Section 1.3, Problem 50: In this exercise we will show that $\{\downarrow\}$, is a functionally complete set of operators. Recall that \downarrow has the truth table

p	q	$p \downarrow q$
T	T	F
T	F	F
F	T	F
F	F	T

compound proposition is equivalent to a compound proposition involving only operators in the set.
a. Show that $p \downarrow p \equiv \neg p$.
b. Show that $(p \downarrow q) \downarrow(p \downarrow q) \equiv p \vee q$
c. Show that $p \wedge q$ can be written as a compound proposition using only p, q, and \downarrow. Conclude that $\{\downarrow\}$ is functionally complete.

Section 1.4, Problem 36: Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all real numbers.
a. $\forall x\left(x^{2} \neq x\right)$
b. $\forall x\left(x^{2} \neq 2\right)$
c. $\forall x(|x|>0)$

