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Abstract. Pearson product-moment correlation coefficients are a well-
practiced quantification of linear dependence seen across many fields.
When calculating a sample-based correlation coefficient, the accuracy of
the estimation is dependent on the quality and quantity of the sample.
Like all statistical models, these correlation coefficients can suffer from
overfitting, which results in the representation of random error instead
of an underlying trend.
In this paper, we discuss how Pearson product-moment correlation coef-
ficients can utilize information outside of the two items for which the cor-
relation is being computed. By introducing a transitive relationship with
one or more additional items that meet specified criterion, our Transitive
Pearson product-moment correlation coefficient can significantly reduce
the error, up to over 50%, of sparse, sample-based estimations. Finally,
we demonstrate that if the data is too dense or too sparse, transitivity
is detrimental in reducing the correlation estimation errors.

1 Introduction

Statistical models are used in the day-to-day lives of modern humans. Alleviating
traffic congestion, predicting weather patterns, or investing in the stock market
are all common examples of such models. When insufficient quantities of data
are used by these models, they exhibit a phenomenon known as overfitting. This
overfitting causes the models to display random error instead of an underlying
trend, which in turn makes it difficult to utilize the results in a sensible fashion.

We propose an algorithm that reduces the effects of overfitting by using in-
formation in the data set other than that which the statistical model was built
to utilize. For the purpose of discussion, we focus on a particular, ubiquitous
example of a statistical model that is susceptible to overfitting known as the
Pearson product-moment correlation coefficient (PMCC). This PMCC measures
the correlation, or linear dependence, between two vectors, i and j, and relies
solely on the intersection of those two vectors. Our proposed algorithm works by
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finding transitive neighbors, ks, such that the ks are the vectors in the data set
most similar to i. These ks are then used to form estimates for i’s relationship
with j, allowing our algorithm to incorporate auxiliary information that is nor-
mally disregarded. Note that statistically PMCC does not exhibit transitivity:
i.e., if X and Y are correlated and Y and Z are correlated, then X and Z are not
necessarily correlated. Our goal, however, is to try to exploit those cases where
the transitive relationship exists.

The existing approaches to alleviating the effects of overfitting do not address
this issue directly. Instead, techniques specific to particular applications have
been developed. Our work, which uses the idea of transitivity, could in theory be
applied to improve estimations of many statistical models that use sparse data.

To quantify the performance of the algorithms presented in this paper, the
Netflix Prize data set was used. This readily available data consists of approxi-
mately 100 million user-movie pairs. The results demonstrate that our Transitive
Pearson product-moment correlation coefficient algorithm can reduce the error
by up to 50% of the PMCC approximations in sparse data sets.

The notion of utilizing transitivity in statistical models to reduce the effects
of sparse data is both abstract and powerful. The algorithm proposed in this
paper is important because it is the first to demonstrate a significant reduction of
error in sparse, sample-based PMCC estimations. PMCCs find uses in education,
psychology, physics, mathematics, economics, and finance, all of which can suffer
from overfitting and can subsequently benefit from the ideas presented in this
paper. Further, this notion of neighbor transitivity used by our algorithm could
be extended to reduce the error of other statistical models operating on sparse
data.

2 Background

Collaborative filtering (CF) is the process by which users rate material in a col-
lection or database of materials so that other users may use those ratings to help
them select materials they are interested in [8]. The first opportunities for col-
laborative filtering came through the Internet where users were able to provide
real time feedback on a product or service. Tivo [2] and Amazon were some of
the first commercial entities to take advantage of it and an analysis of collab-
orative filtering in Amazon demonstrated a 20% increase in sales attributed to
personalization through CF [11]. Adomavicius and Tuzhilin provide an extensive
survey of collaborative filtering techniques [1].

