
Introductory Programming With
Processing

Scott Leutenegger
University of Denver

2

	 	

Table	 of	 Contents	

Preface.. 3	
Chapter	 1:	 	 Getting	 Started .. 5	
Color	 and	 line	 types: ...9	
Comments	 and	 Errors.. 11	

Chapter	 2:	 	 Variables ...14	
Naming	 Variables.. 18	

Chapter	 3:	 	 Simple	 Animations...19	
Chapter	 4:	 	 Mouse	 Interactivity..24	
Chapter	 5:	 	 Conditionals	 and	 Booleans..29	
Booleans: ... 35	

Chapter	 6:	 	 For-Loops ..38	
Chapter	 7:	 	 Doubly	 Nested	 For-Loops ..45	
Chapter	 8:	 	 PImage:	 Image	 Manipulation ...52	
Chapter	 9:	 	 Simple	 Functions ..64	
Chapter	 10:	 	 Functions	 Returning	 a	 Value..74	
Chapter	 11:	 	 Using	 Functions	 With	 Colors..77	

 3

Preface

This book is intended for the beginning programmer. This particular
version is intended as a text for the University of Denver course COMP
1100, a general education class that satisfies the foundational
educational requirement in Math and Computing. Perhaps you have
written a little bit of code in some language but do not yet fully understand
concepts such as arrays, looping, lists, and list iteration. This book is to
serve as a companion on your way to learning programming via
Processing. After more than 25 years of teaching computer science it is
the view of the author that most students benefit from a guide, something
to help the learner to follow a path that allows rapid understanding of
concepts yet travels through truly beautiful and engaging ideas. A book
that is short, concise, and not expensive. Computer science is filled with
beauty and the first steps of learning to program merely enable the
learner to be ready to engage in the beauty, but why not see some beauty
while learning the basics?

The Processing language provides an opportunity to explore beauty via
visual image creation and manipulation while at the same time learning
how to program. There are many excellent choices for learning to
program each with various advantageous and disadvantages. We chose
to focus on Processing and Java since Java is one of the most common
“industrial grade” programming languages in use today yet at the same
time provides a relatively easy learning curve. Processing is simply Java
with a library of commands that make media programming easier and
arguably more fun. Processing also uses a simple and elegant Integrated
Development Environment (IDE). Many CS educators will scoff at the
meager choice of tools available within the basic Processing IDE. We
agree it is limited, but for a first programming environment Processing
provides an excellent trade off between simplicity and power and we are
taken with its elegant design. Its predecessor, design by numbers, is an
even more beautiful example of simple design, but somehow most
students donʼt become excited by the idea of 100x100 grayscale pixel
images. We encourage the learner to later move into more industrial
strength IDEs such as Eclipse, Xcode, or Visual Studio.

If you already know how to program and just want to learn processing this

4

book is arguably not for you. For a non-nonsense logical introduction I
would recommend “Learning Processing” by Daniel Shiffman. Shiffmanʼs
book is also excellent for beginners although I have personally found
good success with the slightly different order and examples found in this
book. Two absolutely beautiful and inspiring books are “Processing:
Creative Coding and Computation Art” by Ira Greenberg and “Processing:
A Programming Handbook for Visual Designers and Artists” by Casey
Reas and Ben Fry. These last two do not provide as logical of a path for
the novice to follow, but the breadth of beauty found in them is nothing
short of mind blowing. I strongly urge the reader to move on to these
books either in tandem with this book or as a follow up.

To get the most out of this book, I recommend:

1) Read this book and DO ALL THE EXERCISES! One does not learn

programming by reading alone. Reading a book, and reading code
examples are excellent, but you must practice WRITING your own
code to learn.

2) When you get curious and ask, “How could I change this so that
instead of doing the example, it does something different”, TRY IT.
Explore. Invent. When you get stuck ask a fellow student, teaching
assistant, or your instructor if you are lucky enough to have on.

Donʼt get hung up on getting everything 100% “correct” unless that is your
personality, have fun. Learning is so much easier when you are having
fun. Enjoy, and good luck on your journey.

 5

Chapter 1: Getting Started

We will start our journey into Processing with creating static images
using the following Processing commands:

 rect()
 line ()
 ellipse()
 triangle()

To find out more about these commands, and most things in
Processing, select Help -> References from the menu at the top of the
Processing Window. Then click on the command you want to look up,
for example click on “rect()” to see how the rect() command is used.
When you click on it you will see that rect() takes 4 arguments:

 rect(x,y,width,height),

and that it will draw a rectangle with one corner at location x,y and
then be of size width x height. As you go through this text, if you
want more information, start first with Help -> References.

Now, put the following two lines of code in the Processing code
window as show in the table below on the left, hit the play button, and
you get output as show in the right:

6

Note, that each line must be terminated with a semicolon. The size
command specifies the size of the window to be created, in this case
300 pixels wide by 300 pixels high. The command: rect(50,10,100,200)
creates a rectangle at location (50,10) with a width 200 and height 50.
The location of the rectangle, (50,10), is the upper left corner of the
rectangle. You may be wondering why the rectangle is in the upper
left corner if it is at location (10,10). This is because the coordinate
system may be different than you are used to. Unlike the coordinate
system you used in high school algebra, in Processing, and in many
other graphics languages, the point (0, 0) is in the upper left hand
corner. X increase to the right as you are used to, but Y increases
going DOWN, not going up.

For a more thorough explanation about coordinates in Processing see:

 7

 http://processing.org/learning/drawing/

As another example, consider the following code and the output it
produces:

The code shows that 4 rectangles are being created at locations
(10,10), (10,100), (10,150), and (10,240). Notice also the size of the
rectangles differ, the first is 25x50, the second is 100x10, the third is
100x50, and the last is also 200x10.

In addition to rectangles, Processing makes it easy to draw triangles,
ellipses, lines, and quadrilaterals. Look under Help->Reference->2D
Primitives for more details. Below is an example of each:

8

size(300,300) ;
rect(10,10,200,10) ;
line(20,30,200,50) ;
triangle(10,60,200,60,150,90) ;
quad(10,100, 200,120, 250,150,
50,150) ;
ellipse(50,200, 25, 25) ;
ellipse(200,200,50,25) ;

Below is the first exercise. Learning to program requires you actually
write code. Just reading a book will not do it for you. If you want to
really learn, YOU MUST DO THE EXERCISES!!!! Programming is
not a spectator sport.

EXERCISE 1A

Write code to create each of the following images.

 9

Color and line types:

Processing allows you to use color for fills, background, and lines. It
also allows you to create different line types, i.e. smooth versus
dashed. Colors in Processing, and many other graphic languages, are
composed of three components Red, Green, Blue. The intensity of
each component is expressed as a number from 0 to 255, with 0 being
none and 255 being the maximum. This is different than studio art
color theory where colors are composed of the primary colors red,
yellow and blue. The difference is that computer screens create color
by mixing colored lights whereas in painting you are mixing physical
pigments. In Processing the default background color is grey. To
change the background color use the background command:

background(255,255,0) ;

By specifiying 255, 255, and 0 as the three inputs to the command, the
command sets the maximum amount of red, the maximum of green,
and the minimum of blue. You will get a strong yellow background. If
you do (255,0,0) you will get a strong red background. If you use
smaller numbers you get less “light” and hence darker colors. For
example, background(100,0,0) results in a darker shade of red, and
background(50,0,0) results in an even darker color. Note, the value
(255,255,255) is the maximum of all colors, which will give you white.
Smaller but equal numbers such as (200,200,200) will give you

10

different shades of grey. The background command can be used with
three input values as above, or, just one such as background(255). If
you use just one value you get greyscale values between
background(255), which will give you white, and background(0), which
will give you black, and the numbers in between resulting in different
values of grey.

You can also change the color of 2D Primitives (rect, triangle, ellipse,
etc) by using the fill() command: fill(255,0,0) will make subsequent
2d primatives filled in red. When you execute the fill command it
holds for all subsequent 2d primitive calls. You can also modify the
thinkness of the border (or of lines) by using the strokeWeight()
command. The larger the number in the call the thicker the border
line. You can also change the color of the border line using stroke().
For example, stroke(255,0,0) will make the border color red. If you
make the fill the same color as the background, then you can see just
the border.

The following code produces the following image. The first six lines
create the red, green, and blue filled rectangles vertically descending
along the left side. The next line sets the fill to white so that
subsequent calls to rect will have a white interior. The stroke()
command specifies the color of lines that are drawn. Specifcally, the
command stroke(255,0,0) sets the lines to be red. Thus, the next
rectangle drawn has a red border, as determined by the previous
stroke command, and a white fill. The strokeWeight() command
specifies how think lines should be. Thus the next two lines change
the border of subsequent rectangles to have a thickness of 5 and a
color of green. Finally, the last stroke() and strokeWeight()
commands cause the last rectangle to have a wide blue border.

