Chapter 5: Some Mathematics of Finance

To this point, we have examined computers as such, and computers as devices for automated, customized communication. The intention of the original designers was, of course, that computers would perform computations. They intended for computers to perform mathematical operations quickly and accurately. In fact, computers do precisely this in many fields. One such field is finance. Much of the mathematics of borrowing and lending money developed before computers. Societal changes prompted development of mathematics to manage money, and the methods of managing money prompted societal change. Though the sociology is complex, the mathematics of fixed rate investment is relatively simple and elegant. We will deduce several logically compelling formulas and gratefully use the computer to evaluate those formulas with specific data. The full role of computers in banking goes beyond that of a convenient calculator. Electronic banking and computer trading are instances where the speed and interconnection of computers have made qualitative changes in finance. 

The abstractions of interest formulas grew out of the realities of financing commerce. Considering the history of financial transactions motivates the form of the related mathematics. 

By the 12th and 13th centuries primitive banking activities surrounded the proliferation of fairs in the French province of Champagne. These fairs were the occasion of formal trading and were specifically organized for that purpose.  Italian, French, and Flemish merchants attended the fairs. 

The merchants did not want to carry large amounts of money while they traveled. To avoid the burden and risk of transporting coins of precious metal, they invented  ‘bills of exchange’ written by one individual and payable by another who might be in a far away place. These were the world’s first checks. 

The exchange of currency and the repayment of debt evolved quickly and reached an advanced state as early as the 1400’s in the Italian city of Florence. There, various banking families, most notably the Medicis, developed sophisticated financial enterprises. The Medici influence waned toward the end of the 15th century and passed to such financial dynasties as the Fugger family of Augsburg, which served the entire Hapsburg empire and many others as well. 

Commercial banking finally became too large for any single private entity to handle, and an epoch came to a close. Beginning in the 17th century national finance passed to organizations such as the nascent Bank of England, and its companion establishments in other countries. In the United States, banks not only accepted deposits, but also issued their own money called banknotes. Gradually, the authority to print money was restricted to the federal government, and banks restricted to what we now think of as familiar banking activities: loans, checking accounts, and savings accounts. Lending to finance purchase of land, and later to finance business expansion were central features of banking activity.  Mortgage loans to fuel the housing and construction industry dates roughly from the end of World War II. Since then, home mortgage financing has evolved rapidly.

Issues closely tied to the mathematics of loans affect individuals and nations. Individuals take out loans to finance education, purchase a car, a house, or, via credit card, presents for friends and relations. The national debt is money that the government has borrowed and not yet paid back. The decision of what is a reasonable debt to contract must depend partly on the terms of payment. These are efficiently described and understood in a mathematical context. We will derive the formula for the monthly payments on car, student, and home loans and compute the cost of these loans.

In this chapter, we consider the computations related to fixed rate loans. The fixing of those rates depends various probabilities, but that is a subject for another chapter.

5.1 Basic axioms

The development of the loan formulas will involve repeated use of a few basic mathematical maneuvers based on the rules or axioms of the real numbers. Considered in a commercial context, many of the axioms of real numbers become particularly obvious. These axioms, clear in simple situations, can clarify complex situations.

The merchants at the fairs in Champagne were well aware that if they paid a fellow merchant 17 gold pieces and 41 gold pieces, this totaled 58 gold pieces, just as 41 gold pieces and 17 gold pieces does. This is the commutative law of addition:

If a and b are real numbers, a+b=b+a.

Not to belabor the notion, the following axioms may seem self-evident.

ab=ba

(a+b)+c=a+(b+c)

(ab)c=a(bc)

There exists a number 0 with a+0=a, for all a.

There exists a number 1 with 1a=a, for all a.

For every b there exists a number, -b, with b+(-b)=0

For every b not equal to 0, there exists a number, 1/b with b(1/b)=1

The distributive axiom,

a(b+c)=ab+ac

may seem a bit more obscure. Return to the plan of understanding things in a commercial context. Imagine a ski trip, with people in two cars. Suppose a=$20 is the price of a discount lift ticket, b=4 is the number of people in the first car, and c=5 is the number of people in the second car. The cost of lift tickets for everyone can be computed by adding up the number of people, 9, then multiplying by $20, to get $180. This is a(b+c). Alternatively, you could compute the cost for the first car, $20(4)=$80, and the cost for the second car, $20(5)=$100, and adding to get $180. This is ab+ac. The values are equal.

