
Scalable Supernode Selection in Peer-to-Peer Overlay Networks∗

Virginia Lo, Dayi Zhou, Yuhong Liu, Chris GauthierDickey, and Jun Li
{lo|dayizhou|liuyh|chrisg|lijun} @cs.uoregon.edu

Network Research Group – University of Oregon

Abstract

We define a problem called the supernode selection
problem which has emerged across a variety of peer-to-
peer applications. Supernode selection involves selec-
tion of a subset of the peers to serve a special role. The
supernodes must be well-dispersed throughout the peer-
to-peer overlay network, and must fulfill additional re-
quirements such as load balance, resource needs, adapt-
ability to churn, and heterogeneity. While similar to
dominating set and p-centers problems, the supernode
selection problem must meet the additional challenge
of operating within a huge, unknown and dynamically
changing network. We describe three generic super-
node selection protocols we have developed for peer-to-
peer environments: a label-based scheme for structured
overlay networks, a distributed protocol for coordinate-
based overlay networks, and a negotiation protocol for
unstructured overlays. We believe an integrated ap-
proach to the supernode selection problem can benefit
the peer-to-peer community through cross-fertilization
of ideas and sharing of protocols.

1. Introduction

We have identified a fundamental problem, which
we call the supernode selection problem, which occurs
across a spectrum of peer-to-peer applications, includ-
ing file sharing systems, distributed hash tables (DHTs),
publish/subscribe architectures, and peer-to-peer cycle
sharing systems. The supernode selection problem also
shows up in the fields of sensor networks, ad-hoc wire-
less networks, and peer-based Grid computing. Super-
node selection involves the selection of a subset of the
peers in a large scale, dynamic network to serve a dis-
tinguished role. The specially selected peers must be
well-dispersed throughout the network, and must typ-

∗Supported in part by NSF 9977524 and an NSF Graduate Re-
search Fellowship

ically fulfill additional requirements such as load bal-
ance, resources, access, and fault tolerance.

The supernode selection problem is highly challeng-
ing because in the peer-to-peer environment, a large
number of supernodes must be selected from a huge
and dynamically changing network in which neither the
node characteristics nor the network topology are known
a priori. Thus, simple strategies such as random selec-
tion don’t work. Supernode selection is more complex
than classic dominating set and p-centers from graph
theory, known to be NP-hard problems, because it must
respond to dynamic joins and leaves (churn), operate
among potentially malicious nodes, and function in an
environment that is highly heterogeneous.

Supernode selection shows up in many peer-to-peer
and networking applications. For example, in peer-
to-peer file sharing systems, such as Kazaa [11] and
Gnutella [6], protocols were developed for the designa-
tion of qualified supernodes (ultrapeers) to serve the or-
dinary peers for scalable content discovery. Peer-to-peer
infrastructure services require methods for the judicious
placement of monitors/landmarks/beacons throughout
the physical network for purposes of measurement, po-
sitioning, or routing [5, 16, 14]. In ad-hoc wireless net-
works, connectivity under highly dynamic conditions is
achieved by identifying a subset of the nodes to serve
as bridging nodes. This subset is formed using a dis-
tributed dominating set protocol such as in [22, 2, 23] so
that every node is within broadcast range of a bridging
node. Within sensor networks, supernodes are selected
for the purpose of data aggregation under the conditions
that they are well-distributed among the sensors and also
have sufficient remaining battery life [3].

In this paper, we demonstrate that many peer-to-peer
and networking applications are seeking solutions to
variations on the same fundamental problem. We first
define a general model for the supernode selection prob-
lem, describing its key requirements and challenges. We
show how the supernode selection problem is related
to dominating set and p-centers problems, and describe
how the supernode selection problem is instantiated in

several well-known peer-to-peer applications. We then
present three general purpose supernode selection proto-
cols we have developed for the three basic types of over-
lay networks used by peer-to-peer applications: struc-
tured overlay networks, coordinate-based overlay net-
works, and unstructured overlay networks.

SOLE: a label-based supernode selection protocol
for applications built on a structured overlay network
such as CAN [16], Chord [20] or Pastry [18]. SOLE
exploits the regular node labeling schemes used within
structured overlays to distribute supernodes evenly
throughout the overlay, to ensure fast access from non-
supernodes to supernodes, and to maintain a fixed sup-
ernode to non-supernode ratio as the overlay grows and
shrinks dynamically.

