Chapter 7: Probability and Statistics

This chapter introduces probability spaces, conditional probability, and hypothesis testing, tools for gaining precise understanding of events with random elements. The study of probability and statistics clarifies what can be said about events with a variety of possible outcomes.  The techniques of probability and statistics affect daily life in many spheres. The outcomes of political polls influence public policy by encouraging officials to pursue popular policies, by identifying promising candidates for office, and by informing policy makers of the public’s perception of them. These polls must be understood in a statistical context because they are based on the opinions of a random sample of the population. Medical experiments comparing the health effects of different courses of treatment often require statistical analysis to yield useful information. Manufacturers use statistical techniques to monitor quality. The probabilistic view can clarify any situation with variability that we can predict on average but not case by case. 

Games of chance provided the initial impetus for the study of probability. Throwing dice repeatedly, for example, produces a sequence of numbers that are unpredictable individually but exhibit some regularity in the long term. Understanding the regularity is essential for a successful gambler. Correspondence between seventeenth century French mathematicians Blaise Pascal and Pierre de Fermat formulated basic concepts of probability theory while examining questions posed by gamblers. The profitability of today’s casinos and lotteries hinge on carefully calculated probabilities.

Statistical analysis uses probability theory to draw conclusions, with an understood level of confidence, about a situation on the basis of incomplete or variable data.  For example, the results of a political poll of several thousand randomly selected individuals will depend on exactly who those individuals are. Probability theory tells us how the results depend on the sample of people under various scenarios for the actual prevalence of different opinions in the population at large. Statistical analysis tells us how to interpret the results of the poll as an indicator of the whole population’s opinions. That is, the study of probability tells us the likely poll results for a given population and different samples. Statistics tell us the likely population, given the poll results from one sample.

In some cases, the mathematical model for the random process is known, and theoretical considerations produce sequences of computations necessary to reach a conclusion. Generally, these computations involve lots of calculations that we are glad to leave to a computer. There are many statistical software packages that will carry out requested analyses on data entered by the user.

In other cases, the model for the random process is mathematically intractable. Then statisticians compare the results of computer simulations to observed data to gain understanding of the phenomenon. In recent decades, computer simulation has also become an accepted way to test the validity of statistical methods.

7.1 Probability spaces

Informally, probability expresses an assessment of the likelihood of an event. This assessment may be based on a largely subjective evaluation. (“I give that marriage a 60% chance of lasting out a year.”) It may have a quantitative basis in experience. (“I hit a red light at this intersection just about every time.”) Observing the same type of event repeatedly and noting the relative frequency of the possible outcomes gives precision to experience.

The concept of probability and randomness in real life is somewhat slippery. The approach of observing relative frequencies seems solid, but are the events really the same? Have we observed enough of them to draw conclusions? Do the relative frequencies change over time? Often, what appears to be random on one level can be understood exactly if examined more closely. The proverbial randomness of the flip of a coin depends on ignorance of the details of the trajectory of the coin.  This randomness disappears in the hands of a sleight-of-hand expert, who can reliably toss a coin with a particular number of rotations.  Modern physics deals with phenomena are theoretically truly random. According to the theory, the exact time of decay of a radioactive isotope, say, simply cannot be known. This deep randomness is an essential feature of quantum physics. Einstein never did like it. He is said to have protested, “God does not dice with the Universe.” Theories as yet unimagined could recast our understanding of subatomic events.

Mathematical probability sidesteps the issues of the origins of randomness, and the problems of calculating relative frequencies, and simply defines experiment, sample space, outcome, event, and probability abstractly. The definitions correspond to, but do not depend on, intuitive understandings of probability.

Definition: A sample space is a set of items. Each item is called an outcome.

Intuitively, we think of these items as all the possible results or outcomes of an experiment or action with probabilistic results. For example, if the experiment is drawing a card from a standard deck, the outcomes could be taken to be the possible cards, specified by suit and face value. The sample space is then the set of all possible cards. 

Another view of the experiment might concentrate on whether the card drawn was an ace, with the sample space consisting of  ‘ace’ and ‘not ace’.

Definition: An event is a subset of the sample space.

This language is suggestive. The phrase “in the event of…” uses ‘event’ in a similar way. Saying, “In the event that the next card you draw is a six or lower, you will win this round of blackjack,” implicitly identifies the sample space as the set of cards possible to draw, and the subset of cards with face values under six as an event. 