 11

fill(255,0,0) ;
rect(10,10,50,50) ;
fill(0,255,0) ;
rect(10,70,50,50) ;
fill(0,0,255) ;
rect(10,130,50,50) ;

// set fill to white
fill(255) ;

stroke(255,0,0) ;
rect(70,10,50,50) ;

stroke(0,255,0) ;
strokeWeight(5) ;
rect(70,70,50,50) ;

stroke(0,0,255) ;
strokeWeight(10) ;
rect(70,130,50,50) ;

To read more about colors and see how to “mix” colors google “RGB
color picker” or simply “RGB”. You can find a lot of cool info that will
explain this more thoroughly, for those that want to know. There is
also an excellent page about color in Procesing by Daniel Shiffman at:

 http://processing.org/learning/color/

Comments and Errors

In the last example you will notice a line starting with two slashes “//”.
The double slash signifies the start of a comment. A comment is
something the programmer adds to code to help explain the code to
others or to themselves when they look at the code later. In computer
programming commenting code is very important. In fact, in large
software development projects there is often more lines of comments
then code! You will make your life easier if you comment your code to
explain tricky parts so that when you come back to look at it a few

12

days or months later you remember what you did.

It is easy to make typos that are errors. When there are errors, also
called “bugs”, the code will not run or possibloy run with unexpected
results. The process of removing errors is called “debugging”. In
Processing, error messages appear in the bottom window. For
example, consider the following. When you run it it does not work,
pops up a whole bunch of gobbly-goob in the bottom window, and a
more helpful message just above that says “unexpected token: null”.
It also highlights the offending line of code in yellow. The problem
here is that the line does not end with a semicolon. If a semicolon is
inserted and the code is re-run, then it will work.

Consider another error, say I put in the following line of code:

rect(10,10,20) ;

When I run it I’ll get an error, and it will say “unexpected token: , “
Again, Processing will highlight the offending line in yellow. In this
case, there is a semicolon, but, the rect() command is expecting 4
values: x, y, width, height, and I have only supplied 3.

In general, if you have an error message, look at it, it might be

 13

helpful, sometimes not. Regardless, Processing will always highlight
the line near or where the problem is in yellow. Note, there may be
multiple lines with problems, you need to fix them all. A final word of
advice: do not type in 100 lines and then hit run, you will likely have
many errors and with multiple errors it is harder to debug. Instead,
add your code incrementally, running every now and then to make
sure it is going like you expect.

14

Chapter 2: Variables

Variable are used to hold data during program execution. Variables
can hold data of a certain types, for example:

int holds integers, i.e. whole numbers
float holds decimal point numbers
char holds a character

One declares a variable by stating the type of variable, the variable
name, and then a semicolon. For example:

 int numRectangles ;

would declare the variable “numRectangles” to be a variable that can
hold integers. The following code produces the following output:

int x ;
int y ;
int rectWidth ;
int rectHeight ;

x = 10 ;
y = 20 ;
rectWidth = 40 ;
rectHeight = 140 ;
rect(x,y,rectWidth,rectHeight) ;

x = 70 ;
rect(x,y,rectWidth,rectHeight) ;

x = x + 60 ;
rectHeight = rectHeight / 2 ;
rect(x,y,rectWidth,rectHeight) ;

In the above code the first four lines declare four integer variables: x,

 15

y, rectWidth, and rectHeight. In the next four lines of code we put
initial values of 10, 20, 40, and 140 respectively into each variable.
Putting initial values into variables is called initialization. The
statement:

 x = 10 ;

should be read as “assign the value 10 to the variable x”. The = sign
means “assign to”.

 We can now use the variable names in places that we have used
numbers before. The current value in the variable is used for the
value in the statement. Thus, the statement:

 rect(x, y, rectWidth, rectHeight) ;

creates a rectangle as normal, using the values inside variables x, y,
rectWidth, and rectHeight. Hence, the first rectangle is drawn at
location (10,20) with a width of 40 and a height of 140. One can
change the content of a variable by assigning a new value to it. In the
next line of code, the statement:

 x = 70 ;

replaces the current value of 10 in x with 70. Now the statement
rect(x,y,rectWidth,rectHeight) creates a rectangle at location (70,20)
still with width and height of 40 and 140.

Before the third call to rect(), we change the values of both variables
x and recHeight. In the statement:

 x = x + 60 ;

We assign to variable x the current value of x plus 60. Thus, after this
statement x now contians the value 130.
In the statement:

 rectHeight = rectHeight/2 ;

we assign to variable rectHeight the current value of rectHeight

16

divided by 2. Thus, after this statement variable rectHeight now
contains the value 70.

After these statements, x, y, rectWidth, and rectHeight contain the
values 130, 20, 40, and 70 repectively, hence the statement rect(x, y,
rectWidth, rectHeight) draws a rectangle at location (130,20) with a
width of 40 and a height of 70.

Note, variable creation and assignment can be done in one step. For
example, the statements:

 int x ;
 x = 10 ;

can be done in one statement:

 int x = 10 ;

In Procesing if you want to see the current value of a variable you can
print it out using the println command:

 println(varName) ;

where varName is the name of the variable. The value of the variable
then gets printed out in the black box in the bottom of Procesing. For
example:

int numLeft = 22 ;
println(numLeft) ;

will print out the number “22” in the black box at the bottom of the
Processing window.

If you use float variables you can get values that are not integers. The
following code creates following output when run:

 17

float fx, fy ;
int ix, iy ;

fx = 8 ;
fy = fx / 3 ;
println(fy) ;

ix = 8 ;
iy = ix / 3 ;
println(iy) ;

Notice the first number printed out is 2.666667, whereas the second is
2. float variables can hold real numbers, whereas int variables can
only hold whole numbers. If you do a calculation on the right hand
side that evaluates a non-integer value and then assigns it into an
integer variable in Processing it will just round it down to the whole
number less than or equal to the floating point number.

Consider the following code:

int ix1, ix2 ;
float fx ;

ix1 = 2 ;
ix2 = ix1 ;
fx = ix1 ;

fx = 2.0 ;
ix2 =fx ;

The last line will cause an error. The error statement is: “cannot
convert from float to int”. What this is saying is you cannot put a
floating point value into an integer, even if the value seems like a
whole number such as 2.0. You can think of the different types of
variables as different shaped storage boxes: int variables can only
hold integers, float variables hold real numbers. A float variable will
allow you to assign an integer to it, but it automatically converts it
into a float, i.e. 2 becomes 2.0. In the example above it seems you

18

should be able to assign the contents of variable fx to variable ix2.
After all, the value is 2.0, that is the same as 2, right?
Mathematically, yes, but, remember, a float variable can hold any real
number. When processing the commands, the compiler (the software
that translates high level programming languages like Processing and
Java into low level machine-executable code) just looks to see what is
on the right side of the assignment operator and what is one the left.
If the left is an integer, and the right contains a floating point variable
or a constant with a decimal point, it flags the assignment as an error.

One can force the contents into an integer variable by doing type
casting. An example is:

 ix2 = (int) fx ;

or:

 ix2 = int(fx) ;

this statement says force the contents of variable fx into an integer. It
does this by truncating the decimal part.

Naming Variables

Variable names can be anything you want that is not a reserved word.
Reserved words are words that are part of the Processing or Java
language such as: { rect, ellipse, line, for, int, float, char, while, class,
setup, draw, and a whole bunch more}. How do you know if a name is
a reserved word? If you type it in Processing will highlight it in
orange for you so you can see it is a reserved word, hence, you can not
use it as a variable name. Variables cannot contain a space, and they
can not start with a number. So, the variables “num1” and “num_1”
are legal, but “1num” and “num 1” are not, the last one because it
contains a space. In general, use descriptive variable names. For
example, if using variables to track that location of a ball logical
names might be: ball_X and ball_y.

 19

Chapter 3: Simple Animations

Up until now we have been creating static images in Processing. We
will come back to working with static images, but for now we will see
how to interact with the computer mouse and also create simple
animations.

Consider the code in Example 3.1. The image on the right is a
snapshot of the animation as it unfolds. When you run it there should
be one rectangle in the top left corner, then, every 1/2 a second
another rectangle should be drawn slightly to right and slightly lower
than the previous rectangle. Because this is dynamic make sure
you actually type the code into Processing and run it yourself.

EXAMPLE 3.1
int rx ;
int ry ;

void setup()
{
 size(400,400) ;
 rx = 1 ;
 ry = 1 ;
 frameRate(2) ;
}

void draw()
{
 rect(rx, ry, 50, 50) ;
 rx = rx + 5 ;
 ry = ry + 5 ;
}

20

After running the code, lets break down what part of the code does
what, step by step:

code explanation
int rx ;
int ry ;

Declare two integer variables. We will use this to
keep track of the x,y coordinate of the current
rectangle to be drawn

void setup()
{

}

The setup FUNCTION. A function is a chunk of code
that gets executed when it is called. The code that
belongs to the function is everything between the
open curly brace, { , and the close curly brace, } .

The setup function is a special Processing function
that is called exactly once at the beginning of a code
run.

size(400,400) ;
rx = 1 ;
ry = 1 ;

Initialize the screen size to be 400x400. Initialize the
values of variables rx and ry to be 1.

frameRate(2) ; This is built in Processing function that specifies how
frequently they draw () method is called. If set to 2,
as in this example, then the draw() method is called
twice per second.

void draw()
{

}

The draw function. This function is called by
Processing repeatedly while the code runs. In here
we put all the code that we want to do stuff over and
over. The frequency of execution is determined by
the frameRate() call, as describe in the row above,
and usually found in the setup() function.

rect(rx,ry,50,50
) ;

Draw a 50x50 rectangle at the location rx, ry, where
rx and ry is the current value of those variables.

rx = rx + 5 ;
ry = ry + 5 ;

Change the value of rx to be its current value plus 5.
Same with ry.

