
Algorithms and Data Stru
turesChapter 2
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/40



Chapter 2

Chapter 2 provides an overview of the analysis of analgorithm 
orre
tness and the analysis of an algorithms'sasymptoti
 running time. The insertion sort andmerge sort algorithms for sorting arrays are used asexamples.These algorithms are presented using pseudo
ode. Thetext's version of pseudo
ode uses indentation in pla
e ofnested bra
kets and uses �//� to introdu
e 
omments.Other 
onventions are detailed on pages 20 and 21.

1. Algorithms and Data Structures – 2/40



Insertion Sort

Insertion-Sort(A)
1 for j=2 to A.length
2 key=A[j]
3 // Insert A[j] into the sorted sequence
4 i=j-1
5 while i>0 and A[i]>key
6 A[i+1]=A[i]
7 i=i-1
8 A[i+1]=key

1. Algorithms and Data Structures – 3/40



Corre
tness

When you spe
ify an algorithm in pseudo
ode but do notimplement it, how 
an you verify that the algorithm is
orre
t? Corre
tness be
omes more di�
ult to verifywhen the algorithm involves iteration.In this 
ase, one approa
h is to use loop invariants. Aloop invariant is a statement about the state of theprogram, in
luding the data, ea
h time 
ontrol passes tothe loop statement.
1. Algorithms and Data Structures – 4/40



Loop Invariant

• The loop invariant should be true when 
ontrol �rstpasses to the loop. (Initialization)
• If the loop invariant was true before an iteration ofthe loop blo
k, and the loop 
ondition is true, thenthe loop invariant is true after the iteration, at theevaluation of the loop 
ondition. (Maintenan
e)

• The loop invariant should give useful informationabout the 
on�guration of the program when 
ontrolexits the loop. (Termination)

1. Algorithms and Data Structures – 5/40



For- loop Invariant

For now, assume that if the while-loop is passed an array
A with A[1, ..j − 1] in as
ending order, then after line 8,the array A is a permutation of the the input array, and
A[1, ..j] is in as
ending order.The loop invariant for the for-loop is �A is apermutation of the input array, and A[1, ..j − 1] is inas
ending order.�

1. Algorithms and Data Structures – 6/40



Invariant Veri�
ation

Initialization j=2: The input array has not been
hanged. The 
laim that A[1, ..j − 1] inas
ending order be
omes the 
laim that
A[1, ..2− 1] = A[1] is in as
ending order istrivially true.

1. Algorithms and Data Structures – 7/40




ont.

Maintenan
e: We are assuming that the e�e
t of thewhile-loop with line 8, when passed an arraywith A[1, ..j − 1] in as
ending order, is toreturn a permutation of that array with
A[1, ..j] in as
ending order. Thus if the loopinvariant and the loop 
ondition are true atline 1, then at line 8, A is a permutation ofthe input array, and A[1, ..j] is in as
endingorder. Thus the loop invariant remains trueafter the in
rementation of j in the for-loop.

1. Algorithms and Data Structures – 8/40




ont.

Termination: The for-loop terminates with the loopinvariant true and j = A.length+ 1. Thus
A[1, ..A.length] is in as
ending order and isa permutationof the input array, as required.

1. Algorithms and Data Structures – 9/40



While-loop

Ea
h iteration of the while-loop 
ompares the key, thevalue in A[j], to the value in A[i], and 
opies value in
A[i] one position up if A[i] > key. The goal is to verifythe assumption used in analysis of the for-loop. Thus thefollowing is a reasonable loop invariant: A, with keyinserted into A[i+ 1] is a permutation of the input arrayfor the loop. The values in A[1, ..i] followed by thevalues in A[i+ 2, ..j] are the values in the input array inpositions 1, ..j − 1, in the input order. Further,

A[k] > key for k ∈ {i+ 2, ..j}.

1. Algorithms and Data Structures – 10/40



Initialization

At this point, i = j− 1, and the input array has not been
hanged. Thus A with key inserted into A[i+ 1] = A[j]is a permutation of the input array for the loop. Thesubarray A[i+ 2, ..j] is empty, so the values in A[1, ..i]followed by the values in A[i+ 2, ..j] are the values inthe input array in positions 1, ..j − 1, in the input order.The set {i+ 2, ..j} is empty, so the 
omparison

A[k] > key for k ∈ {i+ 2, ..j} is trivially true.

1. Algorithms and Data Structures – 11/40



Maintenan
e

Given that the loop 
ondition is true and the loop isentered, A[i] > key. Line 6 
opies A[i] into A[i+ 1].Thus the values in A[1, ..i − 1] followed by the values in
A[i+ 1, ..j] are the values in the input array in positions

1, ..j − 1, in the input order. Also, A[k] > key for
k ∈ {i+ 1, ..j}. In line 7, i is de
remented. For thisnew i, the values in A[1, ..i] followed by the values in

A[i+ 2, ..j] are the values in the input array in positions

1, ..j − 1, in the input order. Also, A[k] > key for

k ∈ {i+ 2, ..j}, as required.