Definition: Two events A and B are mutually exclusive if they have no outcomes in common.

For example, the event that the card is a club and the event that the card is red are mutually exclusive. The event that the card is a club and the event that the card is a picture card are not mutually exclusive. The jack, queen, and king of clubs are outcomes common to both events.

Definition: An algebra of events is a collection of events with the following three properties:

i) The union of any two events in the collection is an event in the collection.

ii) The sample space is itself an event in the collection.

iii) The complement, relative to the sample space, of any event in the collection is in the collection.

(As in general set theory, the union of a collection of events is the set of all the outcomes that occur in at least one of the events in the collection. The complement of an event relative to the sample space is the set of all outcomes in the sample space but not in the event.)

This definition, or something like it, is a technical necessity. Its details don’t affect the casual user of probability theory. For many sample spaces, the standard algebra of events is the set of all subsets of the sample space. 

Definition: A probability function P on an algebra of events from the sample space S assigns a number between 0 and 1, inclusive, to each event in the algebra in such a way that the following rules are satisfied.

i) P[S]=1

ii) If  A1, A2, A3,… is a sequence of events in the algebra such that all pairs Ai and Aj, i!=j,  are mutually exclusive, and their union, call it A, is also in the algebra, then P[A1]+P[A2]+…=P[A].

A sample space together with an algebra of events and a probability function defined on that algebra is a probability space.

The probability function is the heart of the matter. The value P[B] corresponds intuitively to the probability of the event B, given as a percent in decimal form. Certainly it should be between 0 and 1. The event of whole sample space should have probability 1, because it is an event that is sure to occur. That the probabilities of the events in a possibly infinite sequence of mutually exclusive events should add to give the probability of their union is not obvious. In fact, some research explores the consequences of relaxing this rule to apply only to finite sequences. The finite version is entirely reasonable, as should become clear in the next example.

Consider all these definitions marshaled to describe the results of rolling a fair die. The sample space is the set of numbers {1, 2, 3, 4, 5, 6}.  Any subset of this set is an event of potential interest. The algebra of events on which the probability function P is defined is the set of all possible subsets of {1, 2, 3, 4, 5, 6}. The probability of any individual value, P[{1}], P[{2}],P[{3}], P[{4}], P[{5}], P[{6}] should be the same, say p, because the die is fair. According to the rules for a probability function, 6p= P[{1}]+P[{2}]+P[{3}]+ P[{4}]+P[{5}]+P[{6}] = P[{1, 2, 3, 4, 5, 6}]=1. This shows that p=1/6. In order for P to satisfy the second rule, the probability of any event must be 1/6 times the number of outcomes in the event. This follows because the event in question is the union of that many mutually exclusive events that consist of single outcomes. For example, 

P[{2, 4, 6}]=P[{2}]+P[{4}]+P[{6}]=3(1/6)=1/2. This completely describes an abstract probability space that seems to capture the essence of rolling one fair die. Note how this avoids the vexing question of whether any individual roller of any actual die produces such perfect fairness.

7.2 Equally likely outcomes

The reasoning in the example generalizes to any probability space with a finite sample space and a probability function that assigns the same value to all events consisting of just one outcome. Given that there are a finite number, say n, of equally likely outcomes, the probability of any given outcome is 1/n. The probability of any event is the number of outcomes in that event times 1/n. 

 If a probabilistic situation can be viewed as consisting of a finite collection of equally likely outcomes, then this attractively simple type of probability space provides a mathematical model for the situation. The challenge often shifts to counting the number of outcomes in the events of interest.

As an example of a situation with equally likely outcomes, consider the case of a couple planning to have two children, and wondering what the probability is of having one boy and one girl. Keeping track of the birth order, there are four possibilities corresponding to the rows in the table below.

	Sex of 

First Child
	Sex of 

Second Child

	female
	female

	female
	male

	male
	female

	male
	male


If we assume that each row of the table is equally likely, then the probability of any single outcome is 1/4. The event of  ‘one of each’ consists of the outcomes in the middle two rows. Its probability is therefore 1/4+1/4=1/2.  The assumption that the rows are equally likely is reasonably accurate. It depends on the idea that each child is equally likely to be a boy or girl, independent of the sex of the other child. Section 7.3 elaborates on this issue. 