The overall effect of this code is to draw a new rectangle 5 pixels to
the right and 5 pixels down from the previously drawn rectangle twice

 21

per second.

You will notice the word void before the setup and draw functions.
This is important and can not be ommitted. The word before a
function is the return type. Functions can return values and hence we
need to specify the type of value the fuction will return. For example,
I can create a function that returns the average age of students in the
classroom. Such a function would return a float value that contains
the average, hence, instead of the word void you would say float.
Void is use to signify that you do not care about the return type, i.e. it
will not be used. If this is confusing now, don’t worry, just remember
to put void before setup() and draw(), and we will revisit this issue
later when we explain functions in more detail.

Lets look at a new example:

EXAMPLE 3.2
float rx ; // rectangle's x-
coord
float ry ; // rectangle's y-
coord
float gscaleColor ; //random
color

void setup()
{
 size(400,400) ;
 frameRate(2) ;
}

void draw()
{
 rx = random(1,350) ;
 ry = random(1,350) ;
 gscaleColor = random(255) ;
 fill(gscaleColor) ;
 rect(rx, ry, 50, 50) ;
}

22

In this example we keep drawing rectangles as before, but this time
the rectangle locations and grey-scale color are random. The image on
the right show the output after 46 rectangles have been drawn. Note,
there is no reason for choosing 46 other than it looked cool to the
author. Something new here is the use of the Procesisng function
random() to generate random numbers. The command:

 random(1, 350)

generates a random number between 1 and 350 inclusive.

You will notice that in all the examples so far the next rectangle is
drawn and the previous one(s) remain. If you want to make a single
object appear to move across the screen you need to wipe out it’s
previous drawing and replace it with the new drawing shifted over
slightly. Wiping out the previous drawing can be done with the
background() command. If you call background() inside the draw()
function, then the window contents are erased each time when the
new background is drawn. In the example below a white rectangle
moves across the window from left to right. The image on the right is
after it has moved 120 times:

EXAMPLE 3.3
int currentX ;

void setup()
{
 size(400,400) ;
 background(120) ;
 currentX = 0 ;
}

void draw()
{
 background(120) ;
 rect(currentX,100,50,50) ;
 currentX = currentX + 1 ;
}

 23

Exercise 3A
Write your own code to create something that looks like each of the
following images. Note, your code should draw these figures one
polygon at a time using setup() and draw(), the pictures below just
show the state after 46 polygons have been drawn. Hint: use
variables to hold random numbers for width, size, and the R, G, and B
color values for each rectangle or circle.

Exercise 3B
Write code to make a red circle start in the top right corner of the
screen and move to the bottom left while changing color from red to
blue. The website video titled “Exercise 3B” shows an example of
what is desired.

24

Chapter 4: Mouse Interactivity

Processing makes it very easy to interact with the mouse. Processing
keeps track of a number of system variables. System variables are
variables for which Processing maintains the contents. Two examples
are: mouseX and mouseY.

Type in the following code and hit run:

void setup()
{
 size(400,400) ;
 frameRate(12) ;
}

void draw()
{
 rect(mouseX,mouseY,50,50) ;
}

While running the code move your mouse around inside the window.
When you move the mouse around Processing draws a 50x50
rectangle at the current mouse location. Because the frameRate is set
to 12, the draw() function is called every 1/12 th of second, and hence
rectangles are drawn at 1/12 th of a second. If you leave the mouse in
the window but don’t move it, it is still drawing rectangles.

Now, replace the rect(mouseX,mouseY,50,50) above with:

 line(200,200,mouseX,mouseY) ;

After moving the mouse around you should get something that looks
like the image below on the left. Replace the line with:

 line(pmouseX,pmouseY,mouseX,mouseY) ;

and you will get something like the image on the right (if you try to
move the mouse around to spell “bob”:

 25

That last one was tricky. We used two more system variables:
pmouseX and pmouseY. These two variables hold the previous value
of mouseX and the previous value of mouseY respectively. Precisely:
the previous value is the value the last time the draw function was
called.

In addition to accessing the system variables mouseX, mouseY,
pmouseX, and pmouseY, we can do more with the mouse. If you check
out the reference from the drop down menu under “Help”, and go
about half way down you will see many functions related to the
mouse. One of the functions available is mousePressed(). Go ahead
and add this fundtion to the code as below on the left. Now, when you
run the code, whenever the mouse is pressed that function is called.
On the right below is the output from me running it and clicking 14
times:

26

void setup()
{
 size(400,400) ;
 frameRate(24) ;
}

void draw()
{
 line(100,200, mouseX,
mouseY) ;
}

void mousePressed()
{
 ellipse(mouseX,mouseY,30,30)
;
}

Now lets create a line drawing tool. Our tool should draw a line from
the location of the last mouse click to the location of the current mouse
click. For example, if I click 4 times in a row at locations: middle of
screen, middle of the right side, top right corner, and then middle of
the top, it should look like:

 Lets try first with the following code as shown below on the left.

 27

Unfortunately when we run that we get something that looks like the
output on the right below. This output was created by many clicks
and moves.

void setup()
{
 size(400,400) ;
 frameRate(12) ;
}

void draw()
{
 // do nothing
}

void mousePressed()
{
 line(pmouseX, pmouseY, mouseX,
mouseY) ;
}

The problem here is that pmouseX and pmouseY are changed to the
mouse location every time the draw function is called. And since it is
being called 12 times per second, when you move your mouse to the
next location for clickly pmouseX and pmouseY are being updated
when you don’t want them to. Instead, we need to keep track of the
location of the mouse for the last time there was a mouse click. We
can do this ourselves with variables as follows:

float lastX ;
float lastY ;

void setup()
{
 size(400,400) ;
 frameRate(12) ;
 lastX = 0 ;
 lastY = 0 ;

28

}

void draw()
{
 // do nothing
}

void mousePressed()
{
 line(lastX,lastY,mouseX,mouseY) ;
 lastX = mouseX ;
 lastY = mouseY ;
}

Here we create two variables that we name lastX and lastY. The
varaibles need to be declared outside any of the functions so that all
the functions can access them. This is called a global variable
because you can access the variable from any of the functions, i.e.
globally. For now think of it this way: functions are greedy! If one
declares a variable inside of a function it can not be shared by other
functions. If on the other hand one declares a variable outside of any
function, then all of the functions can access that variable. In
computer programming this concept is called scope and will be
explained in more detail later.

 In the setup() function we intialize variables lastX and lastY to hold
0 and 0. Thus, the first line is going to start at location 0,0. Inside
the mousePressed() function with draw a line from the last mouse
location, which we know because we have stored in variables lastX
and lastY, to the current one. After drawing the line with the line()
command we update the values in lastX and lastY to be the current
mouseX and mouseY so that the next time mousePressed() is called
the correct variables are in there.

 29

Chapter 5: Conditionals and Booleans

We often use conditional statements such as

if a certain condition is true
 do one set of commands
else
 do another set of commands.

The general format i Processing is as follows:

if ()
{

}
else
{

}

if ()
{

}

The format on the left is used when you want something to happen if the
condition in parenthesis is true, and you want something else to happen if
the condition is false. The format on the right is used when you want
something to happen if the condition inside the parenthesis is true but do
not have any action in mind if it the condition is false.

Consider the following if/else example. When the user clicks on the right
side of the screen, i.e. (mouseX > 199), small red circles are drawn,
otherwise larger green rectangles are drawn. The image on the right was
captured after clicking a bunch of times:

30

void setup()
{
 size(400,400) ;
}

void draw()
{
 // do nothing
}

void mousePressed()
{
 if (mouseX > 199)
 {
 fill(255,0,0) ;
 ellipse(mouseX,mouseY,40,40) ;
 }
 else
 {
 fill(0,255,0) ;
 ellipse(mouseX,mouseY,20,20) ;
 }
}

It is important that every open brace, { , have a matching close brace, } .
If you do not have a matching open/close brace, you will get an error.
Further, your code will be much more readable, and you will be less
prone to creating errors, if you vertically align the open/close braces.
Processing will do this indentation for you automatically if you let it. You
yourself have to force bad alignment.

Now lets make a ball move back and forth across the screen. The code
is in the box below. We will do this by using three variables that we
name: velocityX, currentX, and currentY. In the setup() function we
initialize these three to 1, 0, and (height / 2) respectively. Note, height
and width are system variables that hold the height and width of the
window. Since we set size to 300x300 height will contain 300. We will
use velocityX to keep track of in what direction and how fast the rectangle
is move.

