
Algorithms and Data StruturesChapter 2
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/40



Chapter 2

Chapter 2 provides an overview of the analysis of analgorithm orretness and the analysis of an algorithms'sasymptoti running time. The insertion sort andmerge sort algorithms for sorting arrays are used asexamples.These algorithms are presented using pseudoode. Thetext's version of pseudoode uses indentation in plae ofnested brakets and uses �//� to introdue omments.Other onventions are detailed on pages 20 and 21.

1. Algorithms and Data Structures – 2/40



Insertion Sort

Insertion-Sort(A)
1 for j=2 to A.length
2 key=A[j]
3 // Insert A[j] into the sorted sequence
4 i=j-1
5 while i>0 and A[i]>key
6 A[i+1]=A[i]
7 i=i-1
8 A[i+1]=key

1. Algorithms and Data Structures – 3/40



Corretness

When you speify an algorithm in pseudoode but do notimplement it, how an you verify that the algorithm isorret? Corretness beomes more di�ult to verifywhen the algorithm involves iteration.In this ase, one approah is to use loop invariants. Aloop invariant is a statement about the state of theprogram, inluding the data, eah time ontrol passes tothe loop statement.
1. Algorithms and Data Structures – 4/40



Loop Invariant

• The loop invariant should be true when ontrol �rstpasses to the loop. (Initialization)
• If the loop invariant was true before an iteration ofthe loop blok, and the loop ondition is true, thenthe loop invariant is true after the iteration, at theevaluation of the loop ondition. (Maintenane)

• The loop invariant should give useful informationabout the on�guration of the program when ontrolexits the loop. (Termination)

1. Algorithms and Data Structures – 5/40



For- loop Invariant

For now, assume that if the while-loop is passed an array
A with A[1, ..j − 1] in asending order, then after line 8,the array A is a permutation of the the input array, and
A[1, ..j] is in asending order.The loop invariant for the for-loop is �A is apermutation of the input array, and A[1, ..j − 1] is inasending order.�

1. Algorithms and Data Structures – 6/40



Invariant Veri�ation

Initialization j=2: The input array has not beenhanged. The laim that A[1, ..j − 1] inasending order beomes the laim that
A[1, ..2− 1] = A[1] is in asending order istrivially true.

1. Algorithms and Data Structures – 7/40



ont.

Maintenane: We are assuming that the e�et of thewhile-loop with line 8, when passed an arraywith A[1, ..j − 1] in asending order, is toreturn a permutation of that array with
A[1, ..j] in asending order. Thus if the loopinvariant and the loop ondition are true atline 1, then at line 8, A is a permutation ofthe input array, and A[1, ..j] is in asendingorder. Thus the loop invariant remains trueafter the inrementation of j in the for-loop.

1. Algorithms and Data Structures – 8/40



ont.

Termination: The for-loop terminates with the loopinvariant true and j = A.length+ 1. Thus
A[1, ..A.length] is in asending order and isa permutationof the input array, as required.

1. Algorithms and Data Structures – 9/40



While-loop

Eah iteration of the while-loop ompares the key, thevalue in A[j], to the value in A[i], and opies value in
A[i] one position up if A[i] > key. The goal is to verifythe assumption used in analysis of the for-loop. Thus thefollowing is a reasonable loop invariant: A, with keyinserted into A[i+ 1] is a permutation of the input arrayfor the loop. The values in A[1, ..i] followed by thevalues in A[i+ 2, ..j] are the values in the input array inpositions 1, ..j − 1, in the input order. Further,

A[k] > key for k ∈ {i+ 2, ..j}.

1. Algorithms and Data Structures – 10/40



Initialization

At this point, i = j− 1, and the input array has not beenhanged. Thus A with key inserted into A[i+ 1] = A[j]is a permutation of the input array for the loop. Thesubarray A[i+ 2, ..j] is empty, so the values in A[1, ..i]followed by the values in A[i+ 2, ..j] are the values inthe input array in positions 1, ..j − 1, in the input order.The set {i+ 2, ..j} is empty, so the omparison

A[k] > key for k ∈ {i+ 2, ..j} is trivially true.

1. Algorithms and Data Structures – 11/40



Maintenane

Given that the loop ondition is true and the loop isentered, A[i] > key. Line 6 opies A[i] into A[i+ 1].Thus the values in A[1, ..i − 1] followed by the values in
A[i+ 1, ..j] are the values in the input array in positions

1, ..j − 1, in the input order. Also, A[k] > key for
k ∈ {i+ 1, ..j}. In line 7, i is deremented. For thisnew i, the values in A[1, ..i] followed by the values in

A[i+ 2, ..j] are the values in the input array in positions

1, ..j − 1, in the input order. Also, A[k] > key for

k ∈ {i+ 2, ..j}, as required.

