
Blending Games, Multimedia and Reality

Chris GauthierDickey
Department of Computer Science

University of Denver
chrisg@cs.du.edu

ABSTRACT
Games, multimedia, and reality are on a converging path as motion
capture, 3d video, and high performance networking and comput-
ing become more affordable and common place with consumers.
Next generation video game systems are planning on including
many aspects of motion capture and facial recognition algorithms.
As such, we present an analysis of system issues surrounding the
amalgamation of these technologies in the future and then propose
a system architecture where augmented reality can become a part
of our every day learning, computation, and gaming. We conclude
with a discussion of the advantages and disadvantages of our de-
sign.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems—Artificial, augmented, and virtual realities;
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Design, Human Factors

1. INTRODUCTION
As game and multimedia experiences have improved, they have

become increasingly used on a daily basis by consumers as a source
of entertainment, communication, training and education. Given
that the next generation of devices will likely include advances
such as 3D video, audio capturing, motion capture, and wearable
displays, we need to consider how an architecture for these future
multimedia systems should be designed so that it effectively takes
advantage of its resources while providing the services needed for
future games and multimedia experiences.

To date, most of the multimedia research has been concerned
with allowing individual devices to provide one or more of these
services. We are instead interested in a holistic approach to allow-
ing mass interaction and interoperability between games, multime-
dia and reality in a unified architecture. In this architecture, users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’10, February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02 ...$10.00.

can interact with each other in physical spaces, whether or not the
user is actually physically present, but it requires sensors capable
of tracking multiple targets, singling out voices in a crowd, and
wearable displays for maximum efficacy.

The advantages of an architecture which provides this type of
connectivity are many-fold. If we can network motion capture (mo-
cap) devices that are capable of tracking multiple targets, then we
can mocap a space such as an entire building floor. This in turn
gives the people in the building the ability to interact with virtual
objects (via wearable or fixed displays) and other people, whether
it be for collaboration or entertainment purposes.

We present an architecture which takes into account recent re-
search into areas of games, multimedia, and augmented reality. Our
assumption is that users will:

1. Expect mobility: users are already used to phones and PDAs
that allow them to stream audio and video, play games, and
run applications.

2. Need to stream data: given user mobility, we expect that we
will need to be able to stream data to appropriate resources
for processing, whether it is a CPU, a GPU, or a cluster for
computation.

3. Need new input methods: carrying around a mouse and/or
keyboard for computer interactions is extremely both cum-
bersome and error prone when shrunk for mobility purposes.
Motion capture, on the other hand, would allow us to recog-
nize gestures and give users virtual input devices appropriate
to their application. Further, we expect multi-user interac-
tions from these input devices.

4. Need to capture audio/video: we expect resolution and band-
width to increase as users desire more fidelity and we capture
additional information such as that needed by 3D video. Fur-
ther, we expect users will need/want to be able to stream the
data from their capturing devices to other devices.

These requirements present some multimedia research hurdles
to be overcome and include multi-target, full-body motion capture,
computer vision, targeted listening and parsing of voices within
crowds, and gesture recognition. Within the context of our archi-
tecture, we discuss these research issues.

We note that the architecture described in this paper is one pos-
sible way of organization that would allow for the incremental im-
provement of sensors, output devices, and computational infras-
tructures as it is interconnected by a stream processing language.
As new hardware is added, data streams can be redirected to appro-
priate resources with little reconfiguration through the language.
We conclude with a discussion of the possibilities and advantages
and drawbacks of such an architecture and design.

The contribution of this paper is an architectural design for this
type of multimedia system that includes authentication, processing
and interactions. Further, we identify important areas of research
for the realization of this system and we also identify important
drawbacks that must be considered for future multimedia systems
that track users with the detail required by the desired types of in-
teractions within our system.

2. BACKGROUND AND RELATED WORK
The background for this work really encompasses a large por-

tion of multimedia research, especially over the last several years,
which has been focused on improved stream processing and data
streaming methods, and improved multimedia interfaces. In this
section, we cover some of the more recent work that is related to
our architecture here. This section is not meant to be a survey on
all work, but just touches on those areas closest to our architecture.
We do note that in particular, much of the multimedia architectural
work has been recently focused on P2P streaming of video and au-
dio. While this is useful for internet-scale transmissions, it is less
useful for our architecture which, while distributed, is still local to
a particular physical space.

