
Algorithms and Data Stru
tures
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/24

Algorithms

An algorithm is a well-de�ned pro
edure to produ
eoutput with a spe
i�ed realtion to input.Sorting is a typi
al example. There are many sortingalgorithms with di�erent strengths and weaknesses.
• Input is a sequen
e of numbers < a1, a2,...an >

• Output is a permutation of the input
< a′

1
, a′

2
, ...a′n > with a′i ≤ a′j whenever i ≤ j.

1. Algorithms and Data Structures – 2/24

Algorithm Terms

An instan
e of a problem is a spe
i�
 input.An algorithm solves a problem if, for any valid input, iteventually halts with the
orre
t output. If this is the
ase, the algorithm is said to be
orre
t.

1. Algorithms and Data Structures – 3/24

Algorithms as Te
hnology

There are many �elds in whi
h progress depends on the design of
orre
t algorithms that run in a pra
ti
al amount of time and require apra
ti
al amount of memory.

• Genomi
s, proteomi
s, bioinformati
s
• assembling DNA sequen
es from short sequen
es of nu
leotides

• determining possible geometries of proteins
• genome
omparisons

• Internet tra�
 management
• making tra�
 fast, se
ure, and robust

• Cryptography
1. Algorithms and Data Structures – 4/24

ont.

• Games

• rendering graphi
s

•
ontrolling non-player
hara
ters
• Operations Resear
h

• allo
ating resour
es to optimize results
• Data Mining and Statisti
al Analysis
• Modeling and Simulation

• predi
ting
limate, �re, disease, e
onomi

onditions

1. Algorithms and Data Structures – 5/24

Re
ent Innovations

The �35 under 35� is a list of 35 innovators under 35assembled by Te
hnology Review Magazine ea
hyear to identify individuals whose work is �likely to bein�uential for a very long time.� Of the 35, 11 of thehonorees work in
omputing. Of those, 9 used novelalgorithms or data stru
tures in their innovations.

1. Algorithms and Data Structures – 6/24

The Innovators

• Ren Ng (Entrepreneur of the Year), age 32, developed a
amera thattakes pi
tures that
an be digitally refo
used after the image is
aptured.
• Rana el Kaliouby, age 34, assembled the world's largest database of fa
ialexpressions, and is developing te
hnologies that allow automatedassessment of a subje
t's mental state.
• John Hering, age 29, is developing dete
tion of smartphone malware,using
rowd-sour
ed threat �nding, and a database of rogue apps.

• Hossein Rahnama, age 32, is developing pra
ti
al
ontext aware
omputing for mobile appli
ations.
• Saikat Guha, age 30, has designed a pra
ti
al method to target webadvertising without violating priva
y, and is designing algorithms thatdete
t priva
y violations.

1. Algorithms and Data Structures – 7/24

more...

• Daniel Ek, age 29, developed Spotify, a
loud based provider of legalon-demand a

ess to 16 million songs.

• Andreas Veltin, age 32, developed hardware and software for a super-fast
amera that
an
apture the progress of a light ray.
• Bur
in Be
erik-Gerber, age 35, developed algorithms to harmonize workenvironment preferen
es of a building's o

upants to redu
e energy
onsumption.

• Drew Houston, age 29, over
ame speed, s
ale, and memory problems todevelop Dropbox.
1. Algorithms and Data Structures – 8/24

The Challenge

Challenge: Design a
orre
t algorithm with a

eptable,or optimal, performan
e. The main performan
e metri
sare speed and size of memory required.Example: Would you sort an array by generating allpossible permutations, then testing ea
h to �nd a sortedpermutation?
1. Algorithms and Data Structures – 9/24

hallenge,
ont.

That approa
h requires the generation of n!permutations. By the way, 100! ∼ 10158.

1. Algorithms and Data Structures – 10/24

Data Stru
tures

A data stru
ture is a way to organize and store data tofa
ilitate the a

esses and modi�
ations. The datastru
ture
hosen or designed for a parti
ular appli
ationshould perform on the types of a

ess and modi�
ationrequired by he appli
ation. A data stru
ture may beimplemented in multiple ways.Examples:

• list

• sta
k

• queue
• binary sear
h tree
• priority queue

1. Algorithms and Data Structures – 11/24

Sample Problems
• Suppose you are given a set of real numbers, A, and a spa
ingsize s > 0. The goal is to group the numbers into subsets

A1, A2, ...Anwith the property that, for ea
h subset, all thenumbers in the subset are at least s apart. That is,
∀i ∈ {1, 2, ...n} ∀a ∈ Ai∀b ∈ Ai (a 6= b ⇒ |a− b| ≥ s) .Further, n should be minimal. By the way, this problem mayseem arti�
ial, but it arose in a pra
ti
al problem.

• Find the maximal sequen
e possible for a given set ofdominoes.
1. Algorithms and Data Structures – 12/24

Chapter 2

Chapter 2 provides an overview of the analysis of analgorithm
orre
tness and the analysis of an algorithms'sasymptoti
 running time. The insertion sort andmerge sort algorithms for sorting arrays are used asexamples.These algorithms are presented using pseudo
ode. Thetext's version of pseudo
ode uses indentation in pla
e ofnested bra
kets and uses �//� to introdu
e
omments.Other
onventions are detailed on pages 20 and 21.