 31

In the draw() function we first set the background to wipe out previous
circles, then draw a circle at location (currentX,currentY). We then need
to update the currentX location so that the next time draw() is called the
ball moves over. Variable velocityX contains the current velocity. If it
contains a positive number we want the ball to move to the right, if it
contains a negative number we want to move to the left. We can do this
simply by saying:

 currentX = currentX + velocityX ;

Now, currentX will contain the next x-coordinate for the ball so it moves
the next time draw() is called. We need to do one more thing, we need
to check that the ball has not gone off the screen. If currentX is greater
than the contents of system variable width, then it has gone of the screen.
We can bring it back by negating, i.e. multiplying by -1, the contents of
velocityX. Likewise, we need to make sure the ball has not gone off the
screen by going to far to the left, i.e. currentX < 0. Again, if currentX < 0
we just negate our variable velocityX.

int velocityX ;
int currentX, currentY ;

void setup()
{
 size(300,300) ;
 background(150) ;
 velocityX = 1 ;
 currentX = 0 ;
 currentY = height / 2 ; // middle of screen
}

void draw()
{
 background(150) ; // wipe out previous drawings

 // draw the ball

32

 ellipse(currentX, currentY, 20,20) ;

 // update currentX for next call to draw()
 currentX = currentX + velocityX ;

 // negate velocityX if ball going off screen
 if (currentX > width)
 {
 velocityX = velocityX * -1 ;
 }
 if (currentX < 0)
 {
 velocityX = velocityX * -1 ;
 }

}

The code above works fine but can be mad more concise and neat. The
logic for updating velocityX is currently:

if (currentX > width)
{
 velocityX = velocityX * -1 ;
}
if (currentX < 0)
{
 velocityX = velocityX * -1 ;
}

This can be rewritten as:

if ((currentX > width) || (currentX < 0))
{
 velocityX = velocityX * -1 ;
}

 33

In this example you see a new funny expression: ||

The || means “or”. This is saying if either of the expressions (currentX >
width) OR (currentX < 0) is true, then the whole if condition evaluates to
true. Notice you need a total of three open parenthesis and three close
parenthesis. It is more common, and easier to read, to write your code
the second more concise way.

In addition to OR there is the AND operator. In Procesing/Java the AND
operator is two ampersands: &&. Hence, I could write:

 if ((currentX > width) && (currentX < 0))

but this would always evaluate as false unless width was a negative
number, which, in Processing it must always be a non negative number.

Exercise 5A
Make a ball bounce around the screen in both dimensions. Hint: you
will need to update currentY also, and we suggest you create and
use a velocityY variable.

Modify your ball so that when it is on the left half of the screen the
ball is red, and when it is on the right half of the screen the ball is
green.

So far we have said if/else statements have to follow the form:

 if ()
 {
 // if statements
 }
 else
 {
 // else statements

34

 }

Actually, this is not quite right, the general form is:

 if ()
 // if statement block
 else
 // else statement block

A statement block is one or more statements. If it is more than one
statement the block needs to be enclosed by curly braces. If it is only
one statement there is no need for the curly braces. Consider the table of
expression of equivalent code below. In the first case both the if and else
statement blocks are single lines of code, hence we can omit the curly
braces. In the second case both are two or more lines, hence the curly
braces are mandatory. In the third case, the if statement block has only
one line, hence we can remove the curly braces there.

 35

Original code More concise code
if (age < 75)
{
 System.out.println(“not old”) ;
}
else
{
 System.out.println(“old”) ;
}

if (age < 75)
 System.out.println(“not old”) ;
else
 System.out.println(“old”) ;

if (age < 75)
{
 System.out.println(“not old”) ;
 age = age + 1 ;
}
else
{
 System.out.println(“old”) ;
 age = age + 2 ; // rapid aging
}

no smaller expression, both
statement blocks have two or
more statements, hence, the
braces are necessary.

if (age < 75)
{
 System.out.println(“not old”) ;
}
else
{
 System.out.println(“old”) ;
 age = age + 2 ; // rapid aging
}

if (age < 75)
 System.out.println(“not old”) ;
else
{
 System.out.println(“old”) ;
 age = age + 2 ; // rapid aging
}

Booleans:

The expressions inside the parenthesis of an if statement are called
Booleans. Boolean is just a fancy name for an expression that evaluates
to true or false. Lets say Assume a few variables are created as follows:

 int age ;

36

 int weight ;
 int gpa ;

In the following table I show some some Boolean expressions. Lets
assume I first run the code in Row 1 to initialize the variables, then we will
look at the following rows to evaluate the as true or false.

Row Processing/Java

1 age = 19 ;
weight = 115 ;
gpa = 3.72 ;

2 (age < 20) TRUE
3 (weight == 115) TRUE
4 (gpa > 3.0) && (age < 20) TRUE
5 (gpa > 3.8) || (weight < 100) FALSE
6 (age >= 19) TRUE
7 (age > 21) && (weight < 125) FALSE
8 (age != 19) FALSE

Row 1 contains the code for assigning values to the variables. Row 2
evaluates to true since 19 is < 20. Note in row 3 that in Processing/Java
“==” is used for equals, see the important note below. This evaluates to
true as weight contains the value 115. For row 4 to be true BOTH
expressions need to be true, and, they are. In row 5 we have and OR
operator. Or will evaluate to true if either or both of the expressions on
each side of the OR are true. In this case, neither is true, hence the
expression evaluates to false. Note, if the right hand expression where
replaced with (weight > 100), then the entire expression would evaluate to
true because one of the two sides would be true. In row 6 the expression
evaluates to true. The operator “>=” means greater or equal. Since it is
equal the expression evaluates to true. Scratch does not have a <= or >=
operator. In row 7 we have an AND operator. For AND to be true both
sides must be true. If either or both of the sides are false the entire
expression evaluates as false. In this case, the left hand side is false,

 37

hence, the entire expression is false. In row 9 the expression is (AGE
NOT EQUAL TO 19). In Processing/Java we write this as (age != 19).
Since age contains 19 this expression evaluates to false.

IMPORTANT: In row 3 note that we use “==”, i.e. two equal signs, to
represent = in Procesing/Java. A single = sign means assign the right
hand expression to the left hand variable. Thus, we can not use a single
= to mean “equals”. We could to it in Scratch because we had a different
syntax for assignment, namely “set varName to value”. Here is a place
that java differs from Processing. Lets say you mistakenly type:

 if (weight = 115)

In Java the code would run, the value of 115 would be assigned to
variable weight and the expression would evaluate as “TRUE”. You need
to be careful in Java. Processing is more friendly as Processing will flag
this as an error and not run the code.

EXERCISE 5B
int A = 10 ;
int B = 20 ;
int C = 30 ;

Answer True or
False

(A < 15)
(B == 20) && (C < 10)
(B == 20) || (C < 10)
(A < 15) && (B <= 20) && (C > 0)
(A < 15) || ((B == 10) && (C > 10))
(A != 10)
((A < 0) || (B > 0)) && ((A==10) || (C == 10))

38

Chapter 6: For-Loops

Often in programming you want to run a chunk of code multiple times.
For example, lets say you have written a grading program that calculates
the grade for each student in the course by adding up their exam and
assignment grades, weighting them appropriately, and then printing out
the final numeric grade. You would want this code to run multiple times,
once for each student.

Lets start with creating multiple rectangles in a static Processing program.
By static we mean there is not draw() function that is called multiple
times, hence, the code is just run once and creates a single image. The
following code creates the following image:

size(400,400) ;
int count ;
float rx ;
float ry ;

for (count = 0 ; count < 10 ; count = count + 1)
{
 rx = random(width) ;
 ry = random(height) ;
 rect(rx,ry,40,40) ;
}

The loop, i.e. the code between the curly braces, gets executed ten times.
Hence, 10 rectangles are drawn at 10 random locations. If you change
the 10 to a 20 the loop is executed 20 times and 20 rectangles are drawn.
It is important to note this is very different than in the previous chapters
where we used the draw() method to keep drawing rectangles. In this
case the code is run once and the image is created and displayed,
whereas when using draw() the contents of draw() are run until the
program is stopped.

A for-loop can be explained as having three parts as show here:

 39

The initialize part gets executed exactly once before the loop starts. Then
we check the condition in the middle. If it is true we run the contents of
the loop. Then we execute the change part. Then we repeat: check,
run, change. Check, run, change. Check, run, change. And so on, until
the check fails. In this specific case:

1) initialize count to the value 0
2) check if count is < 10. YES. Run the loop. Change count to 1.
3) check if count is < 10. YES. Run the loop. Change count to 2.
4) check if count is < 10. YES. Run the loop. Change count to 3.
5) check if count is < 10. YES. Run the loop. Change count to 4.
6) check if count is < 10. YES. Run the loop. Change count to 5.
7) check if count is < 10. YES. Run the loop. Change count to 6.
8) check if count is < 10. YES. Run the loop. Change count to 7.
9) check if count is < 10. YES. Run the loop. Change count to 8.
10) check if count is < 10. YES. Run the loop. Change count to 9.
11) check if count is < 10. YES. Run the loop. Change count to 10.
12) check if count is < 10. NO => So execution of the loop stops and

the program execution then moves on to the next command after the
loop closing brace.

To see the values of the variable count change as the code runs we can
print them out as in the following code:

40

 int count ;
 for (count = 0 ; count < 10 ; count = count + 1)
 {
 System.out.println(count) ;
 }

You can see in the output window the following:

Thus, the variable count takes on the values 0 .. 9, but does not enter the
loop once count is equal to 10.

The expression “count = count + 1 “ is so common in programming that
most programming languages, including Processing/Java, give you a
shorthand notation:

 count ++ ;

Likewise, varName = varName - 1 is very common and hence is:

 varName -- ;

Thus, the loop above can also be written:

for (count = 0 ; count < 10 ; count++)
{

}

 41

Another common convention is to use the variable name “i” for a loop
counter as follows:

int i ;
for (i = 0 ; i < 10 ; i++)
{
 // loop contents
}

Finally, often the loop counting variable is declared inside the loop in the
initialization clause as follows:

for (int i = 0 ; i < 10 ; i++)
{
}

Sometimes the value of the loop counter is used inside the loop as well
as being used to determine how many times the loop executes. An
example is below. Notice how the x-coordinate of each rectangle is
generated from the current value of the loop variable “i”. The rectangleʼs
x-coordinates are i*30, hence, they are located at
{0,30,60,90,120,150,180,210,240, and 270}:

size(400,400) ;
for (int i = 0 ; i < 10 ; i++)
{
 rect(i*30, 200, 25, 25) ;
}

42

EXERCISE 6A
Use one or two for loops to create the following
images (or something close to them). Do NOT write a
separate rect(x,y,w,h) command for each rectangle,
rather, put the command inside a for loop.

