Algorithms and Data Structures

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/24

Algorithms

An algorithm is a well-defined procedure to produce
output with a specified realtion to input.

Sorting is a typical example. There are many sorting
algorithms with different strengths and weaknesses.

e Input is a sequence of numbers < ay,az ...a, >
e Output is a permutation of the input

< ay, Gy, ...a, > with a; < a; whenever ¢ < j.

1. Algorithms and Data Structures — 2/24

Algorithm Terms

An instance of a problem is a specific input.

An algorithm solves a problem if, for any valid input, it
eventually halts with the correct output. If this is the
case, the algorithm is said to be correct.

1. Algorithms and Data Structures — 3/24

Algorithms as Technology

There are many fields in which progress depends on the design of
correct algorithms that run in a practical amount of time and require a
practical amount of memory.

® Genomics, proteomics, bioinformatics

o assembling DNA sequences from short sequences of nucleotides
o determining possible geometries of proteins

e genome comparisons
® |Internet traffic management
o making traffic fast, secure, and robust

® Cryptography

1. Algorithms and Data Structures — 4/24

cont.

Games

e rendering graphics

o controlling non-player characters
Operations Research

o allocating resources to optimize results
Data Mining and Statistical Analysis
Modeling and Simulation

o predicting climate, fire, disease, economic conditions

1. Algorithms and Data Structures — 5/24

Recent Innovations

The “35 under 35" is a list of 35 innovators under 35
assembled by Technology Review Magazine each
year to identity individuals whose work is “likely to be
influential for a very long time.” Of the 35, 11 of the
honorees work in computing. Of those, 9 used novel
algorithms or data structures in their innovations.

1. Algorithms and Data Structures — 6/24

The Innovators

Ren Ng (Entrepreneur of the Year), age 32, developed a camera that
takes pictures that can be digitally refocused after the image is captured.

Rana el Kaliouby, age 34, assembled the world’s largest database of facial
expressions, and is developing technologies that allow automated

assessment of a subject’s mental state.

John Hering, age 29, is developing detection of smartphone malware,
using crowd-sourced threat finding, and a database of rogue apps.

Hossein Rahnama, age 32, is developing practical context aware
computing for mobile applications.

Saikat Guha, age 30, has designed a practical method to target web
advertising without violating privacy, and is designing algorithms that
detect privacy violations.

1. Algorithms and Data Structures — 7/24

more...

Daniel Ek, age 29, developed Spotify, a cloud based provider of legal

on-demand access to 16 million songs.

Andreas Veltin, age 32, developed hardware and software for a super-fast

camera that can capture the progress of a light ray.

Burcin Becerik-Gerber, age 35, developed algorithms to harmonize work
environment preferences of a building’s occupants to reduce energy

consumption.

Drew Houston, age 29, overcame speed, scale, and memory problems to
develop Dropbox.

1. Algorithms and Data Structures — 8/24

The Challenge

Challenge: Design a correct algorithm with acceptable,
or optimal, performance. The main performance metrics
are speed and size of memory required.

Example: Would you sort an array by generating all
possible permutations, then testing each to find a sorted
permutation?

1. Algorithms and Data Structures — 9/24

challenge, cont.

That approach requires the generation of n!
permutations. By the way, 100! ~ 101°%.

1. Algorithms and Data Structures — 10/24

Data Structures

A data structure is a way to organize and store data to
facilitate the accesses and modifications. The data
structure chosen or designed for a particular application
should perform on the types of access and moditication
required by he application. A data structure may be
implemented in multiple ways.

Examples:

o |ist

e stack

® queue

e binary search tree

e priority queue

1. Algorithms and Data Structures — 11/24

Sample Problems

® Suppose you are given a set of real numbers, A, and a spacing
size s > 0. The goal is to group the numbers into subsets
Aq, As, ... A,with the property that, for each subset, all the
numbers in the subset are at least s apart. That is,
Vie{l,2,..n}Vae A;Vbe A;(a# b= |a—b] >s).
Further, n should be minimal. By the way, this problem may

seem artificial, but it arose in a practical problem.

® Find the maximal sequence possible for a given set of

dominoes.

1. Algorithms and Data Structures — 12/24

Chapter 2

Chapter 2 provides an overview of the analysis of an
algorithm correctness and the analysis of an algorithms's
asymptotic running time. The INSERTION SORT and
MERGE SORT algorithms for sorting arrays are used as
examples.

These algorithms are presented using pseudocode. The
text's version of pseudocode uses indentation in place of
nested brackets and uses “//" to introduce comments.
Other conventions are detailed on pages 20 and 21.

1. Algorithms and Data Structures — 13/24

Insertion Sort

| nsertion-Sort (A)

1 for j=2 to A length

2 key=A[]]

3 /] Insert AJ] into the sorted sequence
4 =) -1

5 while 1>0 and Al] >key

6 AT +1] =Al 1]

7 =1 -1

8 Al i +1] =key

Correctness

When you specity an algorithm in pseudocode but do not
implement it, how can you verify that the algorithm is
correct? Correctness becomes more difficult to verity
when the algorithm involves iteration.

n this case, one approach is to use loop invariants. A
oop invariant is a statement about the state of the
orogram, including the data, each time control passes to
the loop statement.