Capra et al. discuss methods for interacting with a fictional sys-
tem similar to the one we present here [4]. Their methods are in-
teresting because they allow users to interact with sensors via re-
quests, sending data streams to recording or mobile devices. Our
architecture would support such interactions by setting permissions
on authenticated users allowing the recording of sensor streams.

IrisNet, by Campbell et al., is an architecture where multimedia
sensors are attached to significant computing sources which can
store and preprocess feeds and then allow queries on the stored
data by the network [3]. This architecture is interesting because it
specifically tried to address the issue that multimedia sensors col-
lect large streams of data compared to typical mote-sensors. How-
ever, it differs from our proposal in that it is concerned primarily
with sensors and not interactions between users as ours is.

Wu et al. describe developing a theoretical framework for un-
derstanding the quality of the user experience in a system such as
ours [10]. This framework uses models of the system and sensors
to predict how well it will both track and monitor participants. A
framework such as this could be used to evaluate our architecture
prior to implementation.

Bernardin and Stiefelhagen developed an audio/visual multi-per-
son tracking system capable of identifying people in a room using
microphones and video cameras once trained with voice and facial
features [2]. Their system works well in conversation style settings,
where one person talks at a time.

Roussel and Gueddana make the argument that research into
video mediated communication should focus on the human aspects
of communication and allow participants to choose their level of
participation and fidelity [9]. While this is somewhat focused on
changing the behavior of video, we believe that another dimension
could be important and useful in communication–that of virtual
presence.

Kwon and Candan descibe DANS, which uses a distributed hash
table to provide distributed workflow routing, resource location and
processing [7]. While the workflow graph is in essence static (since
it is defined by what processing must be done on the data being pro-
cessed), the chosen nodes and routing on the network are performed
dynamically, allowing flexibility in node choice for load balancing
and redundancy.

DANS is perhaps the closest related work to a system we use
called DUP [5], which is a distributed stream processing language
that connects sensors, computational infrastructure, and outputs.

Authentication
Services

Computation
Services

Sensor Inputs

User Outputs
User

Figure 1: High-level Architecture: Upon coming in contact with
this architecture, users authenticate to determine which ser-
vices they have available to them. Sensors, located in the phys-
ical space, collect motion capture data, audio and video when
users are present. Collected data is streamed to computation
services for processing and understanding user requests. Re-
sults are streamed back to fixed user output devices, such as
displays or speakers, or streamed back directly to the user, in
the case of wearable output devices like AR goggles.

However, using a DHT causes unnecessary overheads due to rout-
ing through an overlay on the network.

Benko argues that we should not only investigate multi-touch
surfaces, but also non-flat and depth-aware interfaces [1]. This
would allow more natural interactions in the physical world with
virtual objects. We only add that multi-user interfaces are a must
for future architectures such as ours. Of course many researchers
have investigated a plethora of interfaces, we only mention one here
for brevity purposes.

3. ARCHITECTURE
Our architecture is comprised of three main aspects: authentica-

tion, a computing and networking infrastructure, sensors for data
collection, and output devices (such as wearable or fixed displays).
We diagram the major pieces in Figure 1. From this figure we can
see that the user first connects with the architecture by authenticat-
ing to determine available services. The user then interacts with
the system through the sensors, (which we broadly define as in-
put devices or actual sensors), recognized gestures or voice. Given
that sensors typically have low computational power, the data is
streamed to computational services which process the input. As-
suming the user is identified and authenticated, the processed input
is used to interact with the system in some fashion and the output
of their actions are streamed to either output devices or to the user.

Of course, this architecture probably seems quite familiar. If we
replace the sensor inputs with ‘keyboard and mouse’, and the user
outputs with with ‘LCD monitor’ we have a typical computing plat-
form. The primary difference here really comes in several areas:

1. We expect this to be a space-oriented architecture, where a
space encompasses an entire floor or building, a designated
outdoor space, or a vehicle. As a space-oriented architecture,
it is naturally distributed, so that if, for example, sensors in a
building fail, they do not affect interactivity in another area.
Furthermore, the space-oriented concept naturally leads to a
hierarchical organization of spaces: a campus, for example,

is a collection of spaces (the buildings) with which a user can
travel to and interact with.