If you make small circles and create lots of of them you can get more
interesting pictures such as in the following example. This example, and
the exercise following, are motivated by some examples in chapter 6 of
the book “Processing. Create Coding and Computational Art.” by Ira
Greenberg. Notice that the first loop is executed 133 times (why?), the
second loop 200 times (again, why?), and the last loop 400 times. Thus,
the first line of dots contains 133 dots, the second contains 200, and the
third contains 400.

 43

size(400,400) ;
background(100) ;
fill(255) ;
stroke(100) ;

float rx ;
float ry ;

for (int i = 0 ; i < 400 ; i = i + 3)
{
 rx = i + 0.2 * random(-1,1) ;
 ry = random(50,90) ;
 ellipse(rx,ry,5,5) ;
}

for (int i = 0 ; i < 400 ; i = i + 2)
{
 rx = i + 0.2 * random(-1,1) ;
 ry = random(190,230) ;
 ellipse(rx,ry,5,5) ;
}

for (int i = 0 ; i < 400 ; i++)
{
 rx = i + 0.2 * random(-1,1) ;
 ry = random(320,360) ;
 ellipse(rx,ry,5,5) ;
}

44

EXERCISE 6b
Write code to create the following images. Hint: for the left hand one use the
sin() function, i.e. y = sin((float) i / 400 * 2 * PI), where PI is a system
variable that holds the mathematical value of PI, i.e. 3.14159....

 45

Chapter 7: Doubly Nested For-Loops

A for loop runs the commands nested inside the loop braces for some
number of iterations. One can put any valid command inside a for loop
including another for loop. Consider the following code and output:

for (int i = 0 ; i < 4 ; i++)
{
 for (int j = 0 ; j < 4 ; j++)
 {
 System.out.println(i + " " + j) ;
 }
 System.out.println("Hi") ;
}
System.out.println("Bye") ;

0 0
0 1
0 2
0 3
Hi
1 0
1 1
1 2
1 3
Hi
2 0
2 1
2 2
2 3
Hi
3 0
3 1
3 2
3 3
Hi
Bye

We call the two loops the outer loop (the one with “i” as the loop variable)
and the inner loop (the one with “j” as the loop variable.) When the out
loop starts it initialized “i” to hold 0. It then checks and enters the loop.
Now the inner loop command is started. The variable j is initialized to 0.
Now:

46

 The inner loop is run and prints out “0 0”.
 The inner loop finishes its first iteration.
 j is changed to 1.
 The inner loop is run again and prints out “0 1” because i still equals
zero.
 The inner loop finishes its second iteration.
 j is changed to 2.
 The inner loop is run again and prints out “0 2” because i still equals
zero.
 The inner loop finishes its third iteration.
 j is changed to 3
 The inner loop is run again and prints out “0 3” because i still equals
zero
 j is changed to 4

=> the inner loop check condition is not true now so the inner loop
finishes.

The outer-loop command just after the inner loop is now run. Thus, “Hi” is
printed out. That has completed one iteration of the outer loop. So, now
variable i is changed to 1. The outer loop code is run with i now equal to
1. The code gets to the inner loop, initializes j to 0. Now:

 The inner loop is run and prints out “1 0”.
 The inner loop finishes its first iteration.
 j is changed to 1.
 The inner loop is run again and prints out “1 1” because i still equals
1.
 The inner loop finishes its second iteration.
 j is changed to 2.
 The inner loop is run again and prints out “1 2” because i still equals
1.
 The inner loop finishes its third iteration.
 j is changed to 3
 The inner loop is run again and prints out “1 3” because i still equals 1
 j is changed to 4

=> the inner loop check condition is not true now so the inner loop
finishes.

 47

The outer-loop command just after the inner loop is run, thus “Hi” is now
printed. That has completed two iterations of the outer loop. So, now
variable i is changed to 2. Two more iterations of the outer loop happen,
each one causing four iterations of the inner loop, to print out:

2 0
2 1
2 2
2 3
Hi
3 0
3 1
3 2
3 3
Hi

At this point, variable i is changed to 4, the check condition of the outer
loop is not satisfied, and the program goes on to the next command after
the loop, thus printing out :

Bye

Now consider the following example:

for (int i = 0 ; i < 4 ; i++)
{
 for (int j = i ; j < 4 ; j++)
 {
 System.out.println(i + " " + j) ;
 }
 System.out.println("Hi") ;
}
System.out.println("Bye") ;

0 0
0 1
0 2
0 3
Hi
1 1
1 2
1 3
Hi
2 2
2 3
Hi
3 3

48

Hi
Bye

Notice that in the inner loop the initialization condition is:

 int j = i ;

Thus, when i equals 0, j starts at 0. When 1 equals 1, j starts at 1, when i
equals 2, j starts at 2, and when i equals 3, j starts at 3.

EXERCISE 7A
For each of these problem write out what gets printed. DO NOT
just type in the code and run it, figure it out by hand. Hint: the code
on the left prints out 10 lines of output, and the code on the right
prints out 8 lines of output.
for (int i = 0 ; i < 5 ; i++)
{
 for (int j = 3 ; j < 5 ; j++)
 {
 System.out.println(i + " " + j)
;
 }
}

for (int i = 3; i < 5 ; i++)
{
 for (int j = 1 ; j < 5 ; j++)
 {
 System.out.println(i + " " + j) ;
 }
}

Granted, the above examples are cool to think about, but they are rather
silly in that they donʼt actually “do” anything. Lets use doubly nested for
loops to create some images in Processing. For example:

 49

size(300,300) ;

for (int i = 1 ; i <= 9 ; i++)
{
 for (int j = 1 ; j <= 9 ; j++)
 {
 ellipse(i*30, j*30, 30, 30) ;
 }
}

size(300,300) ;

for (int i = 1 ; i <= 9 ; i = i + 2)
{
 for (int j = 1 ; j <= 9 ; j++)
 {
 ellipse(i*30, j*30, 30, 30) ;
 }
}

size(300,300) ;

int w ;
for (int i = 1 ; i <= 9 ; i = i + 1)
{
 for (int j = 1 ; j <= 9 ; j++)
 {
 if ((i%2) == 0)
 fill(255,0,0) ;
 else
 fill(0,255,0) ;
 w = j * 2 ;
 rect(i*30, j*30, w, w) ;
 }
}

Note in the example above the statement:

50

 if ((i%2) == 0)

The percent sign is the “modulo” operator. It returns the remainder of
dividing the left operant by the right operand. For example: 10 % 3
would equal 1 because the remainder is 1, 11 % 3 is equal to 2, and 12
% 3 is equal to 0. Note, another variation of this would be to get a
“checker-board” effect, i.e. the first rectangle in row 1 is red, in row two is
green, in row 3 is red, and so on. This can be achieved with using:

 if (((i+j) % 2) == 0)

EXERCISE 7B
Write code to create each of the following (or something very close to it).
Hint on the last one: try using lines where you modify the stroke weight
and color such as: strokeWeight(5) and stroke(255,0,0) // color

 51

52

Chapter 8: PImage: Image Manipulation

Digital images in the simplest form, a bitmap file, can be thought of as a
two-dimensional “box” of pixels. Consider the photo below. In the top
left you see the original photo (well, actually, I already decreased the
resolution significantly for this demonstration). In the middle-left you see
the photo zoomed in x2. In the bottom-left you see the photo zoomed in
another x2. In the top-right another zoom in x2. In the middle-right
another x2. And in the bottom-right another x2.

As you zoom in you get to see the individual pixels. In the version on the
bottom-right you can see the photo is just a 2D matrix of different colored
cells. Each pixel is a color represented by a RGB triplet (0..255, 0..255,
0.255). In digital photos with modern cameras and modern computers
the pixels are so small you eye does not see them. Even the top-left
picture looks pretty good, but by todayʼs standards it is very low-
resolution.

Processing provides the PImage class for storing, manipulating, and
drawing images. From inside Processing click on Help->Reference and
then find PImage for a complete description of available methods.
Because an image is just a 2D matrix of pixels, we can use doubly-nested
for loops iterate over every row and column of the image.

 53

54

Run the following to start with. Go ahead and use my image if you want,
it is on the web site listed as ParkGuell, or use any smaller jpg file. First,
lets us PImage to load the file and display it:

size(800,800) ;

PImage theImage ;
theImage = loadImage("parkguell.jpg") ;
System.out.println("width = " + theImage.width) ;
System.out.println("height = " + theImage.height) ;

// show the unmodified image in the top left
image(theImage,0,0) ;

// also show the image in the top right, put
// a space of 10 pixels between the two
image(theImage, theImage.width + 10, 0) ;

The above code create a variable name “theImage” of type PImage.
Actually, technically, this is an object named “theImage” of type class
PImage. More on that soon when we move on to classes and objects.
We then use the “loadImage() “ method to load the image name
“parkguell.jpg”. The PImage class gives us properties to access width
and height, which we then print out. In the case of this image, the width
and height are 244 and 364 pixels respectively. We can use the
command image(theImage,0,0) to display the image inside the
Processing output window setting its top left corner at location 0,0. The
image displayed is the one contained in the object “theImage). In the last
line of code we display the image a second time, but this time the top left
corner is set to be (theImage.width + 10, 0), i.e. (254,0).