By the way, suppose we viewed the situation as having three outcomes: two girls, one of each, or two boys. These outcomes are not equally likely. Often identifying equally likely outcomes for a situation requires some care.

An example with more outcomes shows the importance of developing some counting techniques more sophisticated than pointing and reciting ‘one..two..three..’. What is the probability of being dealt a royal flush (10, jack, queen, king, ace of the same suit) in five cards from a well-shuffled standard deck? What is the probability of a full house (three cards of one face value and two of another)? In the first question, the number of royal flushes seems easy. There are four, one of each suit. But how many possible hands are there? In the second question, determining the number of full houses also presents a challenge.

The addition principle of counting states, “The number of elements in the union of two mutually exclusive sets is the sum of the number of elements in each set.”

To examine this in action, consider sequences of length 5 of the letters T and H, such as TTTTT, HTTHH, HTHTH, et cetera. How many such sequences have no more that one occurrence of the letter ‘H’? The set of sequences with no occurrences of  ‘H’ and the set of sequences with exactly one occurrence of ‘H’ are mutually exclusive. The first set has just one element, TTTTT. The second set has five elements because the single ‘H’ could appear as the first letter in the sequence, the second, the third, the fourth, or the fifth. Therefore 1+5=6 sequences have no more than one ‘H’.

The multiplication principle of counting states, “If an item can be chosen from all other items of a certain type by first making a choice among n possibilities, and next making a choice among m possibilities, then there are n*m items of that type.”

For example, suppose a restaurant offers beef, pork, chicken, or beans as burrito fillings, and hot, medium, and mild salsas. Customers specify a filling and a salsa. How many different burritos can be made this way? A customer chooses a particular burrito by choosing among 4 possibilities, the four possible fillings, then among three possibilities, the three salsas. Therefore there are 4*3=12 possible burritos. Listing them illustrates why the multiplication principle works.

Beef and
Hot Salsa



Medium Salsa



Mild Salsa

Chicken and
Hot Salsa



Medium Salsa



Mild Salsa

Pork and
Hot Salsa



Medium Salsa



Mild Salsa

Beans and
Hot Salsa



Medium Salsa



Mild Salsa

For each of the four possibilities for filling, there are three possibilities for the salsa, giving a total of four times three different possibilities.

Sometimes a problem requires multiple applications of the multiplication rule for its solution. Suppose our restaurant also allows customers to have or to omit sour cream. A customer chooses a new burrito by choosing among 12 filling and salsa pairs, then choosing one of the 2 sour cream options (include sour cream or omit sour cream) for a total of 12*2=24 possible burritos. 

Interestingly, the actual options for the second choice can depend on the first choice, provided the number of options does not. For example, imagine picking a delegate and an alternate from four people, Alicia, Ben, Candace, and Doug, available to attend a conference. There are 4 possibilities for the delegate. Once a delegate is chosen, there are three possibilities for the alternate, though who those possibilities are depends on the identity of the delegate. If Alicia is the delegate, the possibilities for the alternate are Ben, Candace, and Doug. If Ben is the delegate, the possibilities for the alternate are Alicia, Candace, and Doug. The possibilities depend on the first choice, but the number of possibilities is 3 in any case. Thus there are 4*3=12 possibilities for delegate and alternate.

The problem of picking an ordered list of k different items from n possible items occurs sufficiently frequently to justify solving it generally once and using the solution subsequently. As a concrete example, consider scheduling five authors on Monday, Tuesday, Wednesday, Thursday, and Friday from 30 authors available for publicity appearances. Each author is available any of the days and no author will appear more than once during the week. Working from Monday to Friday, there are 30 possibilities for Monday’s author. Tuesday’s can be any to the remaining 29. For Monday and Tuesday together, there are 30*29=970 possible schedules. Wednesday’s author can be any of the 28 authors not yet scheduled. There are 970*28=30*29*28=24,360 possible schedules for Monday through Wednesday. There are now 27 possibilities for Thursday’ author, so there are 24360=30*29*28*27=657,720 possibilities for the schedule through Thursday. Finally, there are 26 authors to choose from for Friday, for a total of 657720*26=30*29*28*27*26=17,100,720 possible schedules for the five days. 

