Project 3, ENCE 3830-2

Due Wednesday, May 31

The problem: A wide variety of problems can be interpreted as the problem of finding the so-called shortest path from a source vertex to another vertex in a directed graph with weights associated with the edges. Specifically, a directed graph consists of a set V of vertices, and a set E of ordered pairs of vertices, called edges. In a weighted directed graph, a function w maps E to R, where R is the real numbers. That is, w associates a weight to each edge. A path from a designated source vertex s to a destination v is a sequence of vertices s=v1, v2, …vk=v such that (vi, vi+1) is in E for all i in 1…k. Such a path is a shortest path if for any other path s=u1, u2, …um=v,
[image: image1.wmf]å

å

=

-

=

-

£

m

i

i

i

k

i

i

i

u

u

w

v

v

w

2

1

2

1

))

,

((

))

,

((

. In other words, a shortest path from s to v is a path using edges of minimal total weight.

As an example, the shortest path from a starting point to a destination point in a two-dimensional region with polygonal obstacles reduces to a graph shortest-path problem.

Some algorithms and notation: (This discussion follows Introduction to Algorithms, second edition, by Cormen, Leiserson. Rivest, Stein)

To simplify the explanation, let’s restrict attention to a weighted, directed graph G for which the function w is non-negative.

The algorithm below is the Bellman-Ford algorithm, though a section necessary if w is allowed to take on negative values is omitted. The algorithm requires us to maintain two auxiliary sets of data, to be updated as the algorithm progresses.

First, to each vertex v, associate a value d[v], a running estimate of the length , i.e. total weight, of a shortest path from s to v. This may be infinite.

Second, to each vertex v, associate a vertex p[v], its estimated predecessor in a shortest path from s to v. This may be undefined.

We also need two auxiliary functions, INITIALIZE-SINGLE-SOURCE(G, s) to set the initial values for d and p, and the RELAX(u, v, w), the key step in successive improvements of d and p. In pseudo-code, they are as follows:

INITIALIZE-SINGLE-SOURCE(G, s)

{

for(each vertex v in V)

{

d[v]=infinity;

p[v]=undefined;

}

d[s]=0;

}

RELAX(u, v, w)

{

if(d[v]>d[u]+w((u,v)))

{

d[v]= d[u]+w((u,v));

p[v]=u;

}

}

Given these, and in pseudo-code, the abbreviated Bellman-Ford algorithm just initializes the graph G for the source vertex s, and then calls RELAX (u, v, w) for each edge in G repeatedly.

BELLMAN-FORD (G, s, w)

{

INITIALIZE-SINGLE-SOURCE(G, s);

for(i=1; i!=(number of edges in V); i++)

{

for each edge (u,v) in E

RELAX(u, v, w);

}

}

At the end of the ‘for’ loop, d[v] is the actual minimal length for a path from s to v, and p[v] is the predecessor of v on a shortest path from s to v.

Proving the correctness of this algorithm is beyond the scope of this course. However, working a few examples will give you a good intuition for what is happening.

The assignment: Write a program that reads a weighted, directed graph from a text file. The program should display V, E, and a table for w. Then the program should prompt the user for the vertex, and a destination vertex. Finally, the program outputs a shortest path from the source to the destination, together with its length. We will discuss the format for the graph file. Please think about what you would find most convenient.

The details: You should write a package, divided into a header file and an implementation file, that provides graph utilities. Use classes as appropriate. You may assume that the vertices are named with positive integers. Use doubles for the weights. Judicious use of maps and container classes will simplify your work.

The grading: You may work in groups of one or two. Groups may share ideas but not code. Do not use outside code. That constitutes plagiarism for this project.

I will assign points as follows:

Correct code function: 50%

Clear, efficient, and thorough graph package: 25%

Correct makefile: 10%

Useful documentation: 10%

Convenient user interface and display: 5%

(Note that code that doesn't compile will not score very highly. If you have noticed bugs in your project that you are unable to fix by the deadline, you will receive a higher score if you document them than if you leave them for me to discover for myself.)

_1208628747.unknown