2. We assume that the architecture is multi-user. This is equiva-
lent to modern multi-user OSes that allow remote login. The
difference here is that we expect users will interact with each
other and their programs for collaboration. Current OSes
make this a somewhat difficult task at best, using the file
paradigm to exchange interactions.

3. We assume user mobility. This is equivalent to logging on
to different machines in the same administrative domain. In
our case, we expect users to be able to migrate from space
to space fairly seamlessly. Sensors allow a user to interact
with the system regardless of where they are in the space. In
addition, we expect that users will want to log on to a space
remotely.

4. Unlike a typical computing platform, we model spaces within
the computation services for user-computer interactions and
user-user interactions. This, for example, allows remote avatars
to be present in a building roaming the halls or remaining by
the water-cooler to catch and converse with colleagues.

3.1 Assumptions
The main assumptions in our design are related to user desires

and available hardware. First, we assume that users would be in-
terested in this type of architecture if it worked effectively. They
may be willing to use wearable displays, for example, if the re-
sult was a significantly improved experience. We assume that all
users will carry a mobile device capable of some computation and
at least a WiFi connection. We do not make assumptions about the
capabilities of the mobile device beyond that it can be used to help
identify the users, though if it provides location services, it simpli-
fies processing required to locate and identify individuals. Last, we
assume that we can provide enough networking hardware capable
of streaming the data from the sensors to other sinks.

3.2 Authentication
Authentication is a key aspect of this architecture for several rea-

sons. We acknowledge that current authentication technologies are
sufficient to be used with our architecture. However, we have a few
requirements beyond simple authentication to particular machines
in a work place. Because users are mobile, we do not want them
to have to type in passwords on a virtual keyboard or perhaps mo-
bile device frequently as it increases the chance for their passwords
to be compromised—especially when one considers the fact that
we are advocating video cameras and motion capture devices to be
placed throughout a space).

Instead, we assume that users will have a mobile device with
them that can handle their identification authentication as follows.
Spaces will broadcast a periodically changing and certified session
ID. Their mobile device will first connect to the network and be
assigned an IP address. They can then receive the session ID wire-
lessly or during DHCP. Their device can then use public-key cryp-
tography to identify themselves to the system: they encrypt the ses-
sion ID, time, and device address with their private key and send
this over the wireless network. The server can then use their public
key to decrypt the packet and determine which mobile address is
associated with the user. We diagram the authentication packet in
Figure 2. The use of the session ID prevents replay attacks on the
authentication server and allows us to determine which device(s)
belong to an authenticated user.

User ID E(Session ID, timestamp, device address)

Figure 2: Authentication packet: The authentication packet in-
cludes a clear-text user ID, to aid the server in determining
which public key to use, and the session ID, current time, and
device address, which are encrypted with the user’s private key.
Once authenticated, a shared key can be sent to the user allow-
ing the exchange of encrypted information between the compu-
tation services and the user.

Once the authentication server has the user’s address, it can ex-
change a shared session key for encryption with the user. This al-
lows data to be encrypted more efficiently than with public/private
key pairs. For example, devices which are capable of calculating
their own position or orientation can send updates to the system
concerning their current location and/or orientation. In addition,
further authentication can take place securely using the shared key.

We note that the computational services will contact the authen-
tication services as needed to validate that a user has sufficient cre-
dentials to request and use a given service.

3.3 Sensor Inputs
Sensor inputs form the primary method for interacting with the

spaces. A significant amount of research in games, multimedia, and
virtual/augmented reality has gone into designing sensors, which
we broadly define as any input device. However, the majority of
this research has been single-user specific. In our architecture, we
assume that multiple people will want to interact both with the com-
putational services and with each other. Thus, as researchers we
need to consider how we can measure and understand multi-party
interactions.

Sensors additionally have important security requirements. Be-
cause they are capable of collecting live information, sensors should
be required to authenticate with the system so that only administra-
tively placed sensors can feed information to the system. In addi-
tion, they need some computational power for encryption and pro-
cessing. We believe encryption of their data streams is required to
prevent eavesdropping (discussed in Section 5). Further, the com-
putational services needs to communicate with sensors. Services
may need to turn sensors on or off, move their orientation (for those
which can move), or increase or decrease sensitivity.