The same axiom applied in more abstract situations produces conclusions such as

P+R(P)=P(1+R). 

Here we have viewed P as P(1), and noted that R(P)=P(R), so the left hand side equals P(1)+P(R).  The distributive axiom says that this indeed equals P(1+R).

We will also rely heavily on the principle that if quantities are equal and we perform the same mathematical operation on both of them, they remain equal. In an equation with unknowns, this implies that if we perform a sequence of operations on both sides of the equation, then the values of the unknowns that made the first equation true still make the final equation true. If the operations were reversible, then exactly the same values make the both equations true. Stated casually, this says that if you do the same things to both sides of a true equation, it stays true. For example, suppose we need the value of the number x that makes 

1050x+780=50x-20 

true. We know that we can subtract 780 from both sides:

1050x+780-780=50x-20-780  or

1050x=50x-800.

We subtract 50x from both sides:

1050x-50x=50x-800-50x

(1050-50)x=(50-50)x-800     (the distributive axiom again)
1000x=-800

Divide both sides by 1000:

1000x/1000=-800/1000

x=-.8

Any value that makes the original equation true also makes the final equation true. The final equation makes clear that if there is any such x, it must be –0.8. We can reverse the whole sequence, so setting x to –0.8 must, in fact, make the first equation true.

The equation in this example was a linear equation in one variable, meaning, basically, that there is only one unknown and that it may be multiplied by numbers or have numbers added to it, but nothing more complicated. The technique in the example works for all linear equations in one variable. By adding things to both sides, collect all the terms with an x on one side and all the terms without an x on the other. Divide both sides by the number multiplying x.

5.2 Ratios, percents, and currency conversion

Another quick application of the principle of doing the same thing to both sides of the equation solves several of the mathematical problems that confronted early merchants, investors and entrepreneurs.  Converting from one currency to another and computing the share of the profit due to a financial backer of an enterprise both use ratios. Percentages are specific ratios.

Consider first the problem of currency conversion. The mathematics is the same whether we convert ducats to florins, or euros to dollars. For example, if 1.2 euros are equivalent to $1, what is the price in dollars of an item costing 78 euros? The key to solving this is to note that the ratio of 78 to our desired dollar amount is equal to the ratio of 1.2 euros to $1:
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We can multiply both sides by x, the unknown dollar amount. (We know x is not 0 so this is a reversible operation.)
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 Now multiply by 1/1.2:
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or

78/1.2=x

x=65, or $65

As another example, suppose we want to convert 100,000 Saudi riyals to Mexican pesos, knowing that there are 3.75 riyals per 11.17 pesos. As with the previous example, there are several ways to set this up. One possibility is 
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Multiply both sides by 100,000:
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or x is approximately 297,866.67 pesos.

In general, suppose we have two different systems of units, B-units and C-units, say, and we know that b B-units is equivalent to c C-units. Then to find x, the C-unit equivalent of  d B-units, we solve

x /d B-units=c C-units/b B-units   or

x=d B-units((c C-units/b B-units).

The ratio c C-units/b B-units can be used as a conversion factor to turn B-units into  

C-units.  Notice that if we treat the units as numbers in the expression 

d B-units((c C-units/b B-units),

the B-units cancel, leaving C-units, the units of the answer.  Keeping track of the units of the quantities in a formula is called unit analysis and provides a good check on the correctness of the computation.

Financing of commercial ventures, be they caravans along the Silk Road or modern startups, often involves multiple investors. How should the profits be divided among investors who contributed different amounts of capital? For a single venture that begins and ends at specific times, the investors might receive shares of the profit in proportion to their share in the investment. 