The following code loads an image and then using draw makes it move
diagonally across the screen. Why this is particurly relevant: it means
you can move any jpg/gif/png image around your screen in Processing:
for games, simulation, interactive stories, whatever. You just create an
image you want using some tool (a photo, a drawing from
illustrator/inkscape/photoshop) and then load it into a PImage object.

 55

PImage theImage ;
int imx = 0 ;
int imy = 0 ;

void setup()
{
 size(800,800) ;
 background(100) ;
 theImage = loadImage("parkguell.jpg") ;
}

void draw()
{
 background(100) ;
 image(theImage,imx,imy) ;
 imx += 2 ;
 imy += 2 ;
}

Certainly displaying and moving images is good, but manipulating them
can be even more fun. Once an image is loaded into a PImage object, it
can be accessed pixel by pixel. The Park Guell image once loaded is a
244x364 pixel matrix. Thus, we can use doubly-nested for loops to
access every pixel if we want! The PImage class gives us get(x,y) and
set(x,y) methods to get the pixel at a certain (x,y) or set the pixel at a
certain (x,y). Consider the following code and its output. The output is
below the code:

size(800,800) ;
background(100) ;
PImage theImage ;
theImage = loadImage("parkguell.jpg") ;

// display the original image in the top left corner

56

image(theImage,0,0) ;

color color1 = color(0,0,0) ; // black

for (int i = 100 ; i < 140 ; i++)
 for (int j = 0 ; j < theImage.height ; j++)
 theImage.set(i,j,color1) ;

// display the modified image to the right
image(theImage,theImage.width + 10 ,0) ;

As we can see, there is a thick black bar in the right side image. The
command “theImage.set(i,j,color1)” will replace the contents of the pixel
at location (i,j) with the color specified in color1. We can see that we
have made “color1” a variable of type color and set it to black. If we
change the nested for loops to the following, we would get a black vertical
line 100 pixels from the left instead of a 40-pixel wide bar:

 for (int i = 100 ; i < 101 ; i++)
 for (int j = 0 ; j < theImage.height ; j++)
 theImage.set(i,j,color1) ;

 57

Consider the next example. The output is below the code and it displays
three images. On the left the original, in the middle one with 10,000
randomly selected pixels set to black, and one with 100,000 randomly
selected pixels set to black:

size(800,800) ;
PImage im1, im2, im3 ;
im1 = loadImage("parkguell.jpg") ;
im2 = loadImage("parkguell.jpg") ;
im3 = loadImage("parkguell.jpg") ;

color color1 = color(0,0,0) ; // black

int rx, ry ;

for (int i = 0 ; i < 10000 ; i++)
{
 // cast the float return from random() into and integer
 rx = (int) random(im1.width) ;
 ry = (int) random(im1.height) ;
 im2.set(rx,ry,color1) ;
}

for (int i = 0 ; i < 100000 ; i++)
{
 rx = (int) random(im1.width) ;
 ry = (int) random(im1.height) ;
 im3.set(rx,ry,color1) ;
}

// display the original image to the left
image(im1, 0 ,0) ;

// display the one with 10,000 black pixels in the middle
image(im2, im1.width + 10 ,0) ;

// display the image with 100,000 black pixels on the right
image(im3, im1.width *2 + 20 ,0) ;

58

Note, since the image is 244 x 364 pixels, that means there are 88,816
pixels. So, the question is why is not the third image completely black
given we set 100,000 pixels black? Answer: when we called random
there were lots of duplicate pixels that get set black many times, leaving
enough pixels with the original color to still show through.

Not only can we set() the pixels, we can also get() them. The following
code looks at every pixel and calculates the average RED, GREEN, and
BLUE value over all pixels in the image. In the following code we load the
same image into to PImage variables. Then we loop through every pixel
using a doubly-nested loop. For each pixel we get the color using the
PImage get() method. We then use the red(), green(), and blue()
functions to get the R G B values for the color at that pixel. In particular:

 r = (int) red(tempColor) ;

will return a number between 0..255 that is the red component of the color
contained in the color variable “tempColor”. The next two lines do the
same for green and blue. We then set the color variable “newColor” to
have maximum red, the same blue, and the same green, the effect is to
max-out the red:

 newColor = color(255, g, b) ;

 59

Finally, we change the color in the image in PImage variable “im2” at
location (i, j) to be this new color:

 im2.set(i,j,newColor) ;

We do this for every pixel in the image by using the doubly nested for-
loop. Finally, we draw the original unmodified image in the top left corner
and then the modified red-maxed-out version to the right of it as shown
below.

size(800,800) ;
background(100) ;
PImage im1, im2, im3 ;
im1 = loadImage("parkguell.jpg") ;
im2 = loadImage("parkguell.jpg") ;

// vars to hold the red, green, and blue components of each pixel
float r, g, b ;

// two color variables
color tempColor, newColor ;

for (int i = 0 ; i < im1.width ; i++)
 for (int j = 0 ; j < im1.height ; j++)
 {
 tempColor = im1.get(i,j) ; // get the color at i,j
 r = red(tempColor) ; // the red value
 g = green(tempColor) ; // the green
 b = blue(tempColor) ; // the blue
 newColor = color(255, g, b) ; // max out the red
 // replace existing color with new more-red color
 im2.set(i,j,newColor) ;
 }

image(im1,0,0) ;
image(im2,im1.width + 10, 0) ;

60

 61

EXERCISE 8A
Starting with the Park Guell image, created each of the following three images.
Note, you may need to reduce the some color components and increase others,
try using arithmetic such as: newColor = color(r + 50, g - 100, b + 50) . That
statement will give you a nice purple image.

The get() method can also be used to get a “chunk” of pixels instead of
just one. Consider the following code and image. In this example we use
get() to grab a 80x80 group of pixels with the top left corner located at
(5,20). The 6,400 pixels (80x80) that are grabbed are the following
image:

62

If you look at the original image, starting from (0, 0), i.e. the top left
corner, move over 5 pixels to the right and 20 pixels down. That is the
starting point. We then grab a sub-image 80 pixels wide and 80 pixels
high starting at (5,20). This gives us the crown of the part of the house
on the left. We stick image(im2, i*80, j*80) inside a doubly-nested for-
loop to get the repeated pattern below.

size(800,800) ;
background(100) ;
PImage im1, im2 ;
im1 =
loadImage("parkguell.jpg") ;

im2 = im1.get(5,20,80,80) ;

for (int i = 0 ; i < 5 ; i++)
 for (int j = 0 ; j < 5 ; j++)
 image(im2, i*80, j*80) ;

 63

EXERCISE 8B

Use get() to get a subregion of the image and manipulate the colors to
create a tiling with alternating colors that is appealing to you. As an
example, below I selected the triple windows above the main windows and
alternated colors of original versus red-tinted. I think this would make a great
rug pattern in wool!

64

Chapter 9: Simple Functions

Often in programming we want to execute a set of instructions multiple
times. Lets say this set of instructions includes 10 statements. We could
just put these 10 statements every place we use them, but if we use them
many times, say 10, we end up writing lots of identical code for no
reason. All that redundancy makes it hard to make changes, i.e. if you
decide to change one of the statements you have to find that statement in
10 different places, and makes it easy to introduce errors, i.e. you might
make a typo in some of the places and get it right in others, so the code
become inconsistent.

Functions provide a clean/elegant way to reuse code without these
problems. Functions should have a single logical task. Examples might
include: “move the ball to the left”, “draw a figure on the screen at
location x,y”, “enroll the student in class number COMP 1671”, “calculate
the student gpa”, “give all employees a raise”, or “calculate the mean
temperature over the past year at a given longitude/latitude”.

In fact, you have already been using functions: setup(), draw(), and
mousePressed() are all functions. These are special functions that are
part of the Processing model, but they are still just Java functions. A
function has the general format:

returnType functionName(parameter-list)
{

 function code

}

where returnType is the type of value returned by the function. If no value
is returned that is specified with “void” as the return type. Note setup() ,
draw(), and mousePressed() all have a “void” return type, i.e. they do
not return a value. “functionName” is the name of the function, for
example “setup”, “draw” and “mousePressed” are all function names.

 65

The parameter list is the list of values, and their types, passed into a
function. The functions setup(), draw(), and mousePressed() do not
have any parameters, hence the parameter list is empty. We will give
examples of functions with non-empty parameter lists below. The
“function code” is all the statements that belong to the function.

