values occurs, for example, when the control unit retrieves a computed value from the ALU, which outputs the results of different computations in different places. The control unit must send control signals to the appropriate locations.

A device called a multiplexor or MUX has input values and a signal value. The MUX outputs one of the input values. The signal value determines which one. The output value is the value of a logical statement combining the input values and the signal value.

As an illustration, consider a logical operator on a, b, and s that has the value a if s=1 and the value b if s=0. The operator is (a&&s)||(b&&!s). The following truth table demonstrates that (a&&s)||(b&&!s)=a if s=1, and (a&&s)||(b&&!s)=b if s=0. A MUX that passes on either the input value a or the input value b depending on the value of the signal s uses this statement.

	a
	b
	s
	!s
	a&&s
	b&&!s
	(a&&s)||(b&&!s)

	0
	0
	0
	1
	0
	0
	0

	1
	0
	0
	1
	0
	0
	0

	0
	1
	0
	1
	0
	1
	1

	1
	1
	0
	1
	0
	1
	1

	0
	0
	1
	0
	0
	0
	0

	1
	0
	1
	0
	1
	0
	1

	0
	1
	1
	0
	0
	0
	0

	1
	1
	1
	0
	1
	0
	1

With two signals, say s1 and s2, and four inputs a, b, c, and d, we can write a (rather long) statement that equals a, b, c, or d, depending which of the four possible combined values for s1 and s2 is present. You can write statements to pass on one of 8, 16, 32, etc. values depending on 3, 4, 5 etc. signals.

A decoder sends a signal to one of various possible locations, in a reverse of the MUX operation. To understand how this can be done, view sending the value b through the operator (a&&s)||(b&&!s).The value of b is unchanged if s=0, and changed to a if s=1. View a as the input, and b as one of the possible locations. Then this operator sends a to b if s=1.

4.3.5 memory and logic

To create a circuit that stores a value, the circuit designer splits the output value and feeds it back into the circuit as an input. In the corresponding truth table, interpret one of the primitive statements as the previous value of the full compound statement.

To make this more concrete, consider the statement (d&&g)||(q&&!g) at a particular tick of the clock, with the interpretation that the statement q is the value of (d&&g)||(q&&!g)on the previous tick. On this tick, the circuit gets fresh values of d and g, and the old output value of the circuit as the value of q. The circuit generates a new output on this basis. Notice that the statement has the same form as that of the MUX, (a&&s)||(b&&!s). The interpretation has changed. Think of g as a gatekeeper to the memory storing the value q. Think of d as the datum that may be written into memory. The circuit is called a latch. As long as g is 0, the value of (d&&g)||(q&&!g) does not change, and the value of q does not change. The circuit remembers the value of q, regardless of d. When g=1, the value of (d&&g)||(q&&!g) equals the value of d, and so the value of q equals the value of d. The value of d has now been placed in memory. Change g to 0 to keep it there, even if d changes. This latch, built into a circuit with the ability to link its function with other control signals, forms a one bit memory cell of the type in RAM. In a computer that represents data in four bytes, 32 of these latches are linked to form one memory location.

4.4 The Physical Circuitry

The computer components from which the computer implements logical operations are switches. Think of a switch as a box with three wires connecting to it, an in wire, an out and a control wire. The switch either does or does not allow current to flow from in to out, depending on the current in the control wire. There are two kinds of switches. In a normally open switch, current flows from in to out under exactly one condition: there is current in the in wire (in=1) and there is current in the control wire (control =1). Otherwise there is no current in the out wire. In a normally closed switch also, current flows from in to out under exactly one condition: there is current in the in wire (in=1) and there is no current in the control wire (control =0). Otherwise there is no current in the out wire. These truth tables summarize the situation.

Normally Open:

	in
	control
	out

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

Normally Closed:

	in
	control
	out

	0
	0
	0

	0
	1
	0

	1
	0
	1

	1
	1
	0

From switches, engineers build gates that perform logical operations on the input to produce output. The gate for AND is particularly simple. Connect the inputs p and q to the in and control parts of the switch. The value of out is then p&&q. To build a NOT gate, start with a normally closed switch. Arrange for the in value to be fixed at 1. Connect the p input to the control part of the switch. The out value is now !p, because current will flow, and out will equal 1, if p=0. If p=1, current does not flow, so out=0.

To build an OR gate, use the logical observation that p||q=!(!p&&!q):

	p
	q
	!p
	!q
	!p&&!q
	!(!p&&!q)
	p||q

	0
	0
	1
	1
	1
	0
	0

	0
	1
	1
	0
	0
	1
	1

	1
	0
	0
	1
	0
	1
	1

	1
	1
	0
	0
	0
	1
	1

This shows that we can build an OR gate with three NOT gates and an AND gate. Connect the inputs p and q to the inputs of two NOT gates. Connect the outputs of these NOT gates with the inputs of an AND gate. Send the resulting output through a NOT gate. The output there is p||q.

In the computer, the logic circuits of section 4.3 are gates composed in this way. For example, the statement (a&&s)||(b&&!s) corresponds to a circuit in which the s input is split. One wire from s and the a input are inputs for an AND gate. The other wire from s goes though a NOT gate. The output from the NOT gate and the b input are the inputs for another AND gate. Both AND gate outputs are connected as inputs to an OR gate. The output from the OR gate is (a&&s)||(b&&!s).

There are standard representations of these gates:

[image: image1.png]plla

p&&q

Figure 1 : NOT, AND and OR gate schematic representations

The NOT gate is representation is often abbreviated as just an open circle. Using this abbreviation, represent the logic circuit for (a&&s)||(b&&!s) schematically as follows. Note how the signal s is split.

[image: image2.png]-

o

(a8ks)]|(b&sds)

Figure 2 : Circuit for (a&&s)||(b&&!s)

The actual switches have been constructed in different ways over the years. The earliest computers used relays or vacuum tubes. The transistor, invented at Bell Labs in the 1940’s, provided superior speed, miniaturization, reliability, power efficiency, and cost efficiency. A transistor consists of three connected pieces of silicon with traces of other elements, and a wire connected to each piece. The wires carry the in, out, and control currents of the switch. The transistors can be made quite small.

The limit on miniaturizing the circuits was the problem of connecting wires to the transistors. The solution to this problem is photography.

First, people realized that the “wires” did not have to be actual wires, but could be strips of copper printed photographically on a circuit board. In this process, the board is initially covered with copper. The copper is covered with a light sensitive chemical. This surface is covered with a partial mask that leaves the areas that are to be wires exposed. The exposed areas respond to light by changing chemically. A chemical wash removes the unexposed light sensitive chemical, the way silver nitrate is washed off photographic negatives, leaving the light-altered chemical protecting the copper. Another chemical wash etches away the unprotected copper. Once the wires are printed, the components are soldered into the correct holes.

The integrated circuit technology now in use avoids the last step by printing the entire circuit, transistors and all. The components of the device are built up by successive applications of different compounds onto a wafer of silicon. Having the entire process be photographic produces several benefits. The masks can be photographically reduced, reducing the size of the device. The masks can be reproduced, making it easy to print many identical circuits on a silicon wafer. The manufacture of the wafer itself is one of the costliest parts of the process, so small multiple circuits produce a cost savings. Small circuits are also faster.

Researchers pursue the search for greater speed and miniaturization along various lines. Some groups are exploring nanotechnology as a means of making smaller switches. Others are experimenting with organic compounds. Still others hope to construct computers in which the signals are carried by light rather that electricity.

PAGE
45