Suppose an investor supplied $500 of the $4000 necessary to outfit a fur trading expedition to the Northwest. Once the traders returned and were paid and the loans repaid, $3,000 remained. How much should the investor receive? Suppose the parties conclude that each investor should receive a share of the $3,000 that is in the same proportion to $3,000 as the investor’s original investment was to the $4000. Then using x for the amount due the investor of $500, 
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To compare the return on this investment to others, the investor could compute what percent of $400 the profit $375 is. This again is a ratio:
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The investor made a 93.75% profit. In general, to compute the percent of  b represented by a, one calculates 
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If b is known and the percent p is known, a ratio relates a, the number that is percent of b to b, p, and 100:
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leading to the conclusion that 
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These last results are familiar but worth emphasizing as they are the basis for the rest of this examination of borrowing and lending.

1. To compute the percent p of  b represented by a, divide a by b and multiply by 100:
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2. To compute a, the number which is p percent of b, multiply b by p divided by 100:
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5.3 Simple interest

Now a successful investor might make a business of investing other people’s money. Imagine the investor estimates that the average return on year-long investments within the investor’s expertise is, say, 12% . The investor might now offer to invest others’ money at a guaranteed return of 7% in one year. 

The clients compute what they are owed at the end of the year by computing the additional money they expect, the interest I on their investment of a principal P by calculating
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The total due back at the end of the year is
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If the investor offered to retain the money for 5 years, with a 7% return on the original principal each year, the clients compute the money owed at the end of 5 years by calculating
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In doing so, they are using the Simple Interest Formula:

I=PRT
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where I is the interest earned, P is the original principal,  R is the interest rate expressed as a decimal by using (interest percent)/100, T is the time, i.e.  the number of times the interest is applied. In the second equation, Pold is the initial principal and Pnew is the final principal.

At present, simple interest is used for investments for a fixed period of time, such as certificates of deposit, CD’s.

Viewed by the client, this transaction is an investment. Viewed by the banker, the transaction is a loan at simple interest rate R applied annually. Thinking of the situation this way, the client may well ask what assurance there is that the banker, here a borrower, will be able to pay the required amount at the end of the term of the loan. The borrower can show possession of property that is worth at least as much as the amount due, and arrange for the property to be sold to repay the loan if the money is not otherwise available. The property is collateral for the loan.

5.4 Compound interest

The problem with simple interest is that it makes an artificial distinction between old and new money in an investment. A shrewd client of our hypothetical investor asks “Why am I getting just (.07)P the second year, when you are holding P+(.07)P of my money, not just P?”  Either the investor agrees to pay I=(.07)( P+(.07)P) the second year, or the client withdraws the investment, and re-deposits it as a new principal coincidentally equal to P+(.07)P. 

To make this more concrete, suppose the original investment is 100 guineas. According to the original scheme, the value of the investment at the end of 5 years is 100+5(.07)100=135 guineas.  If the client withdraws and re-deposits the money each year, the results each year are as follows:

year 0:

P0=100

year 1:

P1=(1+.07) P0  =107 guineas

year 2:

P2=(1+.07) P1 =(1+.07)(1+.07) P0  =(1+.07)2 P0  =114.49guineas

year 3:

P3=(1+.07) P2 =(1+.07)(1+.07)2 P0  =(1+.07)3 P0  =122.5043guineas

year 4:

P4=(1+.07) P3 =(1+.07)(1+.07)3 P0  =(1+.07)4 P0  =131.08guineas, approx.

year 5:

P5=(1+.07) P4 =(1+.07)(1+.07)4 P0  =(1+.07)5 P0  =140.26guineas, approx.

(The last two values are rounded to two decimal places.)

With simple interest, the client ends with 135 guineas. By using the entire principal at the conclusion of one year for the next year, the client has 140.26 guineas. The investor, now a banker, really, relents, and agrees to the second method, called Compound Interest.

The general formula for the principal after n years of interest at rate R compounded annually is the formula for Annual Compounding
Pn=(1+R)n P0

where P0 is the original principal, Pn is the principal at the end of n years, and R is the annual interest rate as a decimal. The formula follows the same logic as the computation above:

year 0:

P0
year 1:

P1=(1+R) P0 

year 2:

P2=(1+R) P1 =(1+R)(1+R) P0  =(1+R)2 P0 

year 3:

P3=(1+R) P2 =(1+R)(1+R)2 P0  =(1+R)3 P0  
year 4:

P4=(1+R) P3 =(1+R)(1+R)3 P0  =(1+R)4 P0  
.

.