For interaction purposes we imagine that microphones, cameras,
touch devices, motion capture, and simple portal threshold sensors
are required, though clearly the idea behind this architecture is to
allow future senors to be easily integrated with the system. Signif-
icant research has been accomplished in each of these sensor types
(obviously portal threshold sensors are available to consumers in
the form of automatic light switches–for our purposes, we would
use these to turn on and off rooms of sensors based on whether or
not someone was in the room).

We argue that microphones are required to allow voice com-
mands to the system to be processed. The challenge here is 1)
locating where the voice is originating from, and 2) distinguishing
voices from each other in group settings. Bernardin and Stiefelha-
gen showed that voices could assist in locating the originators [2],
but research needs to be done in separating voice streams and then
analyzing their contents. Presumably, knowing the physical loca-
tions of the microphones in a room, and assuming we have a suffi-
cient number of microphones, a combination of fast-fourier trans-
forms and physical modeling would allow us to triangulate voice
positions and separate the voice streams. At the sensor level, all we
need is to stream the voice data to the computational services for

analysis–voice analysis is not performed at the sensors, though one
could imagine sensors having enough computational power in the
future to perform the analysis locally.

Video cameras are also needed in this system for two primary
reasons. First, video cameras stream data to the computational ser-
vices part of our architecture for analysis. Computer vision tech-
niques are frequently used to determine gestures or recognize faces
and moods, thus giving users new ways to interact with the sys-
tem. However, if someone is logging into the system remotely,
techniques in 3D video could be used to build a 3D scene that they
could interact with (i.e., texturing objects automatically with real
images).

We also believe that touch devices, including touch sensitive dis-
plays, are important for this architecture because of the new ways
they allow users to interact with the system. Recent work, such as
that by Benko [1], argue that while the flat display will probably
never go away because it is convenient for a large number of appli-
cations, other shapes and forms may provide more natural methods
of interaction.

Finally, we argue that large scale motion capture is essential for
this architecture. First, computer vision is quite computationally
expensive. Adding motion capture data gives us a 3D image of the
scenes, allowing us to more easily distinguish people. Clearly mo-
tion capture is going to be part of the next generation of game sys-
tems (e.g. Microsoft’sTMProject Natal, Sony’sTMPlayStation Mo-
tion Controller, Nintendo’sTMWii Remote). Thus, commodity mo-
tion capture is on the horizon for consumers. On the other hand,
only Microsoft’sTMtechnology appears to capture motion without
markers or additional devices beyond the motion sensor, and it is
not clear how many people it can capture simultaneously. In addi-
tion, we not only need to capture human motions, but we need to
associate them with individuals. One might do this through face
recognition or through mobile devices which give fine-grained lo-
cation information (i.e. less than the width of a human in accuracy).
Continued research in this area is necessary to allow us to capture
motions in an entire space, especially in terms of subdivision of the
processing tasks, unifying capturing devices, and human identifica-
tion.

Input sensors should be both addressable and searchable, per-
haps through some type of service from the computational services.
For example, security may want to monitor camera feeds. Remote
users may want to have access to a remote camera for interaction
purposes. However, clearly access to these devices should be re-
stricted to authenticated users only.

Being able to search for sets of sensors is also important for pri-
vacy reasons. For example, if one wanted to turn off all sensors in a
room for a private conversation, one would rather issue commands
to the system such as “turn off all sensors in the conference room”
instead of having to physically disable the devices.

3.4 Computation Services
The computation services are considered the backbone of the ar-

chitecture as they provide the computational power necessary to
process the streams of data being sent by the sensors. These compu-
tation services may be computer systems with CPUs and/or GPUs.
In Figure 1, we show the authentication and computation services
as clouds primarily because they may or may not be performed on
the same machine. Note that the sensors do need some network-
ing and computation ability to encrypt their data streams on route
to the computation backbone, and as such are not just simple data
collection devices.