1. Algorithms and Data Structures – 12/40



Termination

The loop terminates with the loop 
ondition true and
A[i] ≤ key. Line 8 
opies key into A[i+ 1]. The loopinvariant implies that A[1, ..j] 
ontains the values in inthe input array in positions 1, ..j, A is a permutation ofthe input array, and the values in A[i+ 2, ..j] are greaterthat key, the value in position i+ 1. Assuming that

A[1, ..j − 1] was in as
ending order when the while-loopwas entered, and A 
ontains a permutation of the valuesin the input array for the fun
tion, A[1, ..j] is inas
ending order after line 8 and A is still a permutationof the argument of the fun
tion.

1. Algorithms and Data Structures – 13/40



Analyzing Algorithms

Algorithm analysis has 
ome to mean predi
tion of theresour
es that an algorithm requires. Often the resour
ein question is time. Other 
onsiderations in
lude diska

esses and memory. Emphasis in this 
ourse is on time.In order to study the time required by an algorithm weneed a model for the resour
e demands of the steps inthe algorithm. We will generally assume a singlepro
essor with all memory operations taking pla
e inRAM.Basi
 operations in
lude add, subtra
t, multiply, divide,
all and return from subroutines, bran
h, and load, store,and 
opy single values.
1. Algorithms and Data Structures – 14/40



T(n)

We will fo
us on running time as a fun
tion of inputsize, T (n) where n is the size of the input. We areprimarily 
on
erned with the growth of T (n) as nbe
omes very large.

• The 
on
ept of size is problem-spe
i�
.
• The running time may be di�erent for di�erent instan
es ofthe same size. This leads to 
onsideration of worst-
ase andaverage 
ase running times.
• Behavior of T (n) for large n is basi
ally des
ribed in terms ofratios, su
h as max

{

T (n)
n2 |n ∈ Z

}

< ∞ or limn→∞
T (n)
n2 = l.We will formalize this in Chapter 3.

1. Algorithms and Data Structures – 15/40



Analysis Example

We will 
al
ulate T (n) for Insertion-Sort, using 
onstants
c1, ...c8 for the time required to run ea
h line a singletime. The number of times the while-
ondition is testeddepends on j and on the instan
e. Denote this by tj.

1. Algorithms and Data Structures – 16/40



times

Insertion-Sort(A) 
ost times1 for j=2 to A.length c1 n2 key=A[j℄ c2 n− 13 // Insert A[j℄ into the sorted A[1..j-1℄ 04 i=j-1 c4 n− 15 while i>0 and A[i℄>key c5
∑n

j=2 tj6 A[i+1℄=A[i℄ c6
∑n

j=2(tj − 1)7 i=i-1 c7
∑n

j=2(tj − 1)8 A[i+1℄=key c8 n− 1

1. Algorithms and Data Structures – 17/40



total time

T (n) = c1n+ c2 (n− 1) + c4 (n− 1) + c5
∑n

j=2 tj +

c6
∑n

j=2(tj − 1) + c7
∑n

j=2(tj − 1) + c8 (n− 1)

Note 1 ≤ tj ≤ j.Under what 
ir
umstan
es is tj = 1? tj = j ?

1. Algorithms and Data Structures – 18/40



Worst 
ase

T (n) = c1n+ c2 (n− 1) + c4 (n− 1) + c5
∑n

j=2 j +

c6
∑n

j=2(j − 1) + c7
∑n

j=2(j − 1) + c8 (n− 1)

Note ∑n
j=2 j =

n(n+1)
2 − 1 and ∑n

j=2(j − 1) = n(n−1)
2 .

Using this and simplifying, the worst 
ase for T (n) is

T (n) = c5+c6+c7
2 n2 +

(

c1 + c2 + c4 −
−c5+c6+c7

2 + c8
)

n− (c2 + c4 + c5 + c8)

1. Algorithms and Data Structures – 19/40



Order of Growth

Be
ause the fun
tion T (n) for the worst-
ase runningtime of Insertion-Sort satis�es limn→∞
T (n)
n2 = l > 0, wesay that Insertion-Sort has a worst-
ase running time that is

Θ(n2). (More on this in Chapter 3.)

1. Algorithms and Data Structures – 20/40



Average Case

In order to be able to 
al
ulate the average 
ase runningtime or expe
ted running time for an algorithm, we needto know the distribution of instan
es to whi
h thealgorithm will be applied. We may make an assumptionabout this, or use randomization to produ
e a knowndistribution of input instan
es.For example, in the 
ase of Insertion-Sort, we 
ouldassume that all values in A are distin
t and allpermutations of their ranks are equally likely.