.

year n:

Pn=(1+R) Pn-1 =(1+R)(1+R)n-1 P0  =(1+R)n P0  
where the last line yields the formula.

Financial institutions may compute interest more frequently than annually, adding the interest earned to the principal several or many times per year. For example, the interest may be computed and added to the principal each month. The time period after which the principal is reevaluated is called the compounding period, a month, in the example. 

 In the case that the interest is compounded more frequently than annually, custom says that the interest rate will be given as an annual rate called the annual percentage rate, or APR. The interest rate used to compute the interest earned each compounding period is the APR divided by the number compounding periods per year.

For example, what is a principal of  $200 invested for 2 years at 5% APR compounded quarterly (4 times per year) worth at the end of the 2 years? The answer is 

Pnew=(1+.05/4)4(2)Pold =(1.0125)24Pold=$269.47, to the nearest penny

To see why the this is the answer, consider the month by month computation:

quarter 0:

P0=$200

quarter 1:

P1=(1+.05/4) P0  = (1.0125) P0 =$202.5

quarter 2:
P2=(1.0125) P1 =(1.0125)(1.0125) P0  =(1.0125)2 P0  =$205.03,approx.

quarter 3:
P3=(1.0125) P2 =(1.0125)(1.0125)2 P0  =(1.0125)3 P0  =$207.59,approx

.

.

.

quarter 8:
P24=(1.0125) P23 =(1.0125)(1.0125)23 P0  =(1.0125)24 P0 = $220.90,approx.

The  Compound Interest Formula is

PK=(1+R/N)(NK)P0
where P0 is the starting principal and PK is the value of the investment after K years at R APR compounded N times per year.

The following are formulas for four of the most common compounding periods. These formulas result from the one above by replacing N with a specific value.

Annual Compounding (N=1)

PK=(1+R)KP0
Quarterly Compounding (N=4)

PK=(1+R/4)(4K)P0
Monthly Compounding (N=12)

PK=(1+R/12)(12K)P0
Daily Compounding (N=365)

PK=(1+R/365)(365K)P0
At the same APR and starting principal, the investment with the most compounding periods per year is worth the most after K years. However, the value of the investment does not grow indefinitely as the compounding period goes from months to days to hours to seconds, etc. The values in the table below are typical for investments with increasing numbers of compounding periods per year.

	1 

(yearly)
	4 (quarterly)
	12 (monthly)
	365 (daily)
	1460 (hourly)
	87600 (each minute)

	$220.5000
	$220.8972
	$220.9883
	$221.0327
	$221.0338
	$221.0342


Value of $200 Invested for 2 years at 5% APR with the Given Compounding Period

The values approach a maximum value as N increases. There is a method of calculating interest that gives the investor or depositor this limiting value. This method is called Continuously Compounded Interest. The following is its formula. 

Continuously Compounded Interest

PK=eRKP0
where P0 is the starting principal and PK is the value of the investment after K years at R APR compounded continuously, and e is a very important mathematical constant approximately equal to 2.71828182845905. 

The Medicis did not offer continuously compounded interest.

The APR alone is not enough information when comparing investment opportunities. How does an investor choose between a investments with different APR’s and different compounding periods? Of course, the investor could calculate the final value of each possibility relatively easily. Most banks, however, will supply a number called the yield, or effective annual yield, which simplifies matters. The yield is just the percent interest earned in one year. The formula follows.

Yield

Y=(1+R/N)N(100)-100

where Y is  the yield, in percent form, of an investment at R APR compounded N times annually.

Notice the yield is just the interest on 100 monetary units invested for 1 year. 

The higher the yield is, the larger the value of the investment after a fixed time will be. The yields on 5% APR invested at various compounding rates are shown in the following table

	1 

(yearly)
	4 (quarterly)
	12 (monthly)
	365 (daily)

	5%
	5.0945%
	5.1162%
	5.1267%


Yield of 5% APR with the Given Compounding Period

(Typically, banks report the yield with two decimal places. Additional places appear here to show that, at the same APR, each compounding period has a different yield.)