PoPCorn: a protocol for applications that use a
coordinate-based overlay network using systems such as
Vivaldi [1] or GNP [14]. This protocol distributes a fixed
number of supernodes evenly with respect to the topol-
ogy of the overlay network using a repulsion model.

H20: an advertisement-based protocol deployable in
an unstructured overlay network. This protocol can be
used to find qualified supernodes from among the peers
such that every ordinary peer is within k hops of C sup-
ernodes (multiple distance domination).

2. Problem Definition and Background

We first describe the unique requirements and chal-
lenges of the supernode selection problem in the context
of peer-to-peer systems. We then describe dominating
set and p-centers problems from graph theory that form
the theoretical underpinnings of the supernode selection
problem. We conclude by surveying examples of appli-
cations from peer-to-peer computing and other network-
ing domains that call for scalable supernode selection
protocols.

2.1. The Supernode Selection Problem

We broadly define the supernode selection problem
as that of selecting some subset of the peers in a large
scale peer-to-peer overlay network to take a special role,
with the designated supernodes providing service to
the non-supernodes. A potentially large and undefined
number of supernodes must be selected from an un-
known, large scale, and dynamically changing overlay
network. First, we describe key topological distribution
criteria that the supernodes must fulfill relative to the
non-supernodes. Second, we enumerate characteristics
of peer-to-peer networks that make supernode selection
difficult.

Supernode Distribution Criteria. The supernodes
must be distributed throughout the peer-to-peer overlay
network in a topologically sensitive way to meet one or
more of the distribution criteria listed below.

Access: non-supernodes must have low latency ac-
cess to one or more supernodes. Access can be measured
in hop counts or delay.

Dispersal: supernodes must be evenly distributed
throughout the overlay network; they should not be clus-
tered within only a few subregions of the overlay.

Proportion: a pre-specified global ratio of super-
nodes to non-supernodes must be maintained to meet
application-specific performance requirements.

Load balance: supernodes should not serve more
than k non-supernodes, where k can be configured lo-
cally based on the resource capability of each supernode.

Note that these criteria are inter-related in that speci-
fication of requirements for one may impact another, or
a given application may require multiple criteria.
Peer-to-Peer Factors. The design of supernode selec-
tion protocols within a peer-to-peer environment is chal-
lenging because in addition to fulfilling the distribution
requirements outlined above, they must also deal with
factors arising from the underlying nature of large scale,
highly dynamic systems.

Heterogeneity: Current large-scale peer-based sys-
tems consist of a large number of heterogeneous nodes
with differing hardware and software resources. A node
might not be eligible to be a supernode unless it meets
certain minimum qualifications. These qualifications in-
clude resources, such as CPU power, disk or memory
space, or battery life; stability, such as uptime or fault
tolerance; communication, such as bandwidth or fan-
out; and safety, such as trust or security.

Adaptability to churn: Peer-to-peer environments are
extremely dynamic. Supernode selection protocols must
be able to handle churn and respond quickly, especially
when supernodes leave the system. Supernode selection
protocols must also be adaptive to dynamic changes in
network traffic and overlay topology.

Resilience and fault tolerance: When a given super-
node dies, other supernodes should quickly take over its
functions or a new supernode should be quickly selected.

Security: Supernodes may be vulnerable to denial
of service attacks, malicious supernodes can disrupt the
system by failing to forward messages or by giving out
wrong information.

2.2. Dominating sets, p-centers, and leader elec-
tion

A wealth of research in graph theory, location theory,
and distributed computing provides a formal foundation

for the supernode selection problem.
The basic dominating set problem is the problem of

finding a minimal subset of the vertices in graph G,
called the dominator set, such that every node is either
a dominator or adjacent to a dominator. Dominating
set problems and algorithms are described thoroughly
in [8]. Most versions are NP-hard.

Distance domination seeks to find a minimum size d-
dominating set such that the distance from an arbitrary
node to a dominator is ≤ d. Multiple (c,d)-domination
requires that every peer be within distance d of c domi-
nators. Colored domination presumes that each node in
graph G has an associated color from the set c1, c2, ...cn.
A dominating set of color ci is one in which the domina-
tors are all of that color. Colored domination can be used
to model heterogeneous networks in which only certain
nodes are qualified to be dominators.