1. Algorithms and Data Structures – 13/24

Insertion Sort

Insertion-Sort(A)
1 for j=2 to A.length
2 key=A[j]
3 // Insert A[j] into the sorted sequence
4 i=j-1
5 while i>0 and A[i]>key
6 A[i+1]=A[i]
7 i=i-1
8 A[i+1]=key

1. Algorithms and Data Structures – 14/24

Corre
tness

When you spe
ify an algorithm in pseudo
ode but do notimplement it, how
an you verify that the algorithm is
orre
t? Corre
tness be
omes more di�
ult to verifywhen the algorithm involves iteration.In this
ase, one approa
h is to use loop invariants. Aloop invariant is a statement about the state of theprogram, in
luding the data, ea
h time
ontrol passes tothe loop statement.
1. Algorithms and Data Structures – 15/24

Loop Invariant
• The loop invariant should be true when
ontrol �rstpasses to the loop. (Initialization)
• If the loop invariant was true before an iteration ofthe loop blo
k, and the loop
ondition is true, thenthe loop invariant is true after the iteration, at theevaluation of the loop
ondition. (Maintenan
e)

• The loop invariant should give useful informationabout the
on�guration of the program when
ontrolexits the loop. (Termination)

1. Algorithms and Data Structures – 16/24

For- loop Invariant

For now, assume that if the while-loop is passed an array
A with A[1, ..j − 1] in as
ending order, then after line 8,the array A is a permutation of the the input array, and
A[1, ..j] is in as
ending order.The loop invariant for the for-loop is �A is apermutation of the input array, and A[1, ..j − 1] is inas
ending order.�

1. Algorithms and Data Structures – 17/24

Invariant Veri�
ation

Initialization j=2: The input array has not been
hanged. The
laim that A[1, ..j − 1] inas
ending order be
omes the
laim that
A[1, ..2− 1] = A[1] is in as
ending order istrivially true.

1. Algorithms and Data Structures – 18/24

ont.

Maintenan
e: We are assuming that the e�e
t of thewhile-loop with line 8, when passed an arraywith A[1, ..j − 1] in as
ending order, is toreturn a permutation of that array with
A[1, ..j] in as
ending order. Thus if the loopinvariant and the loop
ondition are true atline 1, then at line 8, A is a permutation ofthe input array, and A[1, ..j] is in as
endingorder. Thus the loop invariant remains trueafter the in
rementation of j in the for-loop.

1. Algorithms and Data Structures – 19/24

ont.

Termination: The for-loop terminates with the loopinvariant true and j = A.length+ 1. Thus
A[1, ..A.length] is in as
ending order and isa permutation of the input array, as required.

1. Algorithms and Data Structures – 20/24

While-loop

Ea
h iteration of the while-loop
ompares the key, thevalue in A[j], to the value in A[i], and
opies value in
A[i] one position up if A[i] > key. The goal is to verifythe assumption used in analysis of the for-loop. Thus thefollowing is a reasonable loop invariant: A, with keyinserted into A[i+ 1] is a permutation of the input arrayfor the loop. The values in A[1, ..i] followed by thevalues in A[i+ 2, ..j] are the values in the input array inpositions 1, ..j − 1, in the input order. Further,

A[k] > key for k ∈ {i+ 2, ..j}.

1. Algorithms and Data Structures – 21/24

Initialization

At this point, i = j− 1, and the input array has not been
hanged. Thus A with key inserted into A[i+ 1] = A[j]is a permutation of the input array for the loop. Thesubarray A[i+ 2, ..j] is empty, so the values in A[1, ..i]followed by the values in A[i+ 2, ..j] are the values inthe input array in positions 1, ..j − 1, in the input order.The set {i+ 2, ..j} is empty, so the
omparison

A[k] > key for k ∈ {i+ 2, ..j} is trivially true.

1. Algorithms and Data Structures – 22/24

Maintenan
e

Given that the loop
ondition is true and the loop isentered, A[i] > key. Line 6
opies A[i] into A[i+ 1].Thus the values in A[1, ..i − 1] followed by the values in
A[i+ 1, ..j] are the values in the input array in positions

1, ..j − 1, in the input order. Also, A[k] > key for
k ∈ {i+ 1, ..j}. In line 7, i is de
remented. For thisnew i, the values in A[1, ..i] followed by the values in

A[i+ 2, ..j] are the values in the input array in positions

1, ..j − 1, in the input order. Also, A[k] > key for

k ∈ {i+ 2, ..j}, as required.

1. Algorithms and Data Structures – 23/24

Termination

The loop terminates with the loop
ondition true and
A[i] ≤ key. Line 8
opies key into A[i+ 1]. The loopinvariant implies that A[1, ..j]
ontains the values in inthe input array in positions 1, ..j, A is a permutation ofthe input array, and the values in A[i+ 2, ..j] are greaterthat key, the value in position i+ 1. Assuming that

A[1, ..j − 1] was in as
ending order when the while-loopwas entered, and A
ontains a permutation of the valuesin the input array for the fun
tion, A[1, ..j] is inas
ending order after line 8 and A is still a permutationof the argument of the fun
tion.

1. Algorithms and Data Structures – 24/24

	{Algorithms}
	{Algorithm Terms}
	{Algorithms as Technology}
	{cont.}
	{Recent Innovations}
	{The Innovators}
	{more...}
	{The Challenge}
	{challenge, cont.}
	{Data Structures}
	{Sample Problems}
	{Chapter 2}
	{Insertion Sort}
	{Correctness}
	{Loop Invariant}
	{For- loop Invariant}
	{Invariant Verification}
	{cont.}
	{cont.}
	{While-loop}
	{Initialization}
	{Maintenance}
	{Termination}