1. Algorithms and Data Structures — 15/24

Loop Invariant

e The loop invariant should be true when control first
passes to the loop. (Initialization)

e |f the loop invariant was true before an iteration of
the loop block, and the loop condition is true, then
the loop invariant is true after the iteration, at the
evaluation of the loop condition. (Maintenance)

e The loop invariant should give useful information
about the configuration of the program when control
exits the loop. (Termination)

1. Algorithms and Data Structures — 16/24

For- loop Invariant

For now, assume that if the while-loop is passed an array
A with A[l,..5 — 1] in ascending order, then after line 8,
the array A is a permutation of the the input array, and
Al[l,..5] is in ascending order.

The loop invariant for the for-loop is “A is a
permutation of the input array, and A[l,..7 — 1] is in
ascending order.”

1. Algorithms and Data Structures — 17/24

Invariant Verification

Initialization j=2: The input array has not been
changed. The claim that A[1,..7 — 1] in
ascending order becomes the claim that
All,..2 — 1] = A[1] is in ascending order is
trivially true.

1. Algorithms and Data Structures — 18/24

cont.

Maintenance: We are assuming that the effect of the
while-loop with line 8, when passed an array
with A[1,..7 — 1] in ascending order, is to
return a permutation of that array with
Al[1,..7] in ascending order. Thus if the loop
invariant and the loop condition are true at
line 1, then at line 8, A is a permutation of
the input array, and A[1,..j] is in ascending
order. Thus the loop invariant remains true
after the incrementation of j in the for-loop.

1. Algorithms and Data Structures — 19/24

cont.

Termination: The for-loop terminates with the loop
invariant true and j = A.length + 1. Thus
A[l,..A.length] is in ascending order and is
a permutation of the input array, as required.

1. Algorithms and Data Structures — 20/24

While-loop

Each iteration of the while-loop compares the key, the
value in A|j], to the value in Alz], and copies value in
Ali] one position up if Ali] > key. The goal is to verify
the assumption used in analysis of the for-loop. Thus the
following is a reasonable loop invariant: A, with key
inserted into A[i + 1] is a permutation of the input array
for the loop. The values in A[1, ..i| followed by the
values in Ali + 2, ..j] are the values in the input array in

positions 1,..9 — 1, in the input order. Further,
Alk] > key for ke {i+2,..5}.

1. Algorithms and Data Structures — 21/24

Initialization

At this point, ¢ = 7 — 1, and the input array has not been
changed. Thus A with key inserted into At 4+ 1] = Alj]
Is a permutation of the input array for the loop. The
subarray Ali 4 2,..7] is empty, so the values in A[1, ..1]
followed by the values in Ali + 2, ..5] are the values in
the input array in positions 1,..7 — 1, in the input order.
The set {i +2,..7} is empty, so the comparison

Alk] > key for k € {1+ 2,..5} is trivially true.

1. Algorithms and Data Structures — 22/24

Maintenance

Given that the loop condition is true and the loop is
entered, Ali| > key. Line 6 copies Ali| into Ali + 1].
Thus the values in A[1,..5 — 1] followed by the values in
Ali 4+ 1,..5] are the values in the input array in positions
1,..7 — 1, in the input order. Also, Alk| > key for
ke{i+1,..5}. Inline 7, i is decremented. For this
new ¢, the values in A[l,..i| followed by the values in
Ali 4 2, ..5] are the values in the input array in positions
1,..7 — 1, in the input order. Also, Alk] > key for
ke{i+2,.5}, as required.

1. Algorithms and Data Structures — 23/24

Termination

The loop terminates with the loop condition true and
Ali] < key. Line 8 copies key into Ali + 1]. The loop
invariant implies that A[1,..j] contains the values in in

t
t
t

ne input array in positions 1,..7, A is a permutation of
he input array, and the values in Al + 2, ..7] are greater

nat key, the value in position 2 + 1. Assuming that

All,..7 — 1] was in ascending order when the while-loop
was entered, and A contains a permutation of the values
in the input array for the function, A|l,..7] is in
ascending order after line 8 and A is still a permutation
of the argument of the function.

1. Algorithms and Data Structures — 24/24

	{Algorithms}
	{Algorithm Terms}
	{Algorithms as Technology}
	{cont.}
	{Recent Innovations}
	{The Innovators}
	{more...}
	{The Challenge}
	{challenge, cont.}
	{Data Structures}
	{Sample Problems}
	{Chapter 2}
	{Insertion Sort}
	{Correctness}
	{Loop Invariant}
	{For- loop Invariant}
	{Invariant Verification}
	{cont.}
	{cont.}
	{While-loop}
	{Initialization}
	{Maintenance}
	{Termination}