Distributed Stream Processing: Providing the glue between the
sensors, computation services, authentication and output is a stream

grep

grep

fanout faninany
out.txtin.txt

TCP

TCP TCP

TCP

dupddupddupd

DUP

Code dup

Figure 3: In this figure, the DUP code, which specifies the work-
flow, calls the DUP executable which contacts DUP daemons
running on specified machines. Each DUP daemon gets a copy
of the DUP code, which is parsed and which determines what
stages are run on the local machine. This simple example shows
3 different machines: the first is running fanout, which dupli-
cates the input to all outputs; the 2nd machine is running par-
allel greps for different things; the final machine is running
faninany which merges the results of all inputs to a single
output.

processing system. For our purposes, we need something that is
lightweight and has low latency. Simple socket connections suffice
for this purpose, but preclude significant amounts of code reuse.
Instead, we use DUP, which is a parallel and distributed stream
processing language [5]. DUP is an extension of Unix pipes, except
that they allow any number of inputs and any number of outputs,
instead of just 3 that standard Unix pipes allow (stdin, stdout,
and stderr). DUP stages are similar to CMS pipelines [6]. We
call these multi-stream pipes stages and stages can be written in any
language appropriate to their functionality. With DUP, one designs
a data graph that represents the flow of data in the system. This
concept is similar to other workflow processing systems, such as
DANS [7], except that stages are simply processes that run on any
system and started (and stopped) by a dupd daemon. A simple
example of DUP is shown in Figure 3.

An important feature that DUP gives us is the ability to write
the stage in any language that supports reading and writing to files.
Since POSIX compliant machines view even sockets as files, we
can read from multiple sources and write to multiple sources across
the network fairly easily and in a composable manner. Stages can
then be written in a language appropriate to the problem. For ex-
ample, GPUs provide massive parallelism at the expense of poorly
performing branch statements. However, many computer vision
and graphics problems are solvable in real-time using a GPU. Thus,
a stage for processing images can be written in CUDA that runs on
the GPU and by using DUP, we can easily forward the data streams
to this stage for processing from any other machine. In essence,
DUP would allow us to leverage the computational services we
have available and easily change the workflow as new hardware
and software is developed.

Modeling and Simulating the Physical Space: In addition to
DUP, we expect that spaces will be modeled in 3D. As new users
approach and authenticate with a space, they will be streamed the
3D model of the space. This will allow both their mobile systems
and the computational services to have an understanding of the lay-
out of the space. Within the computational services, a virtual sim-

ulation will be executing using the 3D model of the space and the
positions of all recognized humans in the space. This is akin to a
game server running where the virtual world is the 3D representa-
tion of the physical world.

The modeling and simulation of the physical world within the
computational services is important because it allows users to inter-
act with the physical world in a meaningful way and it allows users
to remotely interact with people present physically. Of course, fur-
niture and objects are often moved around a building. We expect
that modeling will be done primarily of the walls, floors, doors,
and other permanent features. Computer vision could be used to
recognize other objects in the physical world and allow additional
modeling.

For example, if a user wishes to share a video with another user,
they could display it virtually on the wall. The simulation would
occur not only in the virtual representation, but also with wear-
able displays or on real wall-mounted displays (if wearable displays
were not available). Two users with wearable displays could look
at a physical wall and augment the reality with a video stream.

In fact, a physically present user could interact with a virtual user
if the physical user had a wearable display. As their voice would be
captured by microphone sensors when they spoke, the voice data
would then be streamed to any users within the vicinity in the vir-
tual space so that the remote user could hear and communicate with
the physically present user. In addition, when the virtual user spoke
(perhaps into a headset at home), their voice would be streamed to
the physical location corresponding the the virtual location of their
avatar. Given this kind of physical and virtual interaction, remote
collaboration would in theory be easier.

Processing Audio, Visual, and Motion Data: However, beyond
modeling and simulating the spaces, the computational layer must
also process voice data from group settings to interpret user com-
mands (i.e., “Computer, play the video on this display”). DUP
would allow us to easily stream voice data to CPUs or GPUs re-
sponsible for interpreting voice commands. Data streamed from
motion capture sensors and video cameras would also be analyzed
on appropriate and available resources using DUP. The analysis of
this data is, and most likely will continue to be, the subject of much
research in efficient and accurate computer vision. Understanding
the motions of users in the space and interpreting gestures correctly
is key to giving them the ability to interact effectively with each
other and the provided computational services.