A secure dominating set is a subset of vertices S such
that for any vertex v not in S there exists a neighbor u
of v in S such that, if we add v to S and remove u from
S, we get another secure dominating set S. A global de-
fensive alliance is a variant of dominating set where the
set S is such that every vertex v not in S has a neighbor
in S and every vertex v in S has a majority of its neigh-
bors in S. A global offensive alliance is such that every
vertex not in S has a majority of its neighbors in S. A
k-defensive dominating set is a set of vertices that can
counter an attack on any k vertices where an attack on a
vertex must be countered by itself or by a neighbor.

The p-center problem is applicable when placing a
fixed number of supernodes in a network. Algorithms
and variations on this NP-hard discrete location prob-
lem are found in [7]. The p-center problem is the prob-
lem of finding a subset of p vertices in a graph G, called
centers, to minimize the maximum (or total) distance be-
tween a non-center node and its nearest center. Colored
p-centers can be used in a colored graph for the problem
of finding a subset of pi vertices of color ci to minimize
the above distance criteria.

The classic leader election problem from distributed
computing differs from supernode selection in that the
former assumes all nodes vote (directly or indirectly)
on the choice of each supernode. Leader election al-
gorithms are not scalable because they require broad-
casting or passing a token to all nodes. The best known
leader election protocols electing a leader (typically the
node with highest ID number) under various fault toler-
ant scenarios, such as Ring, Bully, etc. [13].

Heuristic algorithms developed for these classic
problems have been utilized in the field of networking,
but their applicability is usually limited to smaller scale,
static networks. For the most part, they involve cen-
tralized algorithms or high message passing overhead.

These algorithms were not designed for large scale peer-
to-peer networks that exhibit a high degree of churn and
that are dynamically heterogeneous.

2.3. Ultrapeers, landmarks, and rendezvous
points

The best known example of supernode selection in a
peer-to-peer application is the gnutella protocol [6] for
selection of ultrapeers—peers with sufficient bandwidth
and processing power to serve as proxies for other peers.
The use of ultrapeers reduces network traffic and speeds
up content discovery.

Any peer can select itself as an ultrapeer if it meets
the following criteria: it has been up for at least 5 min-
utes, has high bandwidth, sufficient processing power,
runs an OS that can handle a large number of simul-
taneous TCP connections, and is not firewalled/NATed.
The ultrapeer selection protocol dynamically adjusts the
number of supernodes as follows: if a leaf cannot find
an ultrapeer with free slots, it can promote itself to be an
ultrapeer. Ultrapeers also downgrade themselves when
they no longer serve any leaf nodes, or through negotia-
tion with nearby peers. Gnutella’s supernode selection
(ultrapeer selection) protocol loosely meets the distri-
bution criteria defined above and adapts dynamically to
users’ needs in a best effort fashion. One of gnutella’s
goals is to achieve a certain ratio of ultrapeers to leaf
nodes, but currently there is no way to control this ratio.
Security is not addressed in gnutella.

A canonical supernode selection problem that has
shown up as a bootstrapping step in a number of promi-
nent peer-to-peer systems is the designation of landmark
nodes in the Internet. The CAN [17] structured over-
lay is constructed using a binning technique in which
carefully placed landmarks are used to construct a topo-
logically sensitive overlay. Also, in GNP [14], a co-
ordinate system is built using landmark nodes. It has
been shown that the accuracy of the GNP coordinates is
highly sensitive to the location of the landmark nodes.
Choosing landmark nodes boils down to supernode se-
lection for a fixed, small number of supernodes that are
well-dispersed in the physical network. The notion of
evenly distributed or well-dispersed can be captured by
metrics based on pairwise distances, N-medians and N-
cluster medians [14], or distances from a centroid. Cur-
rent approaches use manual placement of landmarks or
centralized dominating set algorithms [21].

Examples from outside peer-to-peer computing illus-
trate the wide scope of the supernode selection problem.
In ad-hoc wireless networks, a distributed dominating
set protocol is used to select nodes to serve as interme-
diary routing nodes to bridge the distance between wire-

less nodes that are out of broadcast range of each other
[22, 2]. The IDMaps [5] distance map of the Internet
used a centralized p-centers algorithm to place Tracer
monitors and Boxes throughout a known network topol-
ogy. Sensor networks utilize specially placed monitor
nodes as rendezvous points to collect and aggregate sen-
sor data [3] under access and battery life constraints.

