Basics of Separate Compilation in Cygwin

The situation:

The main function is in one file, say main.cpp. That file has 'include' statements bringing in '.h' files that have structure definitions and function declarations. The definitions of those functions reside in other '.cpp' files, say aux1.cpp, aux2.cpp … auxN.cpp. To compile main.cpp, the compiler needs access to those files.
This situation commonly arises when the main function uses structures and functions that are of general interest, so should be written to be usable in other contexts. The situation may also occur because the project is large enough that separating the functions into separate files improves readability.

A simple solution:

Use g++ as usual, but after the name of the file containing your main function, append the names of the files containing the necessary definitions. For example, to compile the project above, writing the executable to 'main', enter

g++ -o main main.cpp aux1.cpp aux2.cpp ... auxN.cpp

at the command prompt.

This has the effect of creating aux1.o through auxN.o, object code for the corresponding files, and linking these to main.cpp. This allows creation of main.exe.

A more efficient solution:

Under the same scenario, you can compile the aux files separately, using
g++ -c aux1.cpp

to create aux1.o, etc. Then create main.exe with

g++ -o main main.cpp aux1.cpp aux2.o ... auxN.o
The advantage of this is that, if the aux object files are already in good order, they need not be recompiled every time you improve main.cpp.

Makefile:

UNIX, and other operating systems, allows you to write a file usually called makefile to automate the process of making exactly the necessary updates when you change some of the source files in a project. The syntax for basic versions of such files isn't terribly elaborate. The "makefile" handout describes how to write a basic makefile.
Once you have written the makefile correctly, you can update the project by entering make on the command line. The computer will then recompile any .cpp files that have been changed since the last make command, as well as, recursively, any .cpp files dependent on the recompiled files.