Recently, the Netflix Prize offered $1,000,000 to anyone who could improve
the accuracy of Netflix’s proprietary movie recommendation algorithm by 10%
[13,16,12,7,14]. Their algorithm was designed to recommend movies to customers
based on how a specific customer rated his previously viewed movies. This same
task of recommending movies could also be looked as the task of predicting
a rating for an unseen movie, and then recommend movies with the highest
predicted rating. Thus, the goal of the Netflix Prize was to improve the accuracy
of the predictions of unseen movies.
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Bell and Koren’s work towards the Netflix Prize focused on nearest-neighbor
models, latent-factor models, and combining those models together [3,5,10]. A
synopsis of the research by Bell et al. on the Netflix Prize can be found in [6,4].
While being related to our own work, we are more interested in estimating the
measures of similarity employed by these various algorithms.

The most widely used correlation coefficient in the Netflix Prize was the
Pearson product-moment correlation coefficient (PMCC) [3,5,10,9,15], where it
was used directly as a measure of similarity or to recommend an alternative.
PMCCs are used as a measure of similarity in numerous applications of many
different models, including matrix factorization and the nearest neighbor models.

Like any statistical model, the usefulness of the correlation coefficients is con-
tingent on having sufficient data. While the Netflix dataset is large, the ratings
are sparse and thus the challenge is to find relationships between users, movies
and their ratings. Using the dataset, the PMCC is used to measure the correla-
tion between two user’s ratings. Thus, to compute the correlation coefficient for
two users, an overlap in movies seen is needed to draw any conclusion about the
relation between those two users. Our algorithm does not have this requirement
and is able to make estimations of correlation coefficients when there is abso-
lutely no data of this kind. This in turn allows models that make use of Pearson
correlation coefficients to improve estimations of sample-based data and even
make predictions that simply were not possible without this technique.

3 Motivation

Quantifying a relationship between users or items is an important component
of collaborative filtering, with similarity being a measure of this relationship
[3,5,10,9,15]. Similarity is then used to weight different opinions proportionally
to the similarity of opinion between items. Determining the distribution of the
weight from similarity is a specific focus in [5,10], which demonstrate how crucial
similarity and weighting are when forming approximations from sparse data.
There are multiple interpretations of similarity, but one commonly accepted
method is correlation (linear or otherwise) [3,9,15].

3.1 Pearson Product-Moment Correlation Coefficient

The Pearson product-moment correlation coefficient (PMCC) is a measure of
linear dependence between two vectors, i and j, in the range of [-1,1]. A PMCC
of 1 indicates an exact positive correlation, -1 indicates an exact negative cor-
relation, while 0 indicates there is no linear relationship. The formula for the
PMCC of i and j can take many forms, one of which is shown in Eq. 1. The
PMCC of i and j, dubbed rij , is based only on i ∩ j which are the points of
data common between both variables. We will refer to |i∩ j| or |rij | as the direct
sample size of i and j.

rij =
∑

x(ix − ī)(jx − j̄)√∑
x(ix − ī)2

√∑
x(jx − j̄)2

(1)
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PMCCs are a standard for measuring linear dependence and thus, play a role
in many fields ranging from math and statistics to social sciences and psychology.
These correlations are, however, limited by the classic phrase that correlation
does not not equal causation. This means that, for example, although tempera-
ture and humidity are negatively correlated, it does not imply that the increase
in temperature caused the reduction in humidity. Correlations can still provide
insight because they demonstrate that historical data indicates that there simply
is a negative correlation, regardless of cause.

Other measures of similarity used in collaborative filtering include Euclidean
distance and the Cosine similarity. Euclidean distance, defined as d(i, j) =√∑n

x=1 i
2
x − j2x, finds a natural usage when dealing with spatial proximities.

The Cosine similarity finds the angle between vectors just as PMCCs find the
slope between vectors and takes the form cos(θ) = i·j

||i||||j|| .