Consider the following code that uses a function we named drawPerson()
:

void drawPerson()
{
 line(40,100, 40,170) ; // body
 line(40,170, 20,230) ; // left leg
 line(40,170, 60,230) ; // right leg
 line(40,130, 20,170) ; // left arm
 line(40,130, 60,170) ; // right arm
 fill(150) ; // grey for head fill
 ellipse(40,100,20,20) ; // head
}

void setup()
{
 size(400,400) ;
 drawPerson() ;
}

In this example the function drawPerson() draw a stick figure person.
The parameter list is empty as there are no parameters. The return type
is void because there is no value returned. The function is CALLED in
the setup() function:

 drawPerson() ;

Like all Processing sketches the code in setup() is run once. Hence,
drawPerson() is called once. Lets say we want to draw the figure more
to the right. We need to modify all the code. It would be much nicer if we

66

could just modify the function so that when called we could specify the (x,
y) location where we want the stick figure drawn, something like:

 drawPerson(200, 200) ;

which would then draw the stick figure at location (200,200). To do that
we need to modify the function as follows:

void drawPerson(int inX, int inY)
{
 line(inX+20,inY, inX+20,inY+70) ; // body
 line(inX+20,inY+70, inX,inY+130) ; // left leg
 line(inX+20,inY+70, inX+40,inY+130) ; // right leg
 line(inX+20,inY+30, inX,inY+70) ; // left arm
 line(inX+20,inY+30, inX+40,inY+70) ; // right
arm
 fill(150) ; // grey for head fill
 ellipse(inX+20,inY,20,20) ; // head
}

void setup()
{
 size(400,400) ;
 drawPerson(0,50) ;
 drawPerson(150,50) ;
 drawPerson(300,50) ;
}

In this example the drawPerson function now has two parameters: inX
and inY. Thus, when the function is called, we must supply values for
those parameters such as:

 drawPerson(0, 150) ;

This says call drawPerson, and when the code of drawPerson is run
initialize the values of inX and inY with 0 and 150 respectively. In order
for this to work we had to change the code inside the drawPerson

 67

function to now be dependent on the input parameters. One way to do
that for this drawing example is to find the smallest x-coordinate and the
smallest y-coordinate, and then change all the code to be relative to the
input parameters. For example, in the original function, the statement for
the head was:

 ellipse(40,100,20,20) ;

The smallest x value in the original code was 20, and the smallest y was
100, so, to make the statement relative to the input parameters we
change it to:

 ellipse(inX+20, inY, 20, 20) ;

Now, if we call the function as drawPerson(20,100,20,20); the person will
be drawn in the same place as in the original function. But by using the
function with a parameter, we can put in other values when calling the
function and hence draw the figure anywhere we want simply by
changing the values in the function call rather than changing all the lines
of code. We can also put the call inside a for loop as follows:

for (int i = 0 ; i < 400 ; i = i+30)
 drawPerson(i, 100) ;

68

We can also make a the person move using the draw() function as
follows:

int currentX ; // global var to hold x-coord of figure

void setup()
{
 size(400,400) ;
 currentX = 0 ;
}

void draw()
{
 background(200) ;
 drawPerson(currentX, 100) ;
 currentX = currentX + 2 ;
}

void drawPerson(int inX, int inY)
{
 line(inX+20,inY, inX+20,inY+70) ; // body
 line(inX+20,inY+70, inX,inY+130) ; // left leg
 line(inX+20,inY+70, inX+40,inY+130) ; // right leg
 line(inX+20,inY+30, inX,inY+70) ; // left arm
 line(inX+20,inY+30, inX+40,inY+70) ; // right arm
 fill(150) ; // grey for head fill
 ellipse(inX+20,inY,20,20) ; // head
}

Finally, you may want to be able to specify the size of the figure when you
call drawPerson(). The following code allows you to specify the size. In
the example there is a third parameter called “sF”, short for scale-factor,
added to specify how big the image should be. All numbers that result in

 69

the distance of a line are multiplied by “sF”, the input value, to make them
bigger or smaller. In the example below we make three rows of stick
figures, each line above with smaller figures than the line below.

void setup()
{
 size(400,400) ;
 for (int i = 0 ; i < 400 ; i = i+15)
 drawPerson(i, 100,0.20) ;
 for (int i = 0 ; i < 400 ; i = i+20)
 drawPerson(i, 200 ,0.30) ;
 for (int i = 0 ; i < 400 ; i = i+30)
 drawPerson(i, 300,0.50) ;

}

void drawPerson(int inX, int inY, float sF)
{
 // sF means "scale factor"
 line(inX+20*sF, inY, inX+20*sF, inY+70*sF) ; // body
 line(inX+20*sF, inY+70*sF, inX, inY+130*sF) ; // left leg
 line(inX+20*sF, inY+70*sF, inX+40*sF, inY+130*sF) ; // right leg
 line(inX+20*sF, inY+30*sF, inX, inY+70*sF) ; // left arm
 line(inX+20*sF, inY+30*sF, inX+40*sF, inY+70*sF) ; // right arm
 fill(150) ; // grey for head fill
 ellipse(inX+20*sF, inY, 20*sF, 20*sF) ; // head
}

70

As another example, here is a way to draw “keyhole ken”. Keyhole ken is
a simple cartooning exercise for drawing people. The book “The
cartoonistʼs Workbook Drawing, Writing Gags, Selling”, by Robin Hall,
introduces keyhole ken.

 71

size(500,500) ;

quad(75,300,225,300,190,140,110,140)
; // body
ellipse(95,283,12,12) ; //left finger
ellipse(107,283,12,12) ; // midle finger
ellipse(119,283,12,12) ; // right finger
quad(85,280, 130,280, 150,140, 110,
140) ; // arm
ellipse(150,90,130,130) ; // head
ellipse(210,90,60,30) ; // nose

fill(100) ; // make fill black for the eyes
ellipse(150,65,9,9) ; // center eye
ellipse(170,60,9,9) ; // right eye

// add a few lines for hair
line(90,90, 110,20) ;
line(95,90, 115,20) ;
line(100,90, 120,20) ;

fill(255) ; // set fill back to white
quad(140,300, 140,435, 220,435,
210,300) ; // right leg
quad(90,300, 75,450, 150,450, 150,300
) ; // left leg

This can also be made into a function with parameters for the (x,y)
location as follows:

void drawKeyholeKen(int x, int y)
{
quad(x,y+280, x+150,y+280, x+115,y+120, x+35,y+120) ; // body

ellipse(x+20,y+263,12,12) ; //left finger
ellipse(x+32,y+263,12,12) ; // midle finger
ellipse(x+44,y+263,12,12) ; // right finger

72

quad(x+10,y+260, x+55,y+260, x+75,y+120, x+35, y+120) ; // arm
ellipse(x+75,y+70,130,130) ; // head
ellipse(x+135,y+70,60,30) ; // nose
fill(100) ; // make fill black for the eyes
ellipse(x+75,y+45,9,9) ; // center eye
ellipse(x+95,y+40,9,9) ; // right eye

// add a few lines for hair
line(x+15,y+70, x+35,y) ;
line(x+20,y+70, x+40,y) ;
line(x+25,y+70, x+45,y) ;

fill(255) ; // set fill back to white
quad(x+65,y+280, x+65,y+415, x+145,y+415, x+135,y+280) ; // right leg
quad(x+15,y+280, x,y+430, x+75,y+430, x+75,y+280) ; // left leg
}

Then, with the following setup() and draw() commands you can make two
keyhole kens to cyclicly walk the screen together:

int x1 ; // x of first ken
int x2 ; // x of second ken

void setup()
{
 size(900,500) ;
 background(100) ;
 x1 = 0 ;
 x2 = 175 ;
}

void draw()
{
 background(100) ;
 drawKeyholeKen(x1,10) ;
 drawKeyholeKen(x2,30) ;
 x1 += 2 ;

 73

 x2 += 2 ;
 if (x1 > width + 150)
 x1 = -150 ;
 if (x2 > width + 150)
 x2 = -150 ;
}

EXERCISE 9A

Come up with your own function to draw a simple image. Perhaps a house,
or a tree, both are pretty easy to do. Make three versions of your function:
1) hardcoded values, i.e. no parameters; 2) a function that takes
parameters inX and inY and draws your figure at location (inX,inY); 3) a
function that takes in inX, inY, and a scale factor.

Write code in your setup() function that calls your figure drawing function
and shows how it works with the three parameters (inX, inY, scaleFactor).

74

Chapter 10: Functions Returning a Value

The previous function example all drew stuff on the screen but did not
return a value. We saw functions without parameters and with
parameters. Lets consider some numerical functions that return values.
Lets say I want to write a function that returns the average of three
numbers. I could do this as follows:

float avg(float in1, float in2, float in3)
{
 float total, averageValue ;
 total = in1 + in2 + in3 ;
 averageValue = total / 3.0 ;
 return(averageValue) ;
}

void setup()
{
 float theAvg ;

 theAvg = avg(10.0, 9.0, 6.0) ;
 System.out.println(theAvg) ;
}

When the above code is run the value 8.3333 is printed out to the black
output bar. What is important to see here is:

3) The function does NOT start with void, instead it says “float”, this

means the function will return a floating point value.
4) Inside the function, the last line is “ return(averageValue) ; “, this is

returning the value of variable averageValue to the calling statement.
5) Insider setup(), the function is called in the line “theAvg = avg(10.0,

9.0, 6.0) ;”. This statement says call the function avg(), passing in
parameters 10.0, 9.0 and 6.0, and take the value returned by the

 75

function call and assign it to the variable “theAvg”.

