Name:
Finals

This exam is closed-book. All questions have equal weight. If a question has multiple parts, the weight assigned to that question is divided equally among all parts unless specified otherwise. The work must be entirely entirely your own. A partial list of facts and definitions has been provided. Additional information may be provided at the discretion of the instructor. If in doubt, ask.

1. Prove that $\sum_{i=1}^{n}(-1)^{i-1} i^{2}=(-1)^{n-1} n(n+1) / 2$ whenever n is a positive integer.
2. Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5 -cent stamps.

Name:
Finals
3. Let S be the set of strings defined recursively by

- basis step: $1 \in S$
- Recursive step: If $s \in S$ then $01 s \in S, 10 s \in S, 0 s 1 \in S, 1 s 0 \in S, s 10 \in S$, $s 01 \in S, s 1 \in S$, and $1 s \in S$.
(a) Prove that if $s \in S$ then there are more 1's than 0's in s.
(b) Is the string 10011 in S ? If so, show how to construct 10011 from the definition. If not, why not?

Name:
Finals
4. How many 6 -digit numbers, not having 0 as the left-most digit
(a) begin or end with the digit 9 ?
(b) alternate between odd and even digits, for example 123638 but not 124638 ?
5. How many strings of length 10 contain at least three 1s and three 0s? Giving an answer without reasoning will only get you 50% of the grade.
6. If a camp has 12 cabins, what is the smallest number of campers that will guarantee that at least one cabin has more than 6 people?
7. What is the coefficient of $x^{3} y^{7}$ in $(3 x-y)^{10}$?
8. What is the probability that a fair die never comes up an even number when it is rolled six times?

Name:
Finals
9. A standard die with six equally likely faces labeled $1,2,3,4,5$, and 6 is rolled twice. The random variable X equals 1 if the two values rolled are equal, and 0 otherwise.
(a) What is the expected value of X ?
(b) The random variable X is as defined above. The random variable Y equals 1 if the sum of the two values is 6 , and 0 otherwise. What is the expected value of $X+Y$?

Name:
Finals
Points 30\%
10. Suppose that 8% of all bicycle racers use steroids, that a bicyclist who uses steroids tests positive for steroids 96% of the time, and that a bicyclist who does not use steroids tests positive for steroids 9% of the time. What is the probability that randomly selected bicyclist who tests positive for steroids actually uses steroids?
11. Extra Credit Let S be the set of all ordered pairs of positive integers. For (a, b) and (c, d) in S, define $((a, b),(c, d)) \in \mathcal{R}$ if and only if $a d=b c$. Is \mathcal{R} an equivalence relation? (Hint Think about fractions.)