An ordered list without repetitions of k items selected from n possible items is called a permutation of size k drawn from n. In this terminology, the reasoning above generalizes to show the following formula.

Permutation Formula: The number of permutations of size k drawn from n is 

n*(n-1)*(n-2)…*(n-k+1).

For the authors, that says the number of possible schedules is 30*29*28…*(30-5+1), as computed earlier. Many calculators and software packages will compute the number of permutations of size k drawn from n if the user provides n and k. Excel does so with a worksheet function ‘=PERMUT(number, number drawn)’, where number is the value of n and number_drawn is the value of k.

This analysis applies to the problem of computing the probability of a royal flush being dealt in five cards. View each possible five card hand as permutation of 5 cards selected from 52 cards. This view records the order in which the cards are dealt. There are 52*51*50*49*48=311,875,200 possible hands. Each has probability 1/311,875,200. In this view there are more than four ways to get a royal flush, because each order is a different hand. To count the royal flushes, first select the suit (4 possibilities) then select an ordered list of the five required face values. This is a permutation of size 5 from drawn from 5, making 5*4*3*2*1=120 possible orders. The number of hands that are royal flushes is 4*120=480. The probability of a royal flush is 480/311,875,200 or approximately 0.000001539 (a little more than 1.5 in one million).

As an aside, it may seem peculiar that the probability of an ordinary hand such as “jack of clubs, three of diamonds, eight of diamonds, three of spades, two of hearts” is the same as “ten of hearts, jack of hearts, queen of hearts, king of hearts, ace of hearts”. But if you were hoping for either exact hand, only one card in each position would satisfy you. Both hands are equally rare. The rules of poker, not the laws of chance, place a higher value on the latter.

Computing the probability of a full house proceeds more smoothly if the five-card hand is considered as a subset of five cards, with no particular order, and no repetitions, drawn from the possible 52. Such a subset of k items selected from n possible items is called a combination of size k drawn from n. The following is a formula for the number of distinct combinations.

Combination Formula: The number of combinations of size k drawn from n is 


[image: image1.wmf])

1

)(

2

)...(

2

)(

1

(

)

1

)...(

2

)(

1

(

-

-

+

-

-

-

k

k

k

k

n

n

n

n

.

The combination formula follows from the permutation formula and the multiplication rule. Denote by C(n,k) the number of combinations of size k drawn from n. Select a permutation of size k drawn from n by first selecting the subset of elements. There are C(n,k) possibilities here. Then select an order for the elements. This amounts to selecting a permutation of size k drawn from k. There are k(k-1)…(2)(1) of these. Therefore, by the multiplication rule, there are k(k-1)…(2)(1)C(n,k) permutations of size k drawn from n. The permutation formula says there are n(n-1)…(n-k+1) permutations of size k drawn from n. The two quantities must be equal: k(k-1)…(2)(1)C(n,k) = n(n-1)…(n-k+1).

Solving for C(n,k) gives the formula.

Many software packages will compute C(n,k). In Excel, for example, the worksheet function ‘=COMBIN(number, number_drawn)’ computes how many combinations of size number_drawn there are when drawn from number.

For the full house problem, note there are C(52,5)=2,598,960 equally likely unordered five-card hands. Each has probability 1/2,598,960. To count the full houses, first choose the three-of-a-kind, then choose the pair. There are 13 possible face values for the three-of –a-kind. Once the face value is chosen, choose the suits. There are C(4,3)=4 possibilities for the suits occurring. Conclude there are 13*4=52 possible three-of-a-kinds. Once the three of a kind is chosen, there are 12 possible face values for the pair. There are C(4,2)=6 possibilities for the suits occurring in the pair, because we are choosing an unordered set of 2 suits (without repetition, or things might get nasty!) from the 4 possible suits. That shows there are 12*6=72 possible pairs. Multiplying, there are 52*72=3744 possible full houses. Each has probability 1/2,598,960. The probability of being dealt a full house in five cards is 3744/2,598,960, approximately .00144.

Knowing C(52,5) simplifies the royal flush computation. The probability that the five cards are a royal flush is 4/C(52,5), which, happily, is the same probability as the one from the previous computation.

Probability spaces with a finite number of outcomes need not have equally likely outcomes. If the probabilities of the outcomes are known, calculate the probability of an event by adding the probabilities of the outcomes in the event. The next section presents some aids to determining appropriate probabilities for the outcomes when modeling complex experiments.