1. Algorithms and Data Structures – 21/40



big-O

The worst 
ase running time is a bound on the average
ase. Thus for Insertion-Sort we know that if T (n) isthe expe
ted running time for some distribution ofinputs, then max
{

T (n)
n2 |n ∈ Z

}

< ∞. This allows us to saythat the expe
ted running time for Insertion-Sort is O(n2).

1. Algorithms and Data Structures – 22/40



Order of Growth

Be
ause the Θ- notation is not sensitive to the size of the
onstants, a program implementing a Θ(n2) algorithmmay be faster that, say, a program implementing a
Θ(n log(n)) algorithm for small inputs. But, for largeenough inputs, the Θ(n log(n)) will be faster.

1. Algorithms and Data Structures – 23/40



Design Methods

In
remental Design, or De
rease and Conquer: Solve aproblem of size n by pro
essing the n 
omponents of theinput sequentially. The Insertion-Sort algorithm has anin
remental design. We position A[2], then A[3], et
.Re
ursive Design, or Divide and Conquer: Divide aproblem of size n into smaller problems of the sametype. Conquer the smaller problems by solvingre
ursively, or, for small instan
es, solving dire
tly.Combine the solutions of the smaller problems to obtaina solution of the original instan
e. Merge-Sort is anexample of this.
1. Algorithms and Data Structures – 24/40



Merge Sort

The essential observation for Merge-Sort is that ifyou have two sorted arrays, you 
an qui
kly merge thevalues into a third, sorted array. This enables us to
reate a divide-and-
onquer sort, in whi
h we divide theinput array into two subarrays, sort these re
ursively, andmerge the results.The Merge routine mimi
s the a
tion of merging twosorted piles of 
ards by repeatedly taking the smallest
ard showing o� its sta
k and pla
ing it fa
e-down in theoutput pile. When both sorted piles are empty, theoutput pile is a sorted pile of all the 
ards.

1. Algorithms and Data Structures – 25/40



Merge basi
s

The Merge in the text takes an array A with
p ≤ q ≤ r indi
es in A. Assuming the subarrays A [p..q]and A [q + 1..r] are sorted, the routine sorts A [p..r].The routine 
opies A [p..q] and A [q + 1..r] intoauxilliary arrays, using ∞ as a sentinel value at the endof ea
h of the auxilliary arrays.

1. Algorithms and Data Structures – 26/40



Merge routine

Merge(A, p, q, r)1 n1 = q − p+ 1
2 n2 = r − q3 Let L[1..n1 + 1] and R[1..n2 + 1] be new arrays.4 for i = 1 to n1//Copy A [p..q] into L5 L[i] = A[p+ i− 1]6 for j = 1 to n2//Copy A [q + 1..r] into R7 R[i] = A[q + j]8 L[n1 + 1] = ∞9 R[n2 + 1] = ∞10 i = 111 j = 112 for k = p to r13 if L[i] ≤ R[j]14 A[k] = L[i]15 i = i+ 116 else A[k] = R[j]17 j=j+1

1. Algorithms and Data Structures – 27/40



Merge Sort

Merge-Sort(A, p, r)1 if p < r2 q = ⌊(p+ r) /2⌋ //Remember �oors? 
eilings?3 Merge-Sort (A, p, q)4 Merge-Sort (A, q + 1, r)5 Merge(A, p, q, r)(This 
ould have been written iteratively, but re
ursionyields shorter pseudo
ode.)
1. Algorithms and Data Structures – 28/40



Merge loop invariant

The goal is to show that, assuming the subarrays A [p..q]and A [q + 1..r] are sorted, the routine sorts A [p..r].At the loop-test in the for-loop at line 12, A [p..k − 1]
ontains the k − p smallest elements of A [p..r]in sortedorder. L [i]and R [j]are the smallest elements in therespe
tive arrays that are not in A [p..k − 1].

1. Algorithms and Data Structures – 29/40



Initialization

When the loop is entered, k = p and i = j = 1.
A [p..k − 1] = A [p..p− 1] = ∅, so it trivially 
ontainsthe k − p = p− p = 0 smallest elements of A [p..r]insorted order. On valid input, L [1] and R [1] are thesmallest elements in their respe
tive arrays, and so arethe smallest elements in the respe
tive arrays that arenot in A [p..p− 1].

1. Algorithms and Data Structures – 30/40



Maintenan
e

Consider the 
ase R [j] < L [i]. The 'else' will beexe
uted, 
opying R [j] into A in position k andin
rementing j. Now A [p..k] 
ontains the k − p+ 1smallest elements of L and R and R [j] is the smallestelement of R not yet 
opied to A. When k isin
remented, the loop invariant remains true:
A [p..k − 1] 
ontains the k − p smallest elements of

A [p..r]in sorted order. L [i]and R [j]are the smallestelements in the respe
tive arrays that are not in

A [p..k − 1].The 
ase L [i] ≤ R [j] is similar.

