Section 1.8, Problem 32: Prove that there are infinitely many solutions in positive integers x, y, and z to the equation $x^{2}+y^{2}=z^{2}$. [Hint: Let $x=m^{2}-n^{2}, y=2 m n$, and $z=m^{2}+n^{2}$.] (Note that this method can be used to show thet there are infinitely many solutions in which x, y, and z do not have any common integer factor greater than 1.)

Section 2.2, Problem 40: The symmetric difference of A and $B, A \oplus B$, is the set $\{x \mid(x \in A) \oplus(x \in B)\}$, that is, elements of either A or B but not both. Determine whether symmetric difference is associative; that is, if A, B, and C are sets, does it follow that $A \oplus(B \oplus C)=(A \oplus B) \oplus C$?