7.2 Conditional probability and independence

In some applications, one may have partial information about an outcome. That partial information  can affect the probabilities of the possible outcomes.  For example, if you draw a card from a shuffled deck and are told that it is a heart, the probability that it is, say, the six of clubs is 0. The probability that it is any non-heart card is 0. The probability that it is a heart with some particular face value, say the four of hearts, is now 1/13. The probability (0) that the card is the six of clubs knowing that it is a heart is called the conditional probability of the event that the card is the six of clubs given that the event that the card is a heart occurred. 

Conditional Probability Formula: The conditional probability of an event A given an event B is denoted P(A|B). The intersection of events A and B, written AB, is the set of outcomes that are in the overlap of the events. In this notation, provided P(B)!=0,

P(A|B)=P(AB)/P(B)

Events A and B are called independent if P(AB)=P(A)P(B). If P(B)!=0 and A and B are independent, then P(A|B)=P(AB)/P(B)=[P(A)P(B)]/P(B)=P(A). In other words, in the case that P(B)!=0, if A and B are independent , then the probability of A is the same as the probability of A given B. Knowing that B occurred does not affect the probability that A occurred. The probability that both occurred is the product of the probabilities that each occurred.

In the context of the example in the previous section of the couple having two children, the probability space was based on the assumption that sexes of the children were independent, and that each child was male with probability 1/2  and female with probability 1/2 . Then the probability that the first child is female and the second child is female is 1/2*1/2 =1/4. The independence of the two events means that to compute the probability that both occur, you compute the product of their probabilities. Each of the other probabilities in the table is 1/4 for the same reason. 

Assuming that the sexes of children are independent, is it correct to say that a couple that has three boys already will probably have a girl next? It is incorrect. The next child has probability 1/2 of being female, 1/2 of being male, regardless of the sexes of the siblings.

There are cases in which this independence does not hold. A couple may be medically predisposed to have children of a particular sex. In general, it is a reasonable assumption, though.

Medical testing gives situations in which conditional probabilities have powerful practical implications. Typically, tests for conditions or substances aren’t perfectly reliable. 

Drug testing in athletics is a constant battle. There are those who devise new performance enhancing drugs or resurrect old drugs, searching for effective drugs that will escape detection in drug tests. On the other side are researchers who try to identify and test for those drugs. In the summer of 2003, for example, a team of researchers headed by Dr. Don Catlin identified the steroid tetrahydrogestrinone in a syringe sent anonymously to the U.S. Anti-Doping Agency. The lab then had to develop a test for this steroid. 
  Issues of probability enter into the development and application of anti-doping tests. 

For the sake of argument, postulate a test for a stimulant banned for Olympic athletes. The test has a particular probability of detecting the stimulant if it is present, that is, returning a positive result. This is called the sensitivity. The probability of  returning a negative result if the stimulant is not present is called the specificity. These must be determined experimentally using statistical methods related to the relative frequency view of probability. The sensitivity and specificity must be fine-tuned in order for the test to be useful and fair.

For many substances, the specificity and sensitivity are not 1. To put this in the context of conditional probability, consider the experiment of selecting an Olympic athlete at random and testing that athlete for the stimulant. Denote the event that the athlete has used the stimulant by U. Denote the event that the person has not used the stimulant by C. Denote the event that the test is positive by Y, and the event that the test is negative by N.

The sensitivity is P(Y|U). The specificity is P(N|C). If P(Y|U) is not 1, then some users may escape detection. These cases are called false negatives. If P(N|C) is not 1, then some athletes who have not used the stimulant may test positive. These are false positives. The company producing the testing equipment can typically provide the sensitivity and specificity of a test.

If an athlete tests positive, what is the probability that the athlete was using the stimulant? It is P(U|Y). The sensitivity and specificity alone are not enough to determine P(U|Y). For this we have to know the prevalence of use of the stimulant in the population being tested. This is clear if you consider the cases that no one is using the stimulant and that everyone is using the stimulant. In the first scenario, P(U|Y)=0. In the second it is 1.

Suppose P(U)=.05, P(Y|U)=.98, and P(N|C)=.90. By definition, P(U|Y)=P(UY)/P(Y). The data provide P(UY) almost directly: .98=P(Y|U)=P(UY)/P(U)=P(UY)/.05. Therefore P(UY)=(.05)*(.98)=.049. 

