Algorithms and Data Structures
Chapter 2

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/4

Chapter 2

Chapter 2 provides an overview of the analysis of an
algorithm correctness and the analysis of an algorithms's
asymptotic running time. The INSERTION SORT and
MERGE SORT algorithms for sorting arrays are used as
examples.

These algorithms are presented using pseudocode. The
text's version of pseudocode uses indentation in place of
nested brackets and uses “//" to introduce comments.
Other conventions are detailed on pages 20 and 21.

1. Algorithms and Data Structures — 2/40

Insertion Sort

| nsertion-Sort (A)

1 for j=2 to A length

2 key=A[]]

3 /] Insert AJ] into the sorted sequence
4 =) -1

5 while 1>0 and Al] >key

6 AT +1] =Al 1]

7 =1 -1

8 Al i +1] =key

Correctness

When you specity an algorithm in pseudocode but do not
implement it, how can you verify that the algorithm is
correct? Correctness becomes more difficult to verity
when the algorithm involves iteration.

n this case, one approach is to use loop invariants. A
oop invariant is a statement about the state of the
orogram, including the data, each time control passes to
the loop statement.

1. Algorithms and Data Structures — 4/40

Loop Invariant

e The loop invariant should be true when control first
passes to the loop. (Initialization)

e |f the loop invariant was true before an iteration of
the loop block, and the loop condition is true, then
the loop invariant is true after the iteration, at the
evaluation of the loop condition. (Maintenance)

e The loop invariant should give useful information
about the configuration of the program when control
exits the loop. (Termination)

1. Algorithms and Data Structures — 5/40

For- loop Invariant

For now, assume that if the while-loop is passed an array
A with A[l,..5 — 1] in ascending order, then after line 8,
the array A is a permutation of the the input array, and
Al[l,..5] is in ascending order.

The loop invariant for the for-loop is “A is a
permutation of the input array, and A[l,..7 — 1] is in
ascending order.”

1. Algorithms and Data Structures — 6/40

Invariant Verification

Initialization j=2: The input array has not been
changed. The claim that A[1,..7 — 1] in
ascending order becomes the claim that
All,..2 — 1] = A[1] is in ascending order is
trivially true.

1. Algorithms and Data Structures — 7/40

cont.

Maintenance: We are assuming that the effect of the
while-loop with line 8, when passed an array
with A[1,..7 — 1] in ascending order, is to
return a permutation of that array with
Al[1,..7] in ascending order. Thus if the loop
invariant and the loop condition are true at
line 1, then at line 8, A is a permutation of
the input array, and A[1,..j] is in ascending
order. Thus the loop invariant remains true
after the incrementation of j in the for-loop.

1. Algorithms and Data Structures — 8/40

cont.

Termination: The for-loop terminates with the loop
invariant true and j = A.length + 1. Thus
A[l,..A.length] is in ascending order and is
a permutationof the input array, as required.

1. Algorithms and Data Structures

—9/40

While-loop

Each iteration of the while-loop compares the key, the
value in A|j], to the value in Alz], and copies value in
Ali] one position up if Ali] > key. The goal is to verify
the assumption used in analysis of the for-loop. Thus the
following is a reasonable loop invariant: A, with key
inserted into A[i + 1] is a permutation of the input array
for the loop. The values in A[1, ..i| followed by the
values in Ali + 2, ..j] are the values in the input array in

positions 1,..9 — 1, in the input order. Further,
Alk] > key for ke {i+2,..5}.

1. Algorithms and Data Structures — 10/40

Initialization

At this point, ¢ = 7 — 1, and the input array has not been
changed. Thus A with key inserted into At 4+ 1] = Alj]
Is a permutation of the input array for the loop. The
subarray Ali 4 2,..7] is empty, so the values in A[1, ..1]
followed by the values in Ali + 2, ..5] are the values in
the input array in positions 1,..7 — 1, in the input order.
The set {i +2,..7} is empty, so the comparison

Alk] > key for k € {1+ 2,..5} is trivially true.