3.2 Overfitting

PMCC can be limited in practice due to its susceptibility to overfitting. Over-
fitting, also referred to as inductive bias, is a symptom exhibited by statistical
models that causes them to display random error instead of an underlying rela-
tionship. This means that a statistical model can indicate a relationship that is
not true as a result of insufficient data. PMCCs are often used in sample-based
scenarios which can have a small set of data that is not guaranteed to be rep-
resentative of the theoretical, complete set of data. For example, if a statistical
model relies on a single point of data, that point could be an outlier causing the
model to predict incorrectly.

An alternative way of understanding overfitting is rooted in the law of large
numbers. The law of large numbers states that the more data points that exist
for a random variable, the more likely that data is to be representative of the
expected value of that random variable. Rolling a single dice has six possible
outcomes or values, all of which are equally likely. Because each outcome is
equally likely, the expected value can be computed as the average of all outcomes,
which for this example is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. If the dice is rolled only
once yielding a one, there will be significant error if that single roll is assumed to
be indicative of all possible rolls. Furthermore, statisticians are able to provide
a confidence interval using the law of large numbers. That is, a sample size and
interval may be specified such that the sample mean will fall within the specified
interval the desired percentage of the time.

This idea may be applied analogously to the Netflix Prize where a given
user’s rating is the random variable in question. If we have only one rating, that
rating is not necessarily representative of the long term opinions of that user.
The law of large numbers states that the more ratings we have, the more likely
that data will be representative of the long term. Thus, when dealing with an
incomplete set of data, as in collaborative filtering, it is important to understand
and account for this overfitting.

Various heuristics exist to curb overfitting and arrive at a more conservative
estimate. This may be beneficial, or even necessary in some situations, but the
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ability of these techniques to significantly improve the estimations is limited.
Such heuristics can be as simple as skewing the original, overfitted value towards
the mean of all values. In this paper, we propose an algorithm that minimizes the
effects of overfitting of sample-based PMCCs by using information other than
i∩ j. The myriad of applications of PMCCs can also suffer from overfitting and
can subsequently benefit from the ideas presented in this paper.

4 Algorithms

In this section we describe two heuristics and our Transitive PMCC algorithm.
For the following sections we assume there is a universe of vectors, for which a
PMCC could be computed between any two vectors using Eq. 1. The algorithms
will operate on some original PMCC, rij , and yield a new PMCC, r′ij , that is
intended to replace the rij for all subsequent applications.

4.1 Heuristics

The two heuristics presented in this section dampen the effects of overfitting by
reducing the reliance on the data specific to rij . This is done by using a lin-
ear combination of the original rij and some given constant. The first heuristic
algorithm, HeuristicA, takes two constants α and C where α is the linear com-
bination weight given to rij and 1−α is given to C. For our purposes we choose
C = 0, indicating that the more weight C gets, the more it would transform rij
to zero which, for PMCCs, means that there is no linearly dependent relation-
ship between i and j. This choice of C curbs overfitting by skewing the actual
rij towards this conservative value. HeuristicA is descibed formally in Eq. 2.

HeuristicAij = αrij + (1− α)C = αrij (2)

Note that α is not dependent on anything and thus, the linear combination
weight given to rij is fixed. The problem with HeuristicA is that regardless of
the direct sample size of rij , the linear combination weight remains fixed. Thus,
an rij with a very large direct sample size would recieve exactly α weight just
as an rij with a very small direct sample size. An improvement can be made by
having the linear combination weight of rij be a function of the direct sample
size of rij . This means that when there is a smaller direct sample size rij will
get less weight, but as direct sample size increases rij gets more weight. This is
useful because as direct sample size increases, the effects of overfitting ought to
decrease and thus, the original value can be weighted more heavily.