We emphasize the usage of stream processing primarily because
high latency can cause undesirable user effects, such as motion
sickness, if displays are not updated promptly. Thus a method for
streaming processing is necessary for the architecture.

3.5 User Outputs
In terms of outputs, users are typically accustomed to audio and

visual output. Audio output is fairly simple once we know the
physical/virtual location of the user. For example, if a space has
speakers located around it, we can search for the closest speaker
and stream audio to them. This does cause some difficulty in cal-
culation if we are trying to present them with 3D audio, especially
in the presence of other users in different locations. On the other
hand, if they have headphones attached to their mobile device, we
could stream audio to it fairly trivially.

Visual output is slightly more complex, depending on whether or
not the user has wearable displays. Without wearable displays, we
can only display 2D video on fixed screens mounted throughout the
space. Lacking a wearable display, users that wish to interact with
virtual participants or 3D objects, do so through a fixed display.

Given wearable displays (either in HUD or screen format), we
can present them with an augmented reality by streaming 3D video
to their wearable displays (and probably through their mobile de-
vice). Since mobile devices still do not have significant processing
power (and using it drains the batteries in them), we assume that
we will stream already processed frames to them from the compu-
tational services. As mobile devices become more powerful, we
can simply stream data to them and allow the mobile device to per-
form the rendering operations.

Tactile and other outputs can also easily be added to the architec-
ture, though olfactory output systems are probably least desirable
in shared spaces since smells are difficult to contain in a fixed area.

3.6 Network Architecture
With this set of devices, from sensors, to computers, to output

devices, we now consider the network architecture. We have as-
sumed so far that users will carry mobile devices which connect to
the network. One issue that arises in practice is that the hand-off
between WiFi access points can take up to 1 second. Research has
addressed some of these issues [8], but connection issues with sock-
ets may arise when streaming audio and video to a mobile device
that is switching access points.

Furthermore, increasing the number of WiFi users in an area typ-
ically has a degrading effect on performance. On the other hand, we
assume that the computational services layer will provide the ma-
jority of the data processing and compression so that only a single
video and audio feed will need to be streamed to a mobile user.

Because the architecture is, for the most part distributed (i.e., you
cannot physically interact with the first and second floors, there-
fore we can separate the simulation between floors of a building),
adding sensors mainly requires adding network bandwidth in the
form of switches and possibly routers so that the computational in-
frastructure has sufficient bandwidth for the multimedia streams it
must process and respond to. Virtual avatars will move from simu-
lation to simulation by simply connecting to the source of simula-
tion for a particular space.

Therefore, except for increased bandwidth to handle the multi-
media streams from numerous sensors and faster and stable hand-
offs between WiFi access points, we do not foresee major architec-
tural changes required in a typical local area network.

4. ADVANTAGES
Given this architecture, we list the advantages of having such a

design. We assume that participants have, at minimum, wearable
displays (which is reasonable given current technology).

For the business and academic world, computational spaces al-
low us to collaborate with colleagues more efficiently. We can meet
together and interact with 2D and 3D objects without the encum-
brances of laptops and current OSes. Further, an ill colleague can
simply connect virtually without spreading germs, though some
may consider attending meetings even when sick to be a drawback
instead of a benefit. Roussel and Gueddana suggest that at least
in video mediated communication, we should be able to customize
our ’presence’ [9]. Such a system as ours allows us to even appear
virtually as an avatar of any shape or size.

In addition, this type of system would allow for augmented class-
rooms. Again, students unable to make an early morning class
could attend virtually. We could also present a more engaging
education by changing the classroom settings to more interesting
places. Perhaps learning math on the beach is more engaging to a
student than a classroom with white walls and small windows. Of
course this brings to light an entire other area of research which
relates to content creation for such a system.

This architecture would help advance the state-of-the-art in com-
puter games. As noted before, companies are already investigating
and using some form of motion capture as input. Since we are fully
tracking human motions throughout a building, games could be
truly mixed with reality. From puzzle type games, to role-playing
games, to typical zombie hack-and-slash games, the settings could
be known locations, adding an interesting element to play and new
challenges to game design. Given pervasive motion capture, we
could have multiplayer games with both physically and virtually
present players.