1. Algorithms and Data Structures — 11/40

Maintenance

Given that the loop condition is true and the loop is
entered, Ali| > key. Line 6 copies Ali| into Ali + 1].
Thus the values in A[1,..5 — 1] followed by the values in
Ali 4+ 1,..5] are the values in the input array in positions
1,..7 — 1, in the input order. Also, Alk| > key for
ke{i+1,..5}. Inline 7, i is decremented. For this
new ¢, the values in A[l,..i| followed by the values in
Ali 4 2, ..5] are the values in the input array in positions
1,..7 — 1, in the input order. Also, Alk] > key for
ke{i+2,.5}, as required.

1. Algorithms and Data Structures — 12/40

Termination

The loop terminates with the loop condition true and
Ali] < key. Line 8 copies key into Ali + 1]. The loop
invariant implies that A[1,..j] contains the values in in

t
t
t

ne input array in positions 1,..7, A is a permutation of
he input array, and the values in Al + 2, ..7] are greater

nat key, the value in position 2 + 1. Assuming that

All,..7 — 1] was in ascending order when the while-loop
was entered, and A contains a permutation of the values
in the input array for the function, A|l,..7] is in
ascending order after line 8 and A is still a permutation
of the argument of the function.

1. Algorithms and Data Structures — 13/40

Analyzing Algorithms

Algorithm analysis has come to mean prediction of the
resources that an algorithm requires. Often the resource
in question is time. Other considerations include disk
accesses and memory. Emphasis in this course is on time.

In order to study the time required by an algorithm we
need a model for the resource demands of the steps in
the algorithm. We will generally assume a single

orocessor with all memory operations taking place in
RAM.

Basic operations include add, subtract, multiply, divide,
call and return from subroutines, branch, and load, store,
and copy single values.

1. Algorithms and Data Structures — 14/40

T(n)

We will focus on running time as a function of input
size, T'(n) where n is the size of the input. We are

primarily concerned with the growth of T'(n) as n
becomes very large.

® The concept of size is problem-specific.

® The running time may be different for different instances of
the same size. This leads to consideration of worst-case and
average case running times.

® Behavior of T'(n) for large n is basically described in terms of

ratios, such as max {%\n C Z} < 00 or limn%ooT?ﬁ(;) — .

We will formalize this in Chapter 3.

1. Algorithms and Data Structures — 15/40

Analysis Example

We will calculate T'(n) for Insertion-Sort, using constants
c1, ...cg for the time required to run each line a single
time. The number of times the while-condition is tested
depends on j and on the instance. Denote this by ;.

1. Algorithms and Data Structures — 16/40

times

Insertion-Sort(A)

cost times
1 for j=2 to A.length 1 n
2 key=A[j] Ca n—1
3 // Insert A[j] into the sorted A[1..j-1] 0
4 1=)-1 Cy n—1
5 while i>0 and A[i]>key Cs Dot
6 Ali+1]=A]i] 6 Yoty —1)
7 i=i-1 et Y ity —1)
8 Ali+1]=key Cs n—1

1. Algorithms and Data Structures — 17/40

total time
Tn)=cin+ca(n—1)+ci(n—1)+c5> 5 ot; +
Ce Z?:Q(tj — 1)+ ¢ Z?:Q(tj — 1)+ (n—1)
Note 1 <¢; < 5.

Under what circumstances is t; =17 ¢t; =5 7

1. Algorithms and Data Structures — 18/40

VWorst case

T'(n)=cn+c(n—1)+cn—1)+c E?:Qj T
Ce Z?:Q(j - 1)+« Z?:z(j —1)+e(n—1)

Note Y% o j = n(n;l) Land >0 o(j — 1) = n(n2_1).

Using this and simplifying, the worst case for T'(n) is

T(n) = “tstan? +

(c14+ co+ ¢4 —CeTLeTor cs)n— (ca+ ca + 5 + cs)

1. Algorithms and Data Structures — 19/40

Order of Growth

Because the function T'(n) for the worst-case running
time of INSERTION-SORT satisfies limn%m% = 1> 0, we
say that INSERTION-SORT has a worst-case running time that is
© (n?). (More on this in Chapter 3.)

1. Algorithms and Data Structures — 20/40

Average Case

In order to be able to calculate the average case running
time or expected running time for an algorithm, we need
to know the distribution of instances to which the
algorithm will be applied. We may make an assumption
about this, or use randomization to produce a known
distribution of input instances.

For example, in the case of INSERTION-SORT, we could
assume that all values in A are distinct and all
permutations of their ranks are equally likely.