5.5 Loan payments, up to a geometric series

From the lender’s point of view, a loan is simply an investment. However, the investments discussed to this point, viewed as loans, are repaid in a lump sum at the end of the duration of the loan. Typical loans require regular payments over the duration of the loan. As a comparison, consider the situation of borrowing $100,000 at 6% APR compounded annually, to be repaid in full at the end of 15 years. The amount due at the end of 15 years is just (1+.06/12)12(15)100,000=$245409.36. This is just a compound interest computation. By contrast, if the $100,000 is borrowed at 6% APR compounded monthly to be repaid in equal monthly payments over 15 years, the amount due each month is $843.86, for a total of $151,894.23 over the 15 years. The details of this computation are the goal of this section. The basic difference is that in the first case the entire principal accrues interest for 15 years. In the second case, the principal gradually decreases over the duration of the loan. Consequently, much less interest accrues.

The first question we address on the subject of loans with equal monthly payments is that of the amount of the monthly payment. We pursue a standard mathematical technique to find this monthly payment. Write an equation that describes the properties of the desired quantity, than solve for it. 

Consider a loan of P0 dollars for 12K months at R APR compounded monthly, where R is a decimal percent. Let M be the amount of the monthly payment and let Pn be the balance after n months. Note P0 is known, and P12K is also known. It must be 0.

In general, the balance in the current month is the balance from the previous month plus one month’s interest on that balance minus the monthly payment.

New Balance=Old Balance + Interest - Monthly Payment

or

New Balance=Old Balance +R/12(Old Balance)-Monthly Payment

or

Pn+1=(1+R/12)Pn-M

Applying this to P0, then P1, then P2, etc. derive a formula for P12K in terms of P0, R, K, and M. Setting this to 0 gives an equation relating M and the known quantities P0, R, and K.
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This continues indefinitely, because the balances go up to P12K. A pattern has emerged, though. The first term in sum for P5 is 
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, and for P3 it is 
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, and so on. Apparently, for Pn it is 
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The second term in the sum for P5 is 
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For P4  it is 
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. For P3  it is 
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.  Following this pattern the second term for  Pn   is 
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Hypothesize that 
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This must be correct. The hypothesis is true for n=1, 2, 3, 4, 5.  Supposing it is true for a particular n , we have
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The formula for Pn+1 in terms of Pn assures us that the hypothesis is true for all the Pi’s as soon as we know it is true for the first. Because the hypothesis is correct for n=1, 2, 3, 4, and 5, it must be correct for n+1=6. Being correct for n=6, it is correct for n+1=7. Being correct for n=7, it is correct for n+1=8, and so on. 

The fact that the hypothesis is produces an equation for M in terms of P0, R, K, and P12K.
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The value P12K is the balance at the conclusion of the loan, so it equals 0:
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Solving for M results in the following equation.


[image: image45.wmf]

[image: image46.wmf]M

1

12

R

1

12

R

1

12

R

1

12

R

1

P

12

R

1

2

3

1

-

12K

0

12K

=

ú

ú

û

ù

ê

ê

ë

é

+

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

K


This equation is entirely true, but inconvenient to use. For a 30 year loan, the denominator on the left requires summing 360 terms. Fortunately, there is a short cut, which will be justified in the next section. The sum equals a simpler fraction.
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Substituting this in the equation for M results in the more practical form below.
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In conclusion, we have the

Monthly Payment Formula
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where M is the monthly payment, P0 is the amount of the loan, K is the number of years of the loan, and R is the APR in decimal form.

In celebration, let’s calculate the monthly payment on a 5 year loan of $40,000 at 7% APR. Imagine a very elegant car.

M=12(5)=60, P0=40,000, R=0.07
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This intricacy of this formula makes computations with a calculator error prone. Spreadsheet software often has a built in function for finding the monthly payment on a fixed rate loan. Excel’s PMT function does this, for example.

5.6 Value of a geometric series

You are owed an explanation of the formula that descended as a deus ex machina to save the monthly payment derivation:
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This formula is a special case of the formula for the sum of a geometric series. For the base number a, the geometric series with m+1 terms is the sum of the 0th, 1st, 2nd, …mth 

powers of a:
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 For example, 
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  is a geometric series with 
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Written as
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, the sum in question is a geometric series with base 
[image: image56.wmf]÷

ø

ö

ç

è

æ

+

12

R

1

and m=12K-1. 

