COMP 2300 Midterm

May 2, 2012

This exam is closed-book. The work must be entirely entirely your own. A partial list of facts and definitions has been provided. Additional information may be provided at the discretion of the instructor. If in doubt, ask.

Name:

4-character code, if not already provided: \qquad

1. (10 points) Construct a truth table for the proposition $((p \vee q) \rightarrow\urcorner(p \wedge q)$. (10 points)
2. (5 points each)
(a) Show that $\urcorner(p \rightarrow q) \rightarrow\urcorner q$ is a tautology without using a truth table.
(b) Show that $(q \wedge\urcorner p) \vee p$ is equivalent to $q \vee p$ without using a truth table.
3. Determine the truth value of each of the statements below if the domain for all variables is the integers. (5 points each)
(a) $\exists n(2 n<n)$
(b) $\forall n\left(n^{2}>n\right)$
4. Determine the truth value of each of the statements below if the domain for all variables is the integers. (5 points each)
(a) $\exists n \forall m(n m=m)$
(b) $\exists n \exists m\left(n^{2}+m^{2}=6\right)$
5. (5 points each)
(a) Prove or disprove: If x is irrational then $\frac{1}{x}$ is irrational.
(b) Prove that if n is an even integer, there exists an integer m such that $n=(m+2)+(m+4)$.
6. (5 points each)
(a) Prove that $\mathscr{P}(A) \subseteq \mathscr{P}(B) \leftrightarrow A \subseteq B$.
(b) List the elements of $\left\{n \in \mathbb{Z}^{+} \mid \exists k \in \mathbb{Z}(n=3 k)\right\} \cap\{n \in \mathbb{Z} \mid n<20\}$.
7. (5 points each)
(a) Represent the set $(A \cup B)-(A \cap C \cap \bar{B})$ using a Venn Diagram.
(b) Show $(A \cap B) \cup(A \cap \bar{B})=A$ without using a Venn Diagram.
8. Give the power set of $\{\{2\},\{2,\{2\}\}\}$. (10 points)
9. Determine whether each of the following functions from \mathbb{Z} to \mathbb{Z} is one-to-one. (5 points each)
(a) $f(n)=n^{3}$
(b) $f(n)=n^{2}+1$
10. In each of the following problems, specify two uncountable sets, A and B with the given property.
(a) $A-B$ is finite. (3 points)
(b) $A-B$ is countably infinite. (3 points)
(c) $A-B$ is uncountable. (4 points)