1. Algorithms and Data Structures — 21/40

big-O

The worst case running time is a bound on the average
case. Thus for INsSErRTION-SORT we know that if T'(n) is
the expected running time for some distribution of

inputs, then max {%\n c Z} < 0o. This allows us to say
that the expected running time for INSERTION-SORT is O(n?).

1. Algorithms and Data Structures — 22/40

Order of Growth

Because the ©- notation is not sensitive to the size of the
constants, a program implementing a ©(n?) algorithm

may be faster that, say, a program implementing a
©(nlog(n)) algorithm for small inputs. But, for large

enough inputs, the ©(nlog(n)) will be faster.

1. Algorithms and Data Structures — 23/40

Design Methods

Incremental Design, or Decrease and Conquer: Solve a
problem of size n by processing the n components of the
input sequentially. The INSERTION-SORT algorithm has an
incremental design. We position A|2], then A[3], etc.

Recursive Design, or Divide and Conquer: Divide a
problem of size n into smaller problems of the same
type. Conquer the smaller problems by solving
recursively, or, for small instances, solving directly.
Combine the solutions of the smaller problems to obtain
a solution of the original instance. MERGE-SORT is an
example of this.

1. Algorithms and Data Structures — 24/40

Merge Sort

The essential observation for MERGE-SORT is that if
you have two sorted arrays, you can quickly merge the
values into a third, sorted array. This enables us to
create a divide-and-conquer sort, in which we divide the
input array into two subarrays, sort these recursively, and
merge the results.

The MERGE routine mimics the action of merging two
sorted piles of cards by repeatedly taking the smallest
card showing off its stack and placing it face-down in the
output pile. When both sorted piles are empty, the
output pile is a sorted pile of all the cards.

1. Algorithms and Data Structures — 25/40

Merge basics

The MERGE in the text takes an array A with

p < q < rindices in A. Assuming the subarrays A [p..q]
and A[q + 1..r] are sorted, the routine sorts A |p..r].
The routine copies A [p..q] and A g+ 1..r] into
auxilliary arrays, using oo as a sentinel value at the end
of each of the auxilliary arrays.

1. Algorithms and Data Structures — 26/40

Merge routine

MERGE(A, p, q, 1)

© 00 N O 1 HpOWDN =

=
N = O

13
14
15
16
17

nt=q—p+1
ng =1 —gq
Let L[1..n1 + 1] and R[l..ng + 1] be new arrays.
for i =1 to n1//Copy Alp..q] into L
Lli) = Alp+i — 1]
for j =1 to na//Copy A[g+ 1..r] into R

R[i] = Alg + j]
L[’nl—i—l] = o0
Rn2 + 1] = o0
1 =1
7=1

fork=ptor
if L[i] < Rl[j]
Alk] = Lli]
=1+ 1
else A[k] = R[j]
=i+l

1. Algorithms and Data Structures — 27/40

Merge Sort

MERGE-SORT(A, p, r)

Litp<r

2 q=|(p+r)/2] //Remember floors? ceilings?
3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, ¢+ 1, r)

5 MERGE(A, p, q, r)

(This could have been written iteratively, but recursion
yields shorter pseudocode.)

1. Algorithms and Data Structures — 28/40

Merge loop invariant

The goal is to show that, assuming the subarrays A [p..q]
and A |q + 1..r] are sorted, the routine sorts A [p..r].

At the loop-test in the for-loop at line 12, A [p..k — 1]
contains the k — p smallest elements of A [p..r]in sorted
order. L [it]and R [j]are the smallest elements in the
respective arrays that are not in A [p..k — 1].

1. Algorithms and Data Structures — 29/40

Initialization

When the loop is entered, Kk =p and i = 5 = 1.
Alp.k—1]=Alp.p—1] =0, so it trivially contains
the Kk — p = p — p = 0 smallest elements of A [p..r]in
sorted order. On valid input, L[1] and R [1] are the
smallest elements in their respective arrays, and so are
the smallest elements in the respective arrays that are
not in Alp..p —1].

1. Algorithms and Data Structures — 30/40

Maintenance

Consider the case R [j] < L[i]. The 'else” will be
executed, copying R [j] into A in position k and
incrementing 5. Now A [p..k] contains the k — p + 1
smallest elements of L and R and R |j] is the smallest
element of R not yet copied to A. When £ is
incremented, the loop invariant remains true:

A |p..k — 1] contains the k — p smallest elements of
A |p..r|in sorted order. L [i]and R [j]are the smallest
elements in the respective arrays that are not in
Alp.k—1].