The sums of these geometric series is given by the 

Formula for the Value of a Geometric Series
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This formula applied to the geometric series 
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 says that the value of the sum is 
[image: image60.wmf]16

31

2

1

1

32

1

1

2

1

1

2

1

5

=

-

-

=

-

-

÷

ø

ö

ç

è

æ

.

Applied to the series 
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, the formula gives 
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, as claimed.

The derivation of the formula is a lovely bit of reasoning. For convenience, write 
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finally, because 
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5.7 Applications 

Automobile loans, home mortgages, and student loans are all typically loans equal monthly payments and with interest compounded monthly. The monthly payment formula aids in making decisions regarding these loans.

For example, suppose you have visited two dealerships shopping for a car. One dealership proudly trumpeted 0% financing, no money down. After much discussion, the dealer offers you the car you want for $17,500 if you pay in 2 years, $18,000 if you pay in 3 years, and $18,500 if you pay in 5 years. The rival dealer touts low, low prices and no money down. There you bargain for a price of $17,000 with a 1% APR, 2 year loan, or a 4.5% APR, 3 year loan, or a 5% APR 5 year loan. Which is the best deal?

There are at least two issues to consider in determining the best deal. The monthly payment must be within your monthly budget, and the total cost should be as low as possible. 

The first dealer’s offers do not require the monthly payment formula. The monthly payment for each offer is simply the total cost divided by the number of months in the loan. For example, the total cost for the car with the 2 year interest free loan is the given price, $17,500. The monthly payment is $17,500/24=$729.17.

Direct application of the monthly payment formula answers the question of the monthly expense for the second dealer’s offers. For example, buying the car for $17,000 with a 2 year 1% APR loan gives monthly payments of
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The total cost of the car is then approximately 24($715.74)=$17,117.76, or more precisely $17,177.65. (The difference is due to the rounding to make the monthly payment have two places after the decimal point. Lenders will vary monthly payments slightly to make the total of the payments equal the theoretical total cost.) 

Performing these computations for the two remaining offers from each dealer produces the following results.

Monthly Payment and Total Cost for Six Loans

	Principal
	Number

of Years
	APR
	Monthly Payment
	Total Cost

	$17,500
	2
	0%
	$729.17
	$17,500

	$18,000
	3
	0%
	$500
	$18,000

	$18,500
	5
	0%
	$308.33
	$18,500

	$17,000
	2
	1%
	$715.74
	$17,177.65

	$17,000
	3
	4.5%
	$505.70
	$18,205.12

	$17,000
	5
	5%
	$320.81
	$19,248.66


To make your decision, you could note that the $17,000, 2-year, 1% offer has the lowest total cost. If those monthly payments are beyond your budget, the lowest total cost among the offers with lower monthly payments comes from the $18,000, 3-year interest free loan. If that monthly payment is too high, of the loans that have lower monthly payments, the $18,500 interest free 5-year loan has the lowest total cost. Or you could take your computations back to the first dealer to induce the that dealer to beat the second dealer’s offer on 2-year financing, and take them to the second dealer to get that dealer to improve the offer on the 3- and 5- year financing. 

Student loans have various arrangements regarding repayment. Some loans allow the student to defer payment until the student graduates, and do not accrue interest during that time. Others allow deferral, but the loan accrues interest while the student is in school. Still others do not allow deferral. Lets consider the case of two loans of $20,000 that allow deferral for 4 years. The first loan does not accrue interest until the conclusion of the 4 years, and then begins to accrue 5% APR and must be repaid in equal monthly payments over 10 years. The second loan accrues 4% APR compounded annually from the beginning of the loan. After 4 years the balance must be repaid in equal monthly payments. Which loan has the lowest total cost? 

As in the car example, total cost is just the monthly payment multiplied by the number of months that payment is made. Both loans are repaid over 120 months. 

The calculation of monthly payments for the first loan is a direct application of the monthly payment formula: 
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with the total cost equal to $25,455.72

For the second loan, the principal after 4 years is no longer $20,000. Apply the compound interest formula to calculate the principal at the beginning of the repayment period.
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Using this as the principal in the monthly payment formula with R=.04 and K=10 gives a monthly payment of $237.56 and a total cost of $28,507.36 .