Table 1 lists a few examples of the supernode selec-
tion problem for a range of applications, showing the
commonality and diversity in supernode qualifications
and supernode distribution requirements.

Projects/papers Supernode Distribution
Qualifications Criteria

Distance Estimation

CAN[17],
GNP[14],
IDMaps
(Tracer/Box)[5]

Minimal

Inter-landmark
distance,N-
medians,N-cluster-
median, Fixed # of
landmarks

Content Location

Gnutella[6],
Kazaa[11]

Operating
system,
Bandwidth,
Uptime,
Memory/CPU

Maintain # of ultra-
peer in proportion to
leaf nodes

Routing

Expressway[10],
Sequoia
(router)[9]

Highly
available,
Fan-out,
Bandwidth,
Trust

Close to network ac-
cess points, k hops to
c supernodes, Disjoint
paths

Data Aggregation
Sensor
networks[3]

Battery
life

Within signal radius

Rendezvous Point

Sequoia
(RP)[9],
Ferreira[4]

Bandwidth,
Uptime,
Memory/CPU,
Trust

Easily accessible,
Distribution fits
density of non-
supernodes

Monitors (point-of-presence)
IDMaps
[15],
NETI@home[19]

Minimal
Fixed # of monitors,
Sensitive to network
topology

Table 1. Supernode Selection Examples

3. Three New Supernode Selection Protocols

Heuristic algorithms for classical problems such as
dominating set and p-center cannot be applied to large
scale, dynamic peer-to-peer environments. Standard
networking techniques such as random selection of
peers, or flooding-based search for suitable supernodes
do not work. Nodes selected by a random strategy may

not be qualify to be supernodes and may be poorly dis-
persed. Flooding-based search for a large number of
supernodes is not scalable and does not adapt well to
dynamic changes in the network.

For these reasons, we introduce three new supernode
selection protocols for the three basic types of over-
lay networks: structured, coordinate-based, and unstruc-
tured. These protocols take advantage of properties of
the respective overlay types to better address supernode
selection. Performance evaluation of these protocols is
part of our ongoing research agenda, but outside scope
of this paper.

3.1. SOLE: Supernode selection in structured
overlay networks

SOLE is designed to select a group of supernodes in
a structured overlay network, with a goal of keeping the
supernode to non-supernode ratio stable as peers join
and leave the overlay. SOLE also maintains low access
from non-supernodes to supernodes and provides load
balancing for each supernode. In the last part of this
section, we discuss how SOLE addresses resource het-
erogeneity, churn, and fault tolerance.

A DHT (Distributed Hash Table) built on a struc-
tured overlay network such as CAN [16], Chord [20],
and Pastry [18] makes use of a symmetric, regular node
label space, in which each physical node owns a virtual
subspace in the overlay. In these structured overlay net-
works, a compact node label expression can encode a
(large) collection of virtual nodes.

SOLE exploits this notation and uses a node label ex-
pression to designate a subset of the virtual node label
space as supernodes. The supernode label expression is
stored in the DHT for fast and easy lookup. The number
of supernodes can be expanded simply by changing the
node label expression (see examples below). Because a
structured overlay network maps physical nodes to vir-
tual subspaces in a manner that is sensitive to both den-
sity and topology, the supernodes are evenly distributed
among physical non-supernode nodes and every non-
supernode has one or more nearby supernodes.
Initiation of supernode selection. A node initiates the
supernode selection procedure for some service by hash-
ing information about the service into the DHT: the pub-
lic key of the initiator and the supernode selection pol-
icy. This policy contains the supernode label expression,
the minimum criteria for a node to be a supernode, and
maximum lifetime of a supernode. A non-supernode can
discover the identity of supernodes for this service by ac-
cessing the DHT using the service related key to lookup
the supernode label expression.

Example 1: CAN structured overlay. Assume the

CAN space is a d-dimensional space and the length of
the ith dimension is di. To select k supernodes, the ser-
vice initiator first factors k into k1,k2,k3,. . . ,kd where
k =

∏d
i=1 ki. The ith dimension of the supernode label

should obey the formula (bi + n ∗ di/ki)%di, where bi

is a random number chosen in the range of [0,di] and n
is an integer. The randomness prevents different service
initiators from choosing the same group of supernodes.
Figure 1 illustrates this process for 16 supernodes in a
two-dimensional CAN space.

