In-class, Week 6, day 1

Section 5.3, Problem 26: Let S be the subset of all ordered pairs of integers defined recursively by

- Basis Step: $(0,0) \in S$
- Recursive Step: If $(a, b) \in S$, then $(a+2, b+3) \in S$ and $(a+3, b+2) \in S$.
a. List the elements of S produced by the first five applications of the recursive definition.
b. Use strong induction on the number of applications of the recursive step of the definition to show that $5 \mid a+b$ when $(a, b) \in S$.
c. Use structural induction to show that $5 \mid a+b$ when $(a, b) \in S$.

Section 5.3, Problem 32:
a. Give a recursive definition of the function ones (s) which counts the number of ones in a bit string s.
b. Use structural induction to prove that ones $(s t)=\operatorname{ones}(s)+\operatorname{ones}(t)$.