HeuristicB uses |rij | to arrive at a weight for rij that is more appropriate
for the specific pair of i and j. It is described in Eq. 3 where β is the linear
combination weight of rij and C is a chosen constant. As with HeuristicA, C =
0 was chosen so that the linear combination would be skewed towards 0, the
equivalent of no relationship. For β = 5 with a direct sample size of 95, HeuristicB
gives rij 95% of the linear combination weight and only 5% to no relationship.
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If the direct sample size were only 5, rij would receive only 50% of the weight
while no relationship would also get 50%. By determining a linear combination
weight for rij from the direct sample size of rij , HeuristicB incorporates the
conservative estimate with small amounts of data, but has little impact when
there is larger amounts.

HeuristicBij = ri,j
|rij |
|rij |+ β

+ (1− |rij |
|rij |+ β

)C = ri,j
|rij |
|rij |+ β

(3)

4.2 Transitive PMCC

Our proposed Transitive PMCC algorithm (TPMCC) works to find informa-
tion beyond i ∩ j to develop a stronger estimate for r′ij . This extra information
is rooted in the neighbors that are chosen to represent i’s relationship with j.
That is, the TPMCC algorithm takes the items most similar to i and uses their
relationships with j to estimate i’s relationship with j. To determine an ordering
of neighbors for i by similarity, we use abs(rik), such that neighbors most sim-
ilar will have a strong correlation. This strong linear dependence can be either
positive or negative denoted by the absolute value.

The process of selecting a set of neighbors for a given pair, i and j, begins by
examining all possible neighbor candidates, k. The candidates are then narrowed
down, keeping only those whose abs(rik) > δ for which δ is some chosen constant.
Additionally, we want to require some sufficient direct sample size on rik and
rkj so that we can have a degree of certainty that the neighbors themselves
aren’t suffering from overfitting. These constraints take the form of |rik| ≥ γik

and |rkj | ≥ γkj . We then take our final neighbor set Nij , as the set of all ks
that meet the previously stated criterion with δ, γik, and γkj . The number of
neighbors in Nij will be referred to as the transitive sample size. The Transitive
PMCC algorithm is then described in Eq. 4 where w(i, j) is the weight of the
actual rij and w(i, j, k) is the weight of neighbor k.

TPMCCij =

rijw(i, j) +
∑

k∈Nij

rkjw(i, j, k)

w(i, j) +
∑

k∈Nij

w(i, j, k)
(4)

In order to examine all possible neighbor candidates, every unique PMCC
must be computed. This step alone has an asymptotic complexity of O(n2) in
running time where n is the number of vectors in the universe. The TPMCC
algorithm then examines all n − 2 neighbor candidates for each of the O(n2)
unique PMCCs, making the asymptotic complexity of the Transitive PMCC
algorithm O(n3). This is somewhat alleviated by being trivially executed in
parallel, but the cubic complexity must be considered.
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5 Experimental Methodology

The Netflix Prize data set was used to experimentally measure the performance
of the heuristics and TPMCC algorithm presented in the previous section. This
data set contains the rating history for 480,189 users and 17,770 movies with
a total of 100,480,507 ratings. The movies data consists of a title, release year,
and a unique identifier while the users consist of a unique identifier only. Lastly,
the ratings data consists of a unique user identifier, a unique movie identifier,
date of the rating, and a value of the rating ranging from one to five.

One hundred million ratings may appear substantial, but it only represents
1% of the total possible ratings. That is, if every user rated every movie then
every possible rating would already be known, while in actuality 99% of those
ratings are missing. This missing data complicates the use of PMCCs as they
are based on only a subset of the possible data. Thus, the goal is to compute the
PMCCs of the complete set of data using only a subset of the data. These sets
could be thought of as a grading set and training set respectively. In our first
set of experiments, we examine the effects of training the TPMCC algorithm on
50% of the data set (or 0.5% of the total possible ratings) to predict against the
second half of the data. Subsequently, we will discuss how different amounts of
training data influence the results.