Lets consider another example:

float maxValue(float in1, float in2, float in3, float in4)
{
 float maxVal = 0 ;
 if ((in1 >= in2) && (in1 >= in3) && (in1 >= in4))
 maxVal = in1 ;
 if ((in2 >= in1) && (in2 >= in3) && (in2 >= in4))
 maxVal = in2 ;
 if ((in3 >= in1) && (in3 >= in2) && (in3 >= in4))
 maxVal = in3 ;
 if ((in4 >= in1) && (in4 >= in2) && (in4 >= in3))
 maxVal = in4 ;

 return(maxVal) ;

}

void setup()
{
 float theMax ;

 theMax = maxValue(10.2, 9.0, 6.0, 7.0) ;
 System.out.println(theMax) ;
}

The above will print out “10.2”. It is obvious just looking at the code what
the answer is, but a computer is not a human, it needs a set procedure to
calculate an answer. In this case the if statements find with of the four
input parameters is the largest and returns that value.

You may want to print the maximum of 10 numbers, or 20, or 98
numbers. Using the function like this wonʼt work. If I were to say:

76

 theMax = maxValue(10.2, 9.0, 6.0, 7.0, 99.1) ;

I would get the error message:

The reason is that the function maxValue is expecting 4 parameter values
to be in, no more, not less, and they need to be float values (not a float
variable will accept an int as we have stated before). So, how do we deal
with this? The answer is to use something called arrays which we will do
later. For now, just realize that when you declare a function you specify
the number and type of parameters and when you call it your call must
match that number and type. The number and type of parameters for a
function is called its signature.

EXERCISE 10A
Write a function that has three input parameters of type float, that
returns the value of the first parameter times the second divided by the
third. Say you name the fuction myFunc(), show that this function works
correctly by calling and printing out the results using Sytem.out.println()
of:

myFunc(4, 7, 2) => should give you 14
myFunc(3, 3, 2) => should give you 4.5
myFunc(2, 8, 4) => should give you 4

 77

Chapter 11: Using Functions With Colors

Functions can take any defined type (or class which we will explain later)
as input and return and defined type or class. Hence, we can use
functions to manipulate and return colors also. Consider the following:

PImage im1, im2, im3 ;

color swapRedGreenColor(color inColor)
{
 float r,g,b ;
 r = red(inColor) ;
 g = green(inColor) ;
 b = blue(inColor) ;
 color tempColor = color(b,g,r) ;
 return(tempColor) ;
}

void setup()
{
 size(800,800) ;
 background(100) ;
 im1 = loadImage("parkguell.jpg") ;
 im2 = loadImage("parkguell.jpg") ;

 color tempColor, tempColor2 ;
 float r,g,b ;
 for (int i2 = 0 ; i2 < im1.width ; i2++)
 for (int j2 = 0 ; j2 < im1.height ; j2++)
 {
 tempColor = im1.get(i2,j2) ;
 // call swapRedGreenColor to modify the color
 tempColor2 = swapRedGreenColor(tempColor) ;
 // set the i2,j2 pixel of im2 to be the new color
 im2.set(i2,j2,tempColor2) ;
 }
 image(im1,0,0) ;
 image(im2,im1.width,0) ;

78

}

In this example there is a function named “swapRedGreenColor()”.
Notice that it take on parameter and that parameter is of type color. Also
notice that it returns a variable of type color also! You can see this return
in the last line of the function where it says “return(tempColor);”, where
tempColor is a variable of type color. The function creates a color
variable named “tempColor” and set the red value of tempColor to be the
green value of the color passed in the parameter “inColor”, and sets the
green value of tempColor to be the red value of inColor. The setup()
function just loads the Park Guell image into PImage variables im1 and
im2, and then loops through all the pixels of im2 swapping the red and
green values for each pixel by calling the function swapRedGreenColor()
before calling im2.set().

The above example showed how to write a function that takes a color as
a parameter and returns a color as a parameter, but the setup() function
is rather complicated. It can be made less complicated by changing the
responsibilities of the function so that the function does a bit more of the
work for us. For example, we may want to write a function that takes an
image as a parameter and returns a modified image. This way using the
function is cleaner/simpler. Consider the following:

PImage im1, im2, im3, im4 ;

PImage swapBG(PImage inImage)
{
 float r,g,b ;
 color tempColor, tempColor2 ;
 PImage newImage = inImage.get(0,0,inImage.width,inImage.height) ;

 for (int i2 = 0 ; i2 < inImage.width ; i2++)
 for (int j2 = 0 ; j2 < inImage.height ; j2++)
 {
 tempColor = im1.get(i2,j2) ;
 r = red(tempColor) ;

 79

 g = green(tempColor) ;
 b = blue(tempColor) ;
 tempColor2 = color(b,g,r) ;
 newImage.set(i2,j2,tempColor2) ;
 }
 return(newImage) ;
}

PImage darkenImage(PImage inImage, float darkenFactor)
{
 float r,g,b ;
 color tempColor, tempColor2 ;
 PImage newImage = inImage.get(0,0,inImage.width,inImage.height) ;

 for (int i2 = 0 ; i2 < inImage.width ; i2++)
 for (int j2 = 0 ; j2 < inImage.height ; j2++)
 {
 tempColor = im1.get(i2,j2) ;
 r = red(tempColor) ;
 g = green(tempColor) ;
 b = blue(tempColor) ;
 tempColor2 = color(r-darkenFactor, g-darkenFactor, b-darkenFactor) ;
 newImage.set(i2,j2,tempColor2) ;
 }
 return(newImage) ;
}

The first function, swapRB(), takes an input of an image, loops through
all the pixels and swaps the red and blue color values, and then returns
the image. The second function, darkenImage(), takes two parameters,
and image and a float, and returns an image where every pixel has been
darkened by the second parameter amount. It does this by looping
through the pixels and subtracting the value of the second parameter
from each of the RGB values in every pixel. The functions are called as
follows:

80

void setup()
{
 size(800,800) ;
 background(100) ;
 im1 = loadImage("parkguell.jpg") ;
 im2 = swapRB(im1) ;
 im3 = darkenImage(im1,50) ;
 image(im1,0,0) ;
 image(im2,im1.width,0) ;
 image(im3,0,im1.height) ;
}

By moving the doubly nested for-loops inside the functions the code in
setup() is much more clean, and, one could argue, much more logical.
The functions swapRB() and darkenImage() do all the work associated
with that task and are used as tools to manipulate the images from
setup(). A lot of computer programming can be viewed as making (and
using) elegant virtual tools. Donʼt have the right tool for the job: just make
a new function (or a method as they are called in OO programming
coming up soon) to do the job.

Lets say we want to average two images together: i.e. create a new
image where each pixel is the average value of the pixel at the location in
each image. The following function does exactly this:

PImage blendImages(PImage inIm1, PImage inIm2)
//////////////////////////////////////
// Input: two images
// Output: An image that is the blend (average) of the two
// input images.
// Algorithm: This code assumes the two images are the same
// size and loops over the width and heith of the first image,
getting
// the color at each (i,j) location and setting the new image pixel

 81

// color to be the average of the two
//
//
{
 PImage resultIm ;
 color tcolor1, tcolor2, tcolor3 ;
 float r1, r2, g1, g2, b1, b2 ;

 resultIm = inIm1.get(0,0,inIm1.width,inIm1.height) ;

 for (int i2 = 0 ; i2 < inIm1.width ; i2++)
 for (int j2 = 0 ; j2 < inIm1.height ; j2++)
 {
 tcolor1 = inIm1.get(i2,j2) ;
 r1 = red(tcolor1) ;
 g1 = green(tcolor1) ;
 b1 = blue(tcolor1) ;
 tcolor2 = inIm2.get(i2,j2) ;
 r2 = red(tcolor2) ;
 g2 = green(tcolor2) ;
 b2 = blue(tcolor2) ;
 tcolor3 = color((r1+r2)/2, (g1+g2)/2, (b1+b2)/2) ;
 resultIm.set(i2,j2,tcolor3) ;
 }
 return(resultIm) ;

}

The following code then calls this function, and also the darkenImage()
function, to create the images below:

void setup()
{
 size(800,800) ;
 background(100) ;

82

 im1 = loadImage("photoScott.jpg") ;
 im1 = im1.get(140,20,400,400) ; // select 400x400 pixels

 im2 = loadImage("photoBear.jpg") ;
 im2 = im2.get(170,60,400,400) ; // select 400x400 to align eyes

 im3 = darkenImage(im1, 50) ; // darken scott
 im4 = blendImages(im3,im2) ; // blend scott and the bear

 // show the 4 images
 image(im1,0,0) ;
 image(im2,400,0) ;
 image(im3,0,400) ;
 image(im4,400,400) ;
}

Note im1 and im2 (top left and top right) are just a 400x400 subset of the
images loaded from the .jpg files. The offsets were chosen to roughly line

 83

up the eyes. Image im3, show in the bottom left, is the result of calling
darkenImage(im1,50), and image im4, shown in the bottom right, is the
result of calling blendImages(im3,im2). Note, the bear face and middle-
age manʼs face are not the same shape (thankfully!) so the resultant
images is rather funky. There are algorithms to morph two images
together but are more advanced and beyond the scope of this class.

EXERCISE 11A
Write a function named brightenImage() that takes two parameters, a PImage
and a float named “inBrightenFactor”, and returns a PImage where each pixel has
each R, G, and B value increased by the value in input parameter
“inBrightenFactor”. Demonstrate the use of your function by creating three images
and displaying them, along with the original, where you use different values for the
input value including a negative value for one of the three.

EXERCISE 11B
Write a function that takes an image as an input parameter and returns and image
that diagonally mirrors the top right diagonally down to the bottom left as show in
the two images below. Your setup() function call this function and display the
original and modified image side-by-side.