1. Algorithms and Data Structures – 12/40



Termination

The loop terminates with the loop ondition true and
A[i] ≤ key. Line 8 opies key into A[i+ 1]. The loopinvariant implies that A[1, ..j] ontains the values in inthe input array in positions 1, ..j, A is a permutation ofthe input array, and the values in A[i+ 2, ..j] are greaterthat key, the value in position i+ 1. Assuming that

A[1, ..j − 1] was in asending order when the while-loopwas entered, and A ontains a permutation of the valuesin the input array for the funtion, A[1, ..j] is inasending order after line 8 and A is still a permutationof the argument of the funtion.

1. Algorithms and Data Structures – 13/40



Analyzing Algorithms

Algorithm analysis has ome to mean predition of theresoures that an algorithm requires. Often the resourein question is time. Other onsiderations inlude diskaesses and memory. Emphasis in this ourse is on time.In order to study the time required by an algorithm weneed a model for the resoure demands of the steps inthe algorithm. We will generally assume a singleproessor with all memory operations taking plae inRAM.Basi operations inlude add, subtrat, multiply, divide,all and return from subroutines, branh, and load, store,and opy single values.
1. Algorithms and Data Structures – 14/40



T(n)

We will fous on running time as a funtion of inputsize, T (n) where n is the size of the input. We areprimarily onerned with the growth of T (n) as nbeomes very large.

• The onept of size is problem-spei�.
• The running time may be di�erent for di�erent instanes ofthe same size. This leads to onsideration of worst-ase andaverage ase running times.
• Behavior of T (n) for large n is basially desribed in terms ofratios, suh as max

{

T (n)
n2 |n ∈ Z

}

< ∞ or limn→∞
T (n)
n2 = l.We will formalize this in Chapter 3.

1. Algorithms and Data Structures – 15/40



Analysis Example

We will alulate T (n) for Insertion-Sort, using onstants
c1, ...c8 for the time required to run eah line a singletime. The number of times the while-ondition is testeddepends on j and on the instane. Denote this by tj.

1. Algorithms and Data Structures – 16/40



times

Insertion-Sort(A) ost times1 for j=2 to A.length c1 n2 key=A[j℄ c2 n− 13 // Insert A[j℄ into the sorted A[1..j-1℄ 04 i=j-1 c4 n− 15 while i>0 and A[i℄>key c5
∑n

j=2 tj6 A[i+1℄=A[i℄ c6
∑n

j=2(tj − 1)7 i=i-1 c7
∑n

j=2(tj − 1)8 A[i+1℄=key c8 n− 1

1. Algorithms and Data Structures – 17/40



total time

T (n) = c1n+ c2 (n− 1) + c4 (n− 1) + c5
∑n

j=2 tj +

c6
∑n

j=2(tj − 1) + c7
∑n

j=2(tj − 1) + c8 (n− 1)

Note 1 ≤ tj ≤ j.Under what irumstanes is tj = 1? tj = j ?

1. Algorithms and Data Structures – 18/40



Worst ase

T (n) = c1n+ c2 (n− 1) + c4 (n− 1) + c5
∑n

j=2 j +

c6
∑n

j=2(j − 1) + c7
∑n

j=2(j − 1) + c8 (n− 1)

Note ∑n
j=2 j =

n(n+1)
2 − 1 and ∑n

j=2(j − 1) = n(n−1)
2 .

Using this and simplifying, the worst ase for T (n) is

T (n) = c5+c6+c7
2 n2 +

(

c1 + c2 + c4 −
−c5+c6+c7

2 + c8
)

n− (c2 + c4 + c5 + c8)

1. Algorithms and Data Structures – 19/40



Order of Growth

Beause the funtion T (n) for the worst-ase runningtime of Insertion-Sort satis�es limn→∞
T (n)
n2 = l > 0, wesay that Insertion-Sort has a worst-ase running time that is

Θ(n2). (More on this in Chapter 3.)

1. Algorithms and Data Structures – 20/40



Average Case

In order to be able to alulate the average ase runningtime or expeted running time for an algorithm, we needto know the distribution of instanes to whih thealgorithm will be applied. We may make an assumptionabout this, or use randomization to produe a knowndistribution of input instanes.For example, in the ase of Insertion-Sort, we ouldassume that all values in A are distint and allpermutations of their ranks are equally likely.