The deferred interest loan is less expensive.

A subtler issue may confront the former student now in the process of paying off the student loans. Having earned handsomely and lived frugally, the borrower has enough savings to pay off the remaining principal at once. However, that savings is earning interest. Should the borrower pay off the loan immediately, or retain the use of that money for investment?

Given specific numbers, the borrower can calculate the benefits of the two courses of action. For example, suppose that with seven years remaining in a 5% APR loan the outstanding principal after the last payment was $15,000. (This is approximately the case with the deferred interest loan from the previous example.) Suppose further that the person’s savings are earning 7% interest. If the borrower pays off the $15,000 immediately, there is no more interest due on it, and no more interest earned by it. If the borrower leaves the money in the bank, the monthly payments will be $212.01, approximately. At the end of seven years, the loan will be paid off. What will the balance in the savings account be? We can repeat the analysis used to find the monthly payment, this time treating Pn as the balance in the savings account and M as the monthly withdrawal. We know that M=$212.01, so


[image: image75.wmf]M

1

12

R

1

12

R

1

12

R

1

12

R

1

P

12

R

1

P

2

3

1

-

12K

0

12K

12

ú

ú

û

ù

ê

ê

ë

é

+

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

-

÷

ø

ö

ç

è

æ

+

=

K

K


becomes
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=$1553.19

At the end of the seven years in this scenario, the debt is paid off and the former student has $1553.19 in the bank. This is, financially, the better choice.

The student can reach this conclusion without computation by creative rephrasing. The student essentially has taken out a seven-year loan of $15,000 at 5% APR with monthly payments of  $212.01. The student has made a loan of $15,000 at 7% APR to the savings institution, which that institution repays in monthly payments of $212.01 (the student’s withdrawals). The loan to the bank is at a higher APR, so the $212.01 payments will not pay off the bank’s debt to the student in seven years. The student has money in the bank and no debt at the end of the seven years.

This way of looking at the question gives the general principle that, regardless of the details, if the loan is at a lower APR than the investment, the loan should not be paid off. If the loan is at a higher rate than the investment, it should be paid off.  This assumes that the APR’s on available investments will not increase above the loan’s APR. If the borrower thinks that interest rates are going to rise, the borrower may retain the loan, hoping to make a better investment in the future.

PAGE  
48

_1127493027.unknown

_1127902191.unknown

_1127903867.unknown

_1127907879.unknown

_1127976282.unknown

_1127978272.unknown

_1129459294.unknown

_1130828890.unknown

_1131960591.unknown

_1130828754.unknown

_1127978532.unknown

_1127982085.unknown

_1127982601.unknown

_1127978317.unknown

_1127976477.unknown

_1127976510.unknown

_1127976328.unknown

_1127975862.unknown

_1127976093.unknown

_1127908762.unknown

_1127909092.unknown

_1127908913.unknown

_1127909014.unknown

_1127908867.unknown

_1127908163.unknown

_1127908440.unknown

_1127908113.unknown

_1127905014.unknown

_1127905338.unknown

_1127907270.unknown

_1127907817.unknown

_1127905781.unknown

_1127905030.unknown

_1127904159.unknown

_1127904820.unknown

_1127902426.unknown

_1127902927.unknown

_1127902967.unknown

_1127903845.unknown

_1127902812.unknown

_1127902284.unknown

_1127902328.unknown

_1127902216.unknown

_1127901163.unknown

_1127902088.unknown

_1127902123.unknown

_1127902135.unknown

_1127902105.unknown

_1127901242.unknown

_1127901354.unknown

_1127901178.unknown

_1127494989.unknown

_1127899953.unknown

_1127900856.unknown

_1127495023.unknown

_1127494422.unknown

_1127494531.unknown

_1127493242.unknown

_1127491985.unknown

_1127492415.unknown

_1127492677.unknown

_1127492946.unknown

_1127492589.unknown

_1127492319.unknown

_1127492390.unknown

_1127492025.unknown

_1127386723.unknown

_1127465068.unknown

_1127491959.unknown

_1127396986.unknown

_1127386024.unknown

_1127386196.unknown

_1127385890.unknown