The value of P(Y), the denominator needed, is a bit more work. Notice that the event Y of testing positive is union of the mutually exclusive events UY and CY. P(UY) is known to be .049. All we need is P(CY). 

In the quest for P(CY), note P(C)+P(U)=1, because C and U are mutually exclusive and together make up the whole probability space. Putting .05 in for P(U) and solving for P(C) gives P(C)=.95, which makes perfect sense. If 5% of the athletes are using the stimulant, then 95% are not. P(Y|C)+P(N|C)=1, so P(Y|C)=0.1. Finally, 0.1=P(Y|C)=P(YC)/P(C)=P(YC)/.95, showing P(YC)=.1*.95=.095. 

Reassembling the components of the computation, P(Y)=.049+.095=.144. The grail, P(U|Y)=P(UY)/P(Y)=.049/.144 which is approximately 0.34.

The method in this computation justifies Bayes’ Theorem:

Let A and B be events and let Bc be the complement of B. Then 

P(B|A)=P(A|B)P(B)/[P(A|B)P(B)+P(A|Bc)P(Bc)].

There is another approach to this process that is less rigorous, but may lead to a clearer understanding of the result. Imagine 1000 athletes as outcomes, with the numbers in U and C being exactly as expected on the basis of the probability. That is 5% are in U and 95% are in C, making 50 and 950 respectively. Of those in U, 98% test positive, so 49 athletes are users who test positive. Of the 950 in C, 90% test negative and 10% test positive. That makes are 95 athletes who are not users of the drug but who test positive.

Select an athlete at random from those who test positive in such a way that any of those athletes has a 1/(49+95)=1/144 probability of being selected. The probability that the selected athlete does use the stimulant is 49/144, again approximately .034.

Either way, probability of the athlete’s being a user of the stimulant given that the athlete tests positive is a mere 0.34! The Olympic Committee should use a test with much higher specificity before acting on a positive result. In fact, in medicine and law, more accurate, more expensive, follow-up tests are often applied before action is taken. A suspect mammogram leads to a biopsy. A high PSA reading sends the patient into further testing. The less expensive, less invasive screening test has a fairly high false positive rate, necessitating further testing after an initial positive result before a physician makes a diagnosis of cancer.

7.3 The binomial distribution

The coin toss, studied carefully, leads to a simple, versatile distribution called the binomial distribution.  Assume that successive tosses of a fair coin are independent. Intuitively, this means that results of different tosses have no effect on each other. Consider the experiment of tossing the coin a certain number of times. The binomial distribution addresses the question of the probability of a particular number of T’s or H’s 

Consider the situation of three tosses. The event that the first toss results in heads (H) is ½, and the probability of tails (T) is ½. Likewise the probability of H or T on the second and third tosses is ½. Denote the event that the first toss comes up H by H1, that the second toss comes up H by H2, and that the third toss comes up T by T3. Because the tosses are independent, P(H1H2)=P(H1)P(H2)=1/2*1/2=1/4. The event that the three tosses come up HHT in that order is H1H2T3. It occurs with probability P(H1H2T3)=P(H1H2)P(T3)=1/4*1/2=1/8.  Similarly, any specific sequence of three H’s and T’s occurs with probability 1/8, be it TTT, HTH, or any other single sequence. 

What is the probability of no T’s among the three? What is the probability of exactly 1 T among the three tosses? What is the probability of exactly 2 or exactly 3? The probability that the three tosses yield no T’s is 1/8. It is the probability of the sequence HHH. The probability of exactly 1 T is 3/8. The three mutually exclusive events HHT, HTH, and THH, each with probability 1/8, together make up the event of exactly 1 T. The probability of exactly 2 T’s is again 1/8, the sum of the probabilities of the sequences HTT, THT, and TTH. The probability of 3 T’s is 1/8. Only the sequence TTT is in this event.

Ask the same questions about a sequence of six coin independent tosses of a fair coin. The probability of any given sequence is 1/2*1/2*1/2*1/2*1/2*1/2=1/64. The probability of no T’s is 1/64, the probability of the single event HHHHHH. The probability of exactly 1 T among the 6 tosses can be seen to be 6/64=3/32. The event of exactly 1 T is the union of the mutually exclusive events HHHHHT, HHHHTH, HHHTHH, HHTHHH, HTHHHH, and THHHHH. Think of moving the lone T through all possible positions. 