1. Algorithms and Data Structures – 31/40



Termination

On termination, k = r + 1. The loop invariant impliesthat A [p..k] = A [p..r]
ontains the smallest
k − p = r − p+ 1 elements of L and R in sorted order.These are all the non-sentinel elements of L and R, sohas A[p..r] been sorted, as required.

1. Algorithms and Data Structures – 32/40



Re
ursive Corre
tness

To 
he
k a re
ursive algorithm for 
orre
tness, verify that
• re
ursive 
alls eventually terminate in base 
ase(s)
• the base 
ase(s) are handled 
orre
tly
• assuming that the re
ursive 
alls return 
orre
tly, thefun
tion returns 
orre
tly

1. Algorithms and Data Structures – 33/40



Progress to Base

The base 
ase for Merge-Sort is p = r 
orrespondingto an array of length 1. We will show progress to thebase 
ase by showing that, in the re
ursive 
alls to (A,
p, q) and (A, q + 1, r), the lengths of A [p..q] and
A [q + 1..r] are positive and less than the length of

A [p..r].If p < r, Claim that if p < r, then
p ≤ q = ⌊(p+ r) /2⌋ < r.Note that p ≤ r − 1, so p ≤ ⌊(p+ p) /2⌋ ≤
⌊(p+ r) /2⌋ = q ≤ ⌊(r − 1 + r) /2⌋ = r − 1 < r, asrequired.

1. Algorithms and Data Structures – 34/40



Base Case Corre
t

If p = r, the fun
tion 
all returns with no 
hanges to A.This is 
orre
t be
ause a subarray of length 1 is alreadysorted.
1. Algorithms and Data Structures – 35/40



Return Corre
t

If Merge-Sort(A, p, q) returns with A [p..q] sortedand Merge-Sort(A, q + 1, r) returns with
A [q + 1..r] sorted, then the Merge(A, p, q, r) 
allreturns with A [p..r] sorted, as required.

1. Algorithms and Data Structures – 36/40



Stable Sort

Why use L [i] ≤ R [j] ?A sorting algorithm is said to be stable if items withequal keys remain in the same relative order after sorting.If you sort an array of names alphabeti
ally by �rstname, then alphabeti
ally by last name using a stablesort, the array will be sorted by last name. Within arange of the array with the same last name, the array issorted by �rst name.
1. Algorithms and Data Structures – 37/40



T(n) for Merge

The Merge routine runs in Θ(n) time, where n is thelength of the array to be sorted. To see this, note thatthe loop test in the for-loop on k runs r − p+ 1 = ntimes, while all of the remaining lines run at most ntimes.
1. Algorithms and Data Structures – 38/40



T(n) for Merge Sort

For simpli
ity, assume n = 2k for some k.Approximately, we have

T (n) =

{

c n = 1

2T
(

n
2

)

+ cn n ≥ 2The cn term 
omes from the time taken by the Merge
all.(We a
tually take c to be small to get a lower bound,and c to be large to get an upper bound on T (n).)

1. Algorithms and Data Structures – 39/40



Resolving T(n)
T (n) = 2T

(

n
2

)

+ cn

= 2
(

2T
(

n
2/2

)

+ cn2
)

+ cn = 4T
(

n
4

)

+ 2cn

= 4
(

2T
(

n
8

)

+ cn4
)

+ 2cn = 8T
(

n
8

)

+ 3cn...

= 2kT
(

n
2k

)

+ kcn = cn+ cn log2 nCon
lude that T (n) is Θ(n log2 n).This 
al
ulation 
an also be organized with a treestru
ture.
1. Algorithms and Data Structures – 40/40


	{Chapter 2}
	{Insertion Sort}
	{Correctness}
	{Loop Invariant}
	{For- loop Invariant}
	{Invariant Verification}
	{cont.}
	{cont.}
	{While-loop}
	{Initialization}
	{Maintenance}
	{Termination}
	{Analyzing Algorithms}
	{T(n)}
	{Analysis Example}
	{times}
	{total time}
	{Worst case}
	{Order of Growth}
	{Average Case}
	{big-O}
	{Order of Growth}
	{Design Methods}
	{Merge Sort}
	{Merge basics}
	{Merge routine}
	{Merge Sort}
	{Merge loop invariant}
	{Initialization}
	{Maintenance}
	{Termination}
	{Recursive Correctness}
	{Progress to Base}
	{Base Case Correct}
	{Return Correct}
	{Stable Sort}
	{T(n) for
Merge}
	{T(n) for
Merge Sort}
	{Resolving T(n)}