For our purposes, the only points of data used were the rating’s unique user
identifier, the unique movie identifier, and the rating value. Using only one ran-
dom half of the ratings data the PMCCs were computed for all pairs of movies.
With 17,770 movies this results in 157,877,565 unique pairs of movies, each with
their own PMCC. The PMCC for movies i and j in this set will be denoted
Originalij . Another set of PMCCs, Final, was computed using the entire set of
ratings data and is used to grade the accuracy of the Original PMCCs and the
PMCCs created by the algorithms.

The Original PMCCs will be used by the heuristics and TPMCC algorithm
as input to provide new estimates for the Final PMCCs. To quantify the error
between any two sets of PMCCs, we use the root mean-squared error (RMSE).
The formula for RMSE is shown in Eq. 5 where a and b are sets of PMCCs of
size n.

RMSE =

√√√√ 1
n

n∑
x=1

(ax − bx)2 (5)

The resulting RMSE between Original and Final is 0.468. Theoretically, the
worst possible RMSE could be 2.0. This would happen if, for example, the Final
PMCCs were all 1 and all of the Original PMCCs were -1. However, given a
distribution of data and predicting the mean yields much lower measures of error
in practice. For example, the RMSE of absolutely no data, which is predicting 0
for every PMCC, yields an RMSE of 0.542. This means that using the Original
PMCCs computed using half of the data only reduced the error of predicting 0
for all PMCCs by 13.7%.
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6 Results

6.1 Heuristics

Each heuristic was run using the Original PMCCs as input yielding two new sets
of PMCCS, HeuristicA and HeuristicB. A plot of the RMSE of HeuristicA
is shown in Figure 1a for different values of α. In this plot it is visible that the
RMSE of HeuristicA is minimized for α = 0.6, which reduced the RMSE to
0.425 - a 9.1% reduction of the RMSE of Original. The value of α that achieved
the lowest RMSE is between 0 and 1, indicating that Original does suffer from
overfitting and benefits from the HeuristicA algorithm. If α = 0 or α = 1 yielded
the least RMSE, it would mean that predicting 0 for all PMCCs was best or using
the unmodified HeuristicA was best, respectively. When α = 0.6, HeuristicA
is going to scale the Original PMCCs down to 60% of the linear combination
weight and give 40% to 0. The contrast with the effects of HeuristicA on the
PMCCs produced by the TPMCC algorithm as also shown in Figure 1a will be
discussed in the following section.
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Fig. 1: RMSE of HeuristicA vs. α and HeuristicB vs. β: HeuristicA exhibits the
lowest RMSE for Original when α is 0.6 for a 9.1% improvement of the RMSE
of Original while HeuristicB exhibits the lowest RMSE with Original when β
is 2, yielding a 9.8% improvement of the RMSE over Original.

The RMSE of the PMCCs of the HeuristicB algorithm were computed for
various values of β and displayed in Figure 1b. Note that choosing β = 0 results
in no change to Original and β = ∞ would result in a prediction of 0 for all
PMCCs. The RMSE for HeuristicB was minimized using β = 2, which achieved
a total reduction of RMSE of nearly 9.8% over Original. Like HeuristicA, this
demonstrates that HeuristicB does reduce the RMSE of the PMCCs indicating
that Original does suffer from overfitting. This value of β means that PMCCs
with a direct sample size of 2 were reduced to 50% of their value, while PMCCs
with a direct sample size of 20 were reduced to only 90.1% of their original value.
The contrast with the effects of HeuristicB on the PMCCs produced by the



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 9

TPMCC algorithm as also shown in Figure 1b will be discussed in the following
section.