1. Algorithms and Data Structures – 21/40



big-O

The worst ase running time is a bound on the averagease. Thus for Insertion-Sort we know that if T (n) isthe expeted running time for some distribution ofinputs, then max
{

T (n)
n2 |n ∈ Z

}

< ∞. This allows us to saythat the expeted running time for Insertion-Sort is O(n2).

1. Algorithms and Data Structures – 22/40



Order of Growth

Beause the Θ- notation is not sensitive to the size of theonstants, a program implementing a Θ(n2) algorithmmay be faster that, say, a program implementing a
Θ(n log(n)) algorithm for small inputs. But, for largeenough inputs, the Θ(n log(n)) will be faster.

1. Algorithms and Data Structures – 23/40



Design Methods

Inremental Design, or Derease and Conquer: Solve aproblem of size n by proessing the n omponents of theinput sequentially. The Insertion-Sort algorithm has aninremental design. We position A[2], then A[3], et.Reursive Design, or Divide and Conquer: Divide aproblem of size n into smaller problems of the sametype. Conquer the smaller problems by solvingreursively, or, for small instanes, solving diretly.Combine the solutions of the smaller problems to obtaina solution of the original instane. Merge-Sort is anexample of this.
1. Algorithms and Data Structures – 24/40



Merge Sort

The essential observation for Merge-Sort is that ifyou have two sorted arrays, you an quikly merge thevalues into a third, sorted array. This enables us toreate a divide-and-onquer sort, in whih we divide theinput array into two subarrays, sort these reursively, andmerge the results.The Merge routine mimis the ation of merging twosorted piles of ards by repeatedly taking the smallestard showing o� its stak and plaing it fae-down in theoutput pile. When both sorted piles are empty, theoutput pile is a sorted pile of all the ards.

1. Algorithms and Data Structures – 25/40



Merge basis

The Merge in the text takes an array A with
p ≤ q ≤ r indies in A. Assuming the subarrays A [p..q]and A [q + 1..r] are sorted, the routine sorts A [p..r].The routine opies A [p..q] and A [q + 1..r] intoauxilliary arrays, using ∞ as a sentinel value at the endof eah of the auxilliary arrays.

1. Algorithms and Data Structures – 26/40



Merge routine

Merge(A, p, q, r)1 n1 = q − p+ 1
2 n2 = r − q3 Let L[1..n1 + 1] and R[1..n2 + 1] be new arrays.4 for i = 1 to n1//Copy A [p..q] into L5 L[i] = A[p+ i− 1]6 for j = 1 to n2//Copy A [q + 1..r] into R7 R[i] = A[q + j]8 L[n1 + 1] = ∞9 R[n2 + 1] = ∞10 i = 111 j = 112 for k = p to r13 if L[i] ≤ R[j]14 A[k] = L[i]15 i = i+ 116 else A[k] = R[j]17 j=j+1

1. Algorithms and Data Structures – 27/40



Merge Sort

Merge-Sort(A, p, r)1 if p < r2 q = ⌊(p+ r) /2⌋ //Remember �oors? eilings?3 Merge-Sort (A, p, q)4 Merge-Sort (A, q + 1, r)5 Merge(A, p, q, r)(This ould have been written iteratively, but reursionyields shorter pseudoode.)
1. Algorithms and Data Structures – 28/40



Merge loop invariant

The goal is to show that, assuming the subarrays A [p..q]and A [q + 1..r] are sorted, the routine sorts A [p..r].At the loop-test in the for-loop at line 12, A [p..k − 1]ontains the k − p smallest elements of A [p..r]in sortedorder. L [i]and R [j]are the smallest elements in therespetive arrays that are not in A [p..k − 1].

1. Algorithms and Data Structures – 29/40



Initialization

When the loop is entered, k = p and i = j = 1.
A [p..k − 1] = A [p..p− 1] = ∅, so it trivially ontainsthe k − p = p− p = 0 smallest elements of A [p..r]insorted order. On valid input, L [1] and R [1] are thesmallest elements in their respetive arrays, and so arethe smallest elements in the respetive arrays that arenot in A [p..p− 1].

1. Algorithms and Data Structures – 30/40



Maintenane

Consider the ase R [j] < L [i]. The 'else' will beexeuted, opying R [j] into A in position k andinrementing j. Now A [p..k] ontains the k − p+ 1smallest elements of L and R and R [j] is the smallestelement of R not yet opied to A. When k isinremented, the loop invariant remains true:
A [p..k − 1] ontains the k − p smallest elements of

A [p..r]in sorted order. L [i]and R [j]are the smallestelements in the respetive arrays that are not in

A [p..k − 1].The ase L [i] ≤ R [j] is similar.