Answering the question of the probability of 2 T’s among the 6 tosses rapidly becomes tiresome. Beginning in alphabetical order, the sequences HHHHTT, HHHTHT, HHHTTH are in the event, but clearly there are quite a few more. In fact, here are 12 more, for a total of 15. The work on combinations pays off here. Rethink the problem of counting the number of T’s as the problem of choosing a combination of 2 positions drawn from the 6 possible positions for the 2 T’s to occupy. There are C(6,2)=15 ways to do this. Each sequence of tosses has the same probability,1/64, so the probability of there being exactly 2 T’s is 15/64.  Likewise, the probability of exactly 3 T’s among the 6 tosses reduces to the problem of choosing 3 positions for the T’s, drawn from the 6 possible positions. This is C(6,3)=20. The probability that a sequence of 6 tosses includes exactly 3 T’s is 20/64=10/32. Similarly, the probability of 4 T’s is C(6,4)/64=15/64. The probability of 5 T’s is C(6,5)/64=6/64=3/32. The probability of 6 T’s is 1/64.

The same reasoning shows that the probability of exactly k T’s in n independent tosses of a fair coin is C(n,k)/2k.  Any specific sequence occurs with probability 1/2*1/2*…1/2, with a factor of 1/2 for each toss, so 1/2k. The number of sequences that have exactly k T’s is the same as the number of ways to choose a combination of k locations for the T’s, drawn from the n possible locations in the sequence.

Many problems resemble the problem explored above of multiple independent tosses of a coin. They can be thought of as independent performances of a sub-experiment with two outcomes, repeated a specific number of times. For example, spin a roulette wheel 100 times and note each resulting number only as ‘00’ or ‘not 00’. Calculate the probability that ‘00’ occurs once. Another experiment could be to call an extremely chatty relative, who spends 2/3 of the day on the phone, at a randomly selected time once a day for 7 days and note whether the line was busy or not busy. Calculate the probability that the line is busy on 2 mornings. The distinction between these problems and the coin toss problem is that the sub-results are not equally likely. In standard roulette, there are 38 equally likely numbers on the wheel, 0, 00, and 1 through 36. The probability of ‘00’ on any spin is 1/38, while the probability of ‘not 00’ is 37/38. The chatty relative’s phone is busy with probability 2/3. These situations are like tossing a weighted coin repeatedly.

Consider an experiment, like those above, that consists of n repetitions of independent sub-experiments or trials with two possible results, call them success or failure. Suppose that on each trial the probability of success is p and the probability of failure is q. (Note p+q=1.) In this case, the probability of any particular sequence with k successes in n trials is pk(n-k)q. For example, if n=5, p=0.2, q=0.8 then the probability of the sequence success-failure-success-failure-failure, which has k=2, is 0.2*0.8*0.2*0.8*0.8=0.220.83. This is pk(n-k)q , as claimed. There are still C(n,k) sequences with k successes and n-k failures. Thus the probability of the experiment resulting in exactly k successes is 

C(n,k)pk(n-k)q. The probability space that corresponds to this is called the binomial distribution for n repetitions with probability p of success. It is summarized below.

The binomial distribution for n repetitions with probability p of success has as its sample space the numbers {0,1,2,…n}. The event algebra is all subsets of  {0,1,2,…n}. The probability function P satisfies P[{k}]=C(n,k)pk(n-k)q. The value of P on any subset is the sum of the values of P on the sets {k} for which k is in the subset.

For example, if n=5, p=0.2, q=0.8 then the probability of the event that there are at least 4 successes is P[{4,5}]=P[{4}]+P[{5}]=C(5,4)0.240.81+C(5,5)0.250.80=.00672.

7.4 An application

In 1954, grade schools conducted a field trial for the Salk polio vaccine. The goal was to determine whether the vaccine was safe and effective. The study was a model of good experimental design. The 400,000 children whose parents had consented to vaccination were divided randomly into two groups of 200,000. One group, the experimental group, received the vaccine, and the other, the control group, received an injection of neutral saline solution. The children did not know to whether they were in the treatment group or the control group. Diagnosticians who determined whether or not a child had contracted polio also did not know to which group the child belonged. A test in which neither the subjects nor those evaluating the responses know whether the subject is receiving the treatment is called double-blind. This design avoids bias on the part of the evaluators and avoids the placebo effect on the part of the subjects. The children’s response was to the treatment or lack thereof, not the idea that they were or weren’t being treated. 