6.2 Transitive PMCC

Multiple sets of PMCCs were computed with the proposed TPMCC algorithm
using Original as input. The different sets were computed with different con-
straints on the neighbor sets. We chose a fixed δ = 0.9 and γkj = 1, but used
multiple values of γik ranging from 3, 6, 12, and 24. This means that the neigh-
bors for the Orginalij were limited to ks such that abs(Originalik) ≥ 0.9, the
direct sample size of Originalkj is greater than zero and the direct sample size
of Originalik ranged from greater than or equal to 3, 6, 12, and 24. Our im-
plementation was in Java and the computation was performed in parallel on
four machines. The machines had 4GB of RAM, 2.13GHz Intel Core 2 CPU and
were running Debian GNU/linux 2.6.18. Depending on the value for γik (which
determined the size of the neighbor sets), the entire operation would take five
to eight hours. In contrast, a standard PMCC calculation could be done on a
single machine in less than an hour.

The RMSEs for the different values of γik are shown in Figure 2. The second
axis of the figure displays the average number of transitive and direct neighbors
of i and k for each γik. Note that with γik = 24 it was difficult to even find
a large number of direct neighbors and thus, didn’t have a significant impact
on the data. Both the improvements from γik = 24 to γik = 12 and γik = 12
to γik = 6 were substantial, while the change form γik = 6 to γik = 3 had
little impact. This shows that direct sample sizes like 6 and 12 held a strong
balance between attainability and usefulness. Neighbors that only have a very
small direct sample size are less reliable because such a small direct sample size
could easily misrepresent the complete set of data, however, they were still able
to make a positive contribution to reducing the overall RMSE. The TPMCC
algorithm is minimized for γik = 3 with nearly 1300 transitive neighbors, which
reduces the RMSE of Original to 0.28, a 40.1% reduction in RMSE. This set of
PMCCs, denoted Transitive, will be used in subsequent comparisons to other
sets of PMCCs.

Looking back at Figures 1a and 1b, both plots also display the results of
each heuristic algorithm on the PMCCs produced by TPMCC. In these fig-
ures Transitive is minimized by the heuristic algorithms when they don’t effect
them at all - namely α = 1 and β = 0 for HeuristicA and HeuristicB respec-
tively. As discussed in the above subsection, these values of α and β have no
effect on Transitive, and further, the RMSE gets progressively worse as the
heuristics make a larger impact. This is directly indicative that Transitive, un-
like Original, already accounts for overfitting and is only made worse by the
heuristics.
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Fig. 2: RMSE of TPMCC with Transitive vs. γik. The RMSE for Original is
also displayed for comparison. The secondary Y axis is the mean number of
transitive neighbors for the Neighbors plot. Note that Transitive exhibits the
lowest RMSE when γik is 3, computed with nearly 1300 neighbors, yielding a
40.1% improvement over Original.

6.3 Error Distributions of PMCC Estimations

The distribution of error from each algorithm’s PMCCs, including Original, are
shown in Figure 3a. The plot was built by computing the absolute value of the
error and counting the frequency of errors falling into each bucket. The buckets
have a lower and upper threshold, all of which were chosen to have width 0.1
and range from 0 to 2. A particular error value falls into the first bucket for
which the error is less than that bucket’s upper threshold. We will refer to the
first bucket, containing values ranging from 0 to 0.1, as the ”0.1 bucket” and all
subsequent buckets will be denoted by their upper threshold.

In Figure 3a, Original has the largest error of any other set of PMCCs. The
Transitive PMCCs contain the most values in the 0.1 bucket with over 30%
of all PMCCs falling into this category. Both heuristic PMCC sets are close
behind, while Original has only 25%. In the next two buckets, Original and
both heuristics differ slightly, but TPMCC has about 5% more. In addition,
Transitive is the only set of PMCCs to have any significant effect on buckets
0.7 to 1, which each contain roughly 5% of all other sets of PMCCs. Transitive
has much less, emphasizing the fact that it has much fewer high-error PMCCs.
These buckets are likely populated by PMCCs that have a very small direct
sample size which results in overfitting and high error. TPMCC’s performance
in this situation is indicative that the it is doing more than curing the symptoms
of overfitting, but actually using the extra information to improve estimations.