Virtual Supernode Label

Supernode

Non−supernode

(0.05, 0.95) (0.3, 0.95)

(0.3, 0.7)(0.05, 0.7)

(0.05, 0.45) (0.3, 0.45)

(0.3, 0.2)(0.05, 0.2) (0.55, 0.2) (0.8, 0.2)

(0.8, 0.45)(0.55, 0.45)

(0.8, 0.7)(0.55, 0.7)

(0.55, 0.95) (0.8, 0.95)

Figure 1. Supernode selection in CAN.
(Supernode label expression is (0.05+0.25∗
n)%1, (0.20 + 0.25 ∗ m)%1

Example 2: Pastry structured overlay. To select
k supernodes, the service initiator needs to generate
a node label with �log2k� don’t-care bits as the high-
est order bits (or the don’t-care bits can be distributed
randomly within the label); the remaining bits in the
node label are randomly set to 0 or 1. For example, if
the service initiator needs 1024 supernodes it will use
××× . . .×︸ ︷︷ ︸

10 bits

1001 . . . 1︸ ︷︷ ︸
118 bits

as the supernode label expres-

sion. Any node whose label matches the 118 instanti-
ated bits is a potential supernode. When a message are
sent towards the supernode label, the physical node with
the closest node label will receive it.
Supernode takes charge of the service. The initiator
can send a message towards the supernode labels to in-
form the chosen supernodes. The notification is done via
multicast in the overlay network. Each physical node
that owns a node whose label matches the supernode la-
bel expression will receive the message and become a
supernode. Alternatively, a supernode takes charge upon
receiving the first request from a non-supernode.
Non-supernode joins service. If a non-supernode
wants to join a service, it looks up the supernode
label expression in the DHT. The non-supernode can

then figure out the nearest supernode in the virtual
overlay according to the label-based routing protocol.
The structured overlay network provides bounded
virtual routing with path length proportional to the
distance between labels in the label space. In CAN the
non-supernode uses the Cartesian distance between its
own label and the supernode label to estimate distance.
In Pastry, the non-supernode uses the bit-wise XOR
operation to compute the label distance from which it
estimates the physical distance.

Resilience and fault tolerance. SOLE must function in
situations in which supernodes depart gracefully or die
suddenly. A supernode can replicate supernode-related
state on the neighbor nodes that will take over the sub-
space covered by its label if it fails. Supernode fail-
ure will be detected by the underlying overlay network
maintenance protocol. The most capable neighbor of the
failed supernode can then take over the supernode role.

Heterogeneity. Supernodes should be those nodes with
better capability with respect to CPU speed, network
connections, and other resources. If a new node joins
towards an existing supernode coordinate, the new node
and the existing physical node serving as a supernode
can negotiate to see which one is more capable to take
the supernode role. Finally, a nearby non-supernode can
offer to take over a nearby supernode’s role if it is more
capable by swapping virtual subspaces.

Adaptability. A non-supernode can switch to another
supernode when it is not satisfied with the performance
of its current supernode. It can determine the distance
to other supernodes by comparing its own node label
expression with the supernode’s node label expression,
or it can query the DHT to see if new supernodes have
been selected by the initiator. When more supernodes
are needed the initiator simply expands the supernode
label expression to cover more virtual node labels.

Many peer-to-peer applications built on structured
overlay networks can benefit from SOLE. For example,
SOLE can be used to dynamically select supernodes to
act as rendezvous points for applications such as cycle
sharing, publish/subscribe, or storage sharing. Research
in resource discovery in peer-to-peer cycle sharing sys-
tems has shown that if rendezvous points are used to
collect resource information and to match queries from
clients, the performance will be dramatically improved
compared with probing-based or advertisement-based
resource discovery methods [24].

3.2. PoPCorn: Supernode Selection on a
Coordinate-based Overlay Network

PoPCorn assumes an n-dimensional Euclidean coor-
dinate space using an Internet coordinate system such as
GNP [14] or Vivaldi [1]. PopCorn is suited for appli-
cations that wish to select a fixed set of k supernodes
and distribute them evenly throughout the overlay, to
perform a service such as security monitoring, protocol
testing, or data repositories. PoPCorn’s primary distri-
bution criteria, dispersal, is achieved by maximizing the
sum of inter-node distances between all pairs of super-
nodes. PoPCorn also achieves good access from non-
supernodes to supernode, and can be easily extended to
address heterogeneity, adaptability, and fault tolerance.

