Basics of makefiles

The motivation:

You have a project code in multiple .h and .cpp files. You want to be able to update the project after any changes. For efficiency, you prefer to recompile only those portions of the project affected by the changes. However, recalling dependencies and typing the correct compilation commands after every change is tedious and error-prone. You need a simple update method.

A solution:

UNIX and other operating systems allow you to write a file called makefile that contains dependency information and compilation instructions for your project using specific makefile syntax. This file can be written in any basic text editor, such as Notepad or Gvim. Entering make on the command line causes your computer to update the project according to the instructions in makefile.

If you want to be able to use the make command to compile different projects in the same directory, you may use names other that makefile. Suppose you call the file makescratch. You would enter make –f makescratch on the command line to compile the project detailed in makescratch.

The syntax:

(This exposition is indebted to the description in A Book on C, by Kelley and Pohl.)

A simple makefile uses two types of lines: dependency lines and action lines. The file starts with a dependency line, which must begin in the leftmost column. The line consists of the name of a file to be created for the project, followed by a ':' and a space-separated list of the files on which that file depends. One or more action lines follow each dependency line. Each action line is tabbed in once (NOT spaced in). The action lines consist of the compilation commands you would give to create the desired file if one or more of the files on which it depends was changed. A dependency line together with is action lines are called a rule. A makefile is a sequence of rules.

For example, suppose that your project was contained in two .cpp files and a .h file, main.cpp, functions.cpp, and functions.h, and that both main.cpp and functions.cpp #include functions.h. The following is a simple, effective makefile for this situation.

main: main.o functions.o

g++ -o main main.o functions.o

main.o: main.cpp functions.h

g++ -c main.cpp

functions.o: functions.cpp functions.h

g++ -c functions.cpp

The make command will make the first rule in the makefile. But the dependency line may indicate other rules that must be made first. These rules, in turn, may require other rules to be made.

For example, if, since your last make, you edited main.cpp, but nothing else, the make command starts execution at the first line. It looks up the rule for main.o. That rule does not involve any dependent files with rules, so it executes the rule. Going back to the first line, the make command looks up the rule for functions.o. The dependency line for functions.o has no files that have been edited since the last compilation, so control returns to the first rule. All the files on which main depends are now updated, so the make command creates main. Each compilation command shows on the screen as it executes.

The order in which you write the rules is important. The make command will terminate when it successfully updates the first line. Thus the rule for creating a file should appear in your makefile before the rules for its dependent files.