1. Algorithms and Data Structures – 31/40



Termination

On termination, k = r + 1. The loop invariant impliesthat A [p..k] = A [p..r]ontains the smallest
k − p = r − p+ 1 elements of L and R in sorted order.These are all the non-sentinel elements of L and R, sohas A[p..r] been sorted, as required.

1. Algorithms and Data Structures – 32/40



Reursive Corretness

To hek a reursive algorithm for orretness, verify that
• reursive alls eventually terminate in base ase(s)
• the base ase(s) are handled orretly
• assuming that the reursive alls return orretly, thefuntion returns orretly

1. Algorithms and Data Structures – 33/40



Progress to Base

The base ase for Merge-Sort is p = r orrespondingto an array of length 1. We will show progress to thebase ase by showing that, in the reursive alls to (A,
p, q) and (A, q + 1, r), the lengths of A [p..q] and
A [q + 1..r] are positive and less than the length of

A [p..r].If p < r, Claim that if p < r, then
p ≤ q = ⌊(p+ r) /2⌋ < r.Note that p ≤ r − 1, so p ≤ ⌊(p+ p) /2⌋ ≤
⌊(p+ r) /2⌋ = q ≤ ⌊(r − 1 + r) /2⌋ = r − 1 < r, asrequired.

1. Algorithms and Data Structures – 34/40



Base Case Corret

If p = r, the funtion all returns with no hanges to A.This is orret beause a subarray of length 1 is alreadysorted.
1. Algorithms and Data Structures – 35/40



Return Corret

If Merge-Sort(A, p, q) returns with A [p..q] sortedand Merge-Sort(A, q + 1, r) returns with
A [q + 1..r] sorted, then the Merge(A, p, q, r) allreturns with A [p..r] sorted, as required.

1. Algorithms and Data Structures – 36/40



Stable Sort

Why use L [i] ≤ R [j] ?A sorting algorithm is said to be stable if items withequal keys remain in the same relative order after sorting.If you sort an array of names alphabetially by �rstname, then alphabetially by last name using a stablesort, the array will be sorted by last name. Within arange of the array with the same last name, the array issorted by �rst name.
1. Algorithms and Data Structures – 37/40



T(n) for Merge

The Merge routine runs in Θ(n) time, where n is thelength of the array to be sorted. To see this, note thatthe loop test in the for-loop on k runs r − p+ 1 = ntimes, while all of the remaining lines run at most ntimes.
1. Algorithms and Data Structures – 38/40



T(n) for Merge Sort

For simpliity, assume n = 2k for some k.Approximately, we have

T (n) =

{

c n = 1

2T
(

n
2

)

+ cn n ≥ 2The cn term omes from the time taken by the Mergeall.(We atually take c to be small to get a lower bound,and c to be large to get an upper bound on T (n).)

1. Algorithms and Data Structures – 39/40



Resolving T(n)
T (n) = 2T

(

n
2

)

+ cn

= 2
(

2T
(

n
2/2

)

+ cn2
)

+ cn = 4T
(

n
4

)

+ 2cn

= 4
(

2T
(

n
8

)

+ cn4
)

+ 2cn = 8T
(

n
8

)

+ 3cn...

= 2kT
(

n
2k

)

+ kcn = cn+ cn log2 nConlude that T (n) is Θ(n log2 n).This alulation an also be organized with a treestruture.
1. Algorithms and Data Structures – 40/40


	{Chapter 2}
	{Insertion Sort}
	{Correctness}
	{Loop Invariant}
	{For- loop Invariant}
	{Invariant Verification}
	{cont.}
	{cont.}
	{While-loop}
	{Initialization}
	{Maintenance}
	{Termination}
	{Analyzing Algorithms}
	{T(n)}
	{Analysis Example}
	{times}
	{total time}
	{Worst case}
	{Order of Growth}
	{Average Case}
	{big-O}
	{Order of Growth}
	{Design Methods}
	{Merge Sort}
	{Merge basics}
	{Merge routine}
	{Merge Sort}
	{Merge loop invariant}
	{Initialization}
	{Maintenance}
	{Termination}
	{Recursive Correctness}
	{Progress to Base}
	{Base Case Correct}
	{Return Correct}
	{Stable Sort}
	{T(n) for
Merge}
	{T(n) for
Merge Sort}
	{Resolving T(n)}