The PoPCorn protocol selects k supernodes by dis-
persing k tokens through the overlay coordinate space
using a repulsion model among the tokens, analogous to
forces among charged particles. Each token represents
one of the supernodes which moves through the overlay
based on the forces exerted on it by other tokens. When
equilibrium is reached, each node holding a token is se-
lected as a supernode.
Initial Token Placement. The Initiator sends out k to-
kens to random peers in the overlay. Each peer can re-
ceive at most one token. Any peer which receives a to-
ken becomes a potential supernode. The initiator can
distribute the tokens itself or it can ask its neighbors to
help distribute tokens.
Token Adjustment. The repulsion model is used to ad-
just the location of the tokens. After a node receives a
token and becomes a potential supernode, it will start a
scoped gossiping session with its neighbors to tell them
the coordinates of the token it holds. Whenever a gos-
siping message arrives, a potential supernode will re-
calculate the combined force vector of repulsions from
nearby tokens. If the magnitude of the combined repul-
sions exceeds a threshold TR, this potential supernode
will pass its token to the neighbor whose position is clos-
est to the direction of the combined repulsion vector.

Figure 2 illustrates the repulsion model with a sim-
ple example in which the nodes are evenly distributed
in a 2-dimensional Euclidean space. There are three po-
tential supernodes: A, B, and F . Node A receives two
repulsions RF and RB , from nodes F and B, respec-
tively. The combination of the two repulsions is vector
R. Among A’s neighbors, D has the smallest angle with
R (� RAD is the smallest). If the magnitude of R ex-
ceeds A’s threshold, A will pass its token to node D,
which will became a new potential supernode.
Finalization. If the time that a token stays on one
potential supernode exceeds some time limit T , the
node will mark its status as stable and it will no longer

∠
RF

R

RB

Adjust Token
Repulsion
Combined Repulsion

RAD

Potential Supernode
Non Supernode

2

1

3

4

0 1 2 3 4

y

D(2,1)

A(2,2)E(1,2)

B(2,3) F(3,3)

C(3,2)

x

Figure 2. PoPCorn Repulsion Protocol

participate in token migration. After the PoPCorn to-
kens have stabilized, each node holding a token reports
its position to the PoP initiator who will eventually ship
the code for the PoP task as well as the location of the
other tokens.

Heterogeneity The threshold function TR for a node can
be changed according to the qualifications of that node
to be a supernode. Nodes that are well qualified to
serve as supernodes have higher threshold values, while
poorly qualified nodes have lower thresholds. An un-
qualified node can set its threshold to zero.
Adaptiveness and Resilience. Each token has a unique
ID and nodes which hold the tokens gossip the IDs of the
tokens. Loss of a token caused by node leave or failure
will be noticed by missing heartbeat messages from that
token. The neighbor tokens can decide to replace this
missing token by generating a token with an ID identi-
cal to the missing token. They will place the new token
in the last reported location of the missing token, and
then let the PoPCorn protocol adjust the location of that
new token based on repulsion forces. Alternatively, the
node which discovers the loss of a token can report to
the initiator and let it decide whether it needs to inject a
new token or not.
Load Balance. The threshold function in the PoPCorn
protocol can be used in other creative ways, for exam-
ple, to meet load balancing criteria. In order to make
more tokens stay in high density regions of the over-
lay, a potential supernode can query its neighbors and
gather local information about the number of nearby
nodes. Based on this information, if a potential super-
node detects that it is in a high density region, it can set
a higher threshold which must be overcome for the token

to move. Similarly, potential supernodes in lower den-
sity regions will set a lower threshold and will be more
likely to pass tokens on to other nodes.

PoPCorn was designed as part of the CCOF (Clus-
ter Computing on the Fly) [12] project for peer-to-peer
cycle sharing (harnessing idle cycles throughout the In-
ternet). PoPCorn places tasks that collectively form a
distributed point-of-presence (PoP) application into a
cycle sharing overlay network. PoP applications typi-
cally have low CPU and moderate communication re-
quirements. Examples include security monitors, Inter-
net measurement monitors, and distributed protocol test-
ing. Compared to volunteer systems, like NETI@home,
PoPCorn can better satisfy the distribution criteria and
place tasks evenly throughout the overlay.