The case L [i| < R|[j] is similar.

1. Algorithms and Data Structures — 31/40

Termination

On termination, k = r + 1. The loop invariant implies
that A [p..k] = A |[p..r|contains the smallest
k—p=1r—p+ 1 elements of L and R in sorted order.
These are all the non-sentinel elements of L and R, so
has Alp..r| been sorted, as required.

1. Algorithms and Data Structures — 32/40

Recursive Correctness

To check a recursive algorithm for correctness, verify that
e recursive calls eventually terminate in base case(s)
e the base case(s) are handled correctly

e assuming that the recursive calls return correctly, the
function returns correctly

1. Algorithms and Data Structures — 33/40

Progress to Base

The base case for MERGE-SORT is p = r corresponding
to an array of length 1. We will show progress to the
base case by showing that, in the recursive calls to (A,
p, q) and (A, ¢+ 1, r), the lengths of A |p..q| and
Alq+ 1..r] are positive and less than the length of
Alp..r].

It p < r, Claim that if p < r, then

p<q=|p+r)/2] <r

Note that p <7 —1,sop < |(p+p) /2] <
(p+r) /2] =q<|(r—1+47)/2] =r—1<r, as
required.

1. Algorithms and Data Structures — 34/40

Base Case Correct

It p = r, the function call returns with no changes to A.
This is correct because a subarray of length 1 is already
sorted.

1. Algorithms and Data Structures — 35/40

Return Correct

If MERGE-SORT(A, p, q) returns with A |p..q] sorted

and MERGE-SORT(A, ¢ + 1, r) returns with
Alq+ 1..r| sorted, then the MERGE(A, p, ¢, r) call

returns with A [p..r| sorted, as required.

1. Algorithms and Data Structures — 36/40

Stable Sort

Why use L |i| < R|j] 7

A sorting algorithm is said to be stable if items with
equal keys remain in the same relative order after sorting.

It you sort an array of names alphabetically by first
name, then alphabetically by last name using a stable
sort, the array will be sorted by last name. Within a

range of the array with the same last name, the array is
sorted by first name.

1. Algorithms and Data Structures — 37/40

T(n) for Merge

The MERGE routine runs in © (n) time, where n is the
length of the array to be sorted. To see this, note that
the loop test in the for-loop on kK runsr —p+1=mn
times, while all of the remaining lines run at most n
times.

1. Algorithms and Data Structures — 38/40

T(n) for Merge Sort

For simplicity, assume n = 2* for some k.

Approximately, we have
c n=1

T'(n) = <\2T(%)+cn n > 2

The cn term comes from the time taken by the MERGE

call.
(We actually take ¢ to be small to get a lower bound,

and ¢ to be large to get an upper bound on T'(n).)

1. Algorithms and Data Structures — 39/40

Resolving T(n)

T (n)=2T (%) +cn
=2(2T (%/2) + %) + cn = 4T (4) 4 2cn
= 4(2T (%) + c4) + 2cn = 8T (§) + 3cn

= 2FT (2%) + ken = en + enlogy n
Conclude that T (n) is © (nlogyn).

This calculation can also be organized with a tree
structure.

	{Chapter 2}
	{Insertion Sort}
	{Correctness}
	{Loop Invariant}
	{For- loop Invariant}
	{Invariant Verification}
	{cont.}
	{cont.}
	{While-loop}
	{Initialization}
	{Maintenance}
	{Termination}
	{Analyzing Algorithms}
	{T(n)}
	{Analysis Example}
	{times}
	{total time}
	{Worst case}
	{Order of Growth}
	{Average Case}
	{big-O}
	{Order of Growth}
	{Design Methods}
	{Merge Sort}
	{Merge basics}
	{Merge routine}
	{Merge Sort}
	{Merge loop invariant}
	{Initialization}
	{Maintenance}
	{Termination}
	{Recursive Correctness}
	{Progress to Base}
	{Base Case Correct}
	{Return Correct}
	{Stable Sort}
	{T(n) for
Merge}
	{T(n) for
Merge Sort}
	{Resolving T(n)}