The only differences between the groups, other than the treatment, were statistically manageable variations. Variations between the groups in such areas as age, weight, or socio-economic status were due to pure chance, and so can be analyzed using the concepts of probability and statistics.

Once the results reported, what remained was to determine the meaning of those results. In fact, there were 57 cases of polio in the experimental group and 142 cases in the control group. This suggests that the vaccine worked, but it is not yet conclusive. A skeptic would argue that approximately 57+142=199 children would have gotten polio anyway. The difference in the number of cases between the groups, the skeptic continues, was just an accident of who was assigned to which group.

The statistician can challenge to skeptic by demonstrating that a breakdown at least as uneven as this is extremely unlikely to have occurred by chance. The statistician devises a probabilistic model of the situation based on the assumption that the vaccine made no difference. If, according to that model, the observed results have a very low probability, then that model is an unsatisfactory model of what actually happened. This would argue that the vaccine was effective. If, instead, the observed results were reasonably likely, this argues that the vaccine was not particularly effective.

One reasonable model is that 199 children would have gotten polio regardless of the vaccine. The researchers’ randomization happened to put 57 of these in the experimental group and 142 in the control group. What is the probability that 57 or fewer of the 199 polio cases would be assigned to the experimental group by chance? Flipping a fair coin 199 times, and assigning the child to the experimental group if the result is ‘H’, and to the control group if the result is ‘T’ can approximate this model. What is the probability of 57 or fewer H’s? It is the sum as k goes from 0 to 57 of C(199,k)/2199. This comes out to approximately .0000000007, that is, 7 in 10 billion. This is a very strong argument against the hypothesis that the vaccine did nothing.

That model was only approximate, in that the probabilities of each case of polio being assigned to one or the other group is 1/2, but these are not quite independent. But groups were made to be the same size. Thus once some children have been assigned to groups, the probability of being assigned to one or the other group changes. The group with fewer children becomes more likely than the other. For example, suppose 198 of the children who will get polio have been assigned, 56 to the experimental group and 142 to the control group. The probability that the last child will be assigned to the experimental group is (200,000-56)/(400,000-198)=.500038, not .5 as postulated. Adjusting the probability to reflect the assignments already makes proportion assigned to either group even more likely to be close to 1/2 than it is in the coin toss model. The group with fewer children becomes slightly more likely than the other as the assignment for the next case. The probability of a split of 57-142 or one less even is actually lower than the 7 in 10 billion in the coin toss model!

There are other approaches to this problem. Some involve a theorem that relates binomial distributions to an extensively studied distribution called the standard normal distribution. This is beyond the scope of this chapter. Another approach is to simulate the researchers’ process in assigning 200,000 to each group. Using a computer, shuffle the list of 400,000 subjects, with 199 cases of polio among them. Say that the first 200,000 subjects from the shuffled list belong to the experimental group and the rest are in the control group. Repeat this many, many times. Observe how frequently 57 or fewer cases of polio are assigned to the experimental group simply by chance. This gives an indication of how likely the observed results were to be produced purely by chance under the assumption that the vaccine was useless. The coin toss argument predicts that the frequency of 57 or fewer cases in the experimental group in this simulation will be small indeed.

This example illustrates a very important statistical process called hypothesis testing. A common outline for hypothesis testing follows that in the vaccine example. Researchers want to determine if certain groups differ with regard to some characteristic. They test the hypothesis that the groups truly differ against the hypothesis that the groups do not actually differ and differences observed could be produced by pure chance. The latter is called the null hypothesis. The researchers devise a probabilistic model or approximate model for the situation that the groups do not actually differ. They then compute the probability that differences as marked or more marked than those observed would be produced in this model. If the probability is high, there is no reason to reject the null hypothesis. If the probability is low, the null hypothesis is rejected. Conscientious researchers report the probability that the observed differences could be produced by chance. That probability is called the significance level. Thus a low significance level is strong evidence against the null hypothesis.

� John Meyer, Getting a clue, Denver Post, Nov. 24, 2003
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