3.3. H20: Supernode selection protocol for un-
structured overlay networks

The H20 (Hierarchical 2-level Overlay) protocol for
supernode selection is a distributed negotiation proto-
col for unstructured overlay networks. It is essentially
a scalable protocol for multiple (c, d) colored domina-
tion that addresses the following supernode selection re-
quirements: access, load balance, and fault tolerance in
a dynamic and heterogeneous environment, and some
security issues.

H20 uses a classic advertisement-based protocol,
in which supernodes advertise supernode information,
and non-supernodes cache these advertisements. Non-
supernodes can then choose to join the best supernode(s)
using locally cached information. This protocol gives
full autonomy to both supernodes and non-supernodes,
allowing each to negotiate using its own local policy.
H20 is similar in many ways to the gnutella protocol,
but allows for finer-grained control over the supernode
selection process e.g., it can consider trust, secure paths,
and routing performance.
Supernode Advertisement. A node capable of serving
as a supernode advertises itself to its neighbors within a
certain scope. The advertisement includes information
about its qualifications to be a supernode (such as trust
level, uptime, bandwidth, and neighborhood size). Each
advertisement is propagated a certain number of hops
(set by each individual supernode) and carries with it the
route travelled, i.e. an ordered list of the overlay nodes
visited. This information is used by non-supernodes as
part of the selection criteria. A node that receives an
advertisement message caches the advertisement about
the potential supernode in its local cache.
Supernode Search. If a new node want to find sup-
ernodes, it first consults its local cache for supernode
candidates. If there are no suitable candidates in the

cache, it queries its immediate neighbors. If a contacted
neighbor is a supernode, it replies to the requestor with
its qualifications. If a contacted neighbor is not a sup-
ernode, it replies with entries from its local cache and
the requestor will cache these new responses. The re-
questor then chooses the best candidate(s) according to
its own criteria, and applies to those candidate super-
nodes. The contacted supernodes can confirm or reject
such requests. If the requestor does not hear from any-
one within a given time interval or is not satisfied with
the current supernodes, it has several choices: if it is
qualified, it can declare itself a supernode and begin the
advertisement protocol; it can join the overlay at another
node, or it wait for a random amount of time and try
again.

H20 is currently used to create a 2-level hierarchy
for communication among security monitors within the
Sequoia collaborative security monitoring system [9].
The supernodes form themselves into an overlay net-
work which is utilized as a backbone for fast and secure
information dissemination. Only nodes that hold a se-
curity certificate (obtained from a central authority) are
eligible to be supernodes. A non-supernode can check
the trust level information in the certificate presented by
a supernode. A non-supernode can also choose a super-
node based on trust-based routing criteria by evaluating
the trust level of nodes along the path to the potential
supernode. For fault tolerance, a given non-supernode
can connect to several supernodes, verifying that its con-
nections to those supernodes traverse disjoint paths. La-
tency criteria can also be considered.

H20 can also be used to support threshold cryp-
tographic techniques (secret sharing) to certify public
keys. An (n, t) threshold scheme distributes partial sig-
natures to each of n parties in such a way that any t ≤ n
parties can authenticate, but it is infeasible for any sub-
set of t − 1 parties to do so. H20 selects a subset of
the nodes in the network to act as certificate authorities
(CAs) such that any ordinary node has one-hop access
to at least t CAs, a colored (t, 1) domination problem.

4 Discussion and Conclusions

The challenge of the supernode selection problem for
peer-to-peer applications lies in its need to fulfill disper-
sal and access criteria in a way that is scalable, highly
adaptive, fault tolerant, and that respects local node au-
tonomy. Furthermore, the supernode selection protocols
must cope with an unknown, large scale, dynamically
changing, and heterogeneous network.

We have described three supernode selection proto-
cols that deal with some of these challenges in unique
ways. SOLE and any protocol based on structured over-

lays capitalizes on the use the supernode label expres-
sion to efficiently encode the identity of all the super-
nodes as well as the distances to supernodes. Asyn-
chronous distributed protocols such as PoPCorn and
H20 are maximally flexible because they provide lo-
cal control over supernode selection criteria. Thus, they
can be easily tailored to a wide variety of applications.
However, they must be carefully designed to minimize
message-passing overhead and converge to a (reason-
ably) stable set of supernodes.