Finally, this type of architecture could advance the way we in-
teract with computers allowing us to use voice, gestures, motions
and augmented reality. Obvious computing paradigms for fixed-flat
displays, such as windows and desktops, may make less sense in an
augmented reality.

5. DRAWBACKS
Given the advantages, we would be remiss not to mention draw-

backs to an architecture such as this. First, adding pervasive sensors
increases the chance for eavesdropping on conversations or inter-
actions. Security is extremely important, as is the ability to ‘shut
off’ sensors in a room for privacy. Given the abundance of sensors
makes it easier for malicious users to place false sensors that al-
ways record and stream to their own storage as they would be less
likely to be recognized. Thus, any setup such as this would require
physical security measures to audit devices in a building.

Some people get motion sickness from using wearable displays,
especially if there is sufficient latency between image updates (of-
ten referred to as image swimming). As technology advances, the
swimming issues may be overcome, but this still does not mean
that it would prevent motion sickness from the devices. As such,
we would suggest some set of fixed displays that didn’t require
wearable displays for interaction.

Hacking is another problem with this type of system. Anyone
gaining improper access to the computational system would have
the ability to read incoming data feeds. Similarly, they may be able
to inject false information into the system with this kind of access.
One can only imagine the result of a hacker taking control of a
wearable display.

Finally, privacy issues are clearly involved when anyone pro-
poses fully tracking and recording individuals in a space and are
important issues for future research. Clearly at least some method
for making oneself ‘untrackable’ is important, especially when ma-
jor deadlines are approaching. Perhaps being able to participate
remotely even when physically being at the space is necessary to
allow users to remain in their offices while attending meetings.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented an architecture that allows mul-

tiple users to interact in both collaborative (i.e., work-related) and
entertaining (i.e., computer gaming) ways. Our architecture con-
sists of an authentication component, a sensor layer, a computa-
tional infrastructure, and an output layer. We use DUP to provide
the stream processing required for the many multimedia streams
which must be processed, analyzed, and possibly forwarded to re-
mote locations.

Multimedia systems research is needed to make several parts of
this architecture a reality, but we argue that the future of multi-
media systems will be computationally distributed, space-oriented,
and allow physical and virtual participation in experiences. How-
ever, given the many advantages of such a proposed system, re-
searchers need to carefully consider the consequences of a system

that fully tracks and records human movement and propose tech-
niques to mitigate potential issues.

As part of our ongoing and future work, we are developing voice
stream recognition algorithms for crowds and building-wide mo-
tion capture sensors using lasers. We are also developing a high-
level language for DUP to make building workflows easier since
most of the stream processing designs take form an acyclic graph.

7. REFERENCES
[1] H. Benko. Beyond flat surface computing: Challenges of

depth-aware and curved interfaces. In Proceedings of ACM
Multimedia, October 2009.

[2] K. Bernardin and R. Stiefelhagen. Audio-visual multi-person
tracking and identification for smart environments. In
Proceedings of ACM Multimedia, September 2007.

[3] J. Campbell, P. B. Gibbons, and S. Nath. Irisnet: An
internet-scale architecture for multimedia sensors. In
Proceedings of ACM Multimedia, November 2005.

[4] M. Capra, M. Radenkovic, S. Benford, and L. Oppermann.
The multimedia challenges raised by pervasive games. In
Proceedings of ACM Multimedia, November 2005.

[5] DUP: A distributed stream processing language.
http://dupsystem.org, January 2009.

[6] J. P. Hartmann. CMS Pipelines Explained. IBM Denmark,
http://vm.marist.edu/~pipeline/, September
2007.

[7] G. Kwon and K. S. Candan. DANS: Decentralized,
autonomous, and network-wide service delivery and
multimedia workflow processing. In Proceedings of ACM
Multimedia, October 2006.

[8] I. Ramani and S. Savage. Syncscan: Practical fast handoff for
802.11 infrastructure networks. In Proceedings of IEEE
Infocom, March 2005.

[9] N. Roussel and S. Gueddana. Beyond "beyond being there":
Towards multiscale communication systems. In Proceedings
of ACM Multimedia, September 2007.

[10] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. M. Sheppard,
and Z. Yang. Quality of experience in distributed interactive
multimedia environments: Towards a theoretical framework.
In Proceedings of ACM Multimedia, October 2009.