There are many open problems for the supernode se-
lection problem. (1) Algorithm and protocol develop-
ment. There is a need for fully distributed algorithms
for the underlying graph theoretic dominating set and
p-centers that operating under dynamic conditions. In
addition, protocols that emphasize specific distribution
criteria, or that are tailored to classes of applications
need to be developed. Bridging the gap between ab-
stract algorithms and practical protocols is challenging.
(2) Performance analysis. Measuring the performance
of a supernode selection protocol is a hard problem in
a large dynamic network. Metrics, workloads, bench-
marks from peer-to-peer computing need to be assem-
bled that can be used to evaluate and compare supernode
selection protocols in dynamic large scale networks. It
is not clear yet what metrics best capture dispersal, ac-
cess, proportion, and load balance. (3) Security. Clearly
a wide range of questions related to secure supernode se-
lection remain open. These include dealing with denial
of service attacks on the supernodes, as well as how to
detect and neutralize malicious supernodes.

We believe an integrated approach to the supernode
selection problem, built on strong graph theoretic foun-
dations and guided by realistic applications, can yield
benefits for the field of peer-to-peer computing and be-
yond.

References

[1] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vi-
valdi: A decentralized network coordinate system. In
SIGCOMM ’04.

[2] B. Das and V. Bharghavan. Routing in ad-hoc networks
using minimum connected dominating sets. In ICC (1),
pages 376–380, 1997.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next century challenges: scalable coordination in sensor
networks. In MobiCom’99.

[4] R. A. Ferreira, S. Jagannathan, and A. Grama. Enhancing
locality in structured peer-to-peer networks. In ICPADS,
2004.

[5] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewicz,
and Y. Jin. An architecture for a global Internet host dis-
tance estimation service. In INFOCOM’99.

[6] Gnutella Protocol Development. http://www.
the-gdf.org, 2005.

[7] G. Handler and P. Mirchandani. Location on Networks:
Theory and Algorithms. The MIT Press, 1979.

[8] T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals
of Domination in Graphs. 1998.

[9] X. Kang, D. Zhou, D. Rao, J. Li, and V. Lo. Sequoia:
A robust communication architecture for collaborative
security monitoring systems. In Poster session, SIG-
COMM’04.

[10] M. Karlsson, M. Mahalingam, and Z. Xu. Turning het-
erogeneity into an advantage in overlay routing. In IN-
FOCOM’02.

[11] Kazaa http://www.kazaa.com.
[12] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster

Computing on the Fly: P2P scheduling of idle cycles in
the Internet. In IPTPS’04.

[13] A. Lynch. Distributed Algorithms. Morgan Kaufmann,
San Francisco, 1997.

[14] T. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In INFOCOM’02.

[15] V. Paxson. End-to-end routing behavior in the Internet.
In SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Commu-
nications, 1996.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
SIGCOMM’01.

[17] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server se-
lection. In INFOCOM’02, 2002.

[18] A. Rowstron and P. Druschel. Pastry: scalable, decen-
tralized object location, and routing for large-scale peer-
to-peer systems. In Proc. 18th IFIP/ACM Int’l Conf. on
Distributed Systems Platforms, Nov. 2001.

[19] C. R. Simpson, Jr., and G. F. Riley. Neti@home: A dis-
tributed approach to collecting end-to-end network per-
formance measurements. In 5th Passive and Active Mea-
surement Workshop, Apr. 2004.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: a scalable peer-to-peer lookup service
for internet applications. In Proc. ACM SIGCOMM, San
Diago, CA, Aug. 2001.

[21] V. Vazirani. Approximation Methods. Springer-Verlag,
1999.

[22] P. Wan, K. Alzoubi, and O. Frieder. Distributed con-
struction of connected dominating set in wireless ad hoc
networks. Mob. Netw. Appl., 9(2), 2004.

[23] J. Wu, F. Dai, M. Gao, and I. Stojmenovic. On calculat-
ing power-aware connected dominating sets for efficient
routing in ad hoc wireless networks. Journal of Commu-
nications and Networks, 4(1), March 2002.

[24] D. Zhou and V. Lo. Cluster Computing on the Fly: in a
cycle sharing peer-to-peer system. In Proceedings of the
4th International Workshop on Global and P2P Comput-
ing (GP2PC’04), 2004.