To further examine the PMCCs and understand the implications of Figure 3a,
a second distribution was made to show the RMSE for different direct sample
sizes of i and j in Figure 3b. Like Figure 3a, this distribution was sampled using
thresholds and each bucket is denoted by its upper threshold, where the first
bucket contains only those PMCCs who had a direct sample size of zero. The
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Fig. 3: Distributions of the absolute value of error and RMSEs: In (a), the dis-
tribution of the absolute value of the error with thresholds of width 0.1 where
the X axis represents upper threshold is shown. Note that Transitive has the
most values in buckets 0.1-0.5 while the others have more in the high-error buck-
ets. In (b), the distribution of RMSE by direct sample sizes of PMCCs where
the X axis represents upper threshold (inclusive). Note that Transitive exhibits
significantly lower RMSEs for direct sample sizes less than or equal to 8. After
this point Transitive has higher RMSEs demonstrating that the transitive data
becomes less valuable as direct sample size increases.

remaining buckets have exponential widths ranging from the previous buckets
upper threshold (exclusive) to its own upper threshold (inclusive).

The PMCCs for all algorithms, excluding Transitive, are identical for the
first two buckets, 0 and 1, as they had no data on which to operate and therefore
predicted 0. The TPMCC algorithm was able to produce PMCCs that reduced
this error in bucket 0 by over 31.2%. For bucket 1, Transitive further improves
and demonstrates its ability to operate with little direct data and reduces the
error of all other algorithms by 41.4%. Original doesn’t improve much in bucket
2, but both heuristics show a drastic change and reduce the RMSE ofOriginal by
17%. The Transitive continues to improve and reduces the RMSE of Original
for the bucket 2 by 50.4%. These contrasting results demonstrate the ability of
the TPMCC algorithm to extract indirect information from transitive neighbors
and improve the accuracy of predictions with limited amounts of data.

The Transitive continues to outperform all other algorithms by a similarly
significant margins up to bucket 8. For buckets larger than 16, a new trend
develops and Transitive begins to have a larger RMSE than the other algo-
rithms. This interesting behavior implies that there exists a direct sample size
at which point enough direct information renders the transitive neighbor infor-
mation detrimental. This is somewhat intuitive as the larger the direct sample
size that is available, the more trust that can be placed on the subsequent results.
Thus, when the results are sufficiently trusted, the Transitive uses less accurate
and indirect information from transitive neighbors that actually increases the
RMSE of the PMCC estimations.
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To gain insight as to how significantly Figure 3b will impact the overall
RMSE, a third distribution was made. This distribution is shown in Figure 4
and displays the percent of all PMCCs to fall in each of the buckets used in
Figure 3b. It shows that roughly 7% of all PMCCs have a direct sample size of
0. The thresholds with direct sample sizes from 0 to 8 account for 67.9% of all
data and Transitive was able to reduce the RMSE by 42.7%. In addition, the
thresholds where Transitive is detrimental, direct sample sizes with thresholds
64 and greater, all combine to make up only 12.9% of all unique pairs.
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Fig. 4: Distribution of all PMCCs by direct sample sizes where X axis represents
upper threshold. Note that samples sizes 0 through 8, where TPMCC performs
well, account for 67.9% of all PMCCs. The TPMCC has a negative impact on
buckets with direct sample sizes of 64 and greater, which combine to only 12.9%.

6.4 Data Density

As discussed in Section 5, the Netflix Prize data set has approximately a 1%
density, indicating that in the results presented above the algorithms operated
on only 0.5% data density since we used half of the data set. The following
analysis addresses how the different algorithms perform as the amount of data
is reduced.

The plot in Figure 5 shows a RMSE of different sets of PMCCs as the amount
of data is varied.OrigHeuristicA andOrigHeuristicB are the PMCCs resulting
from using Original with each heuristic. Transitive is the results from TPMCC
algorithm while TransHeuristicA and TransHeuristicB are from the heuristics
operating on Transitive. With 0% of the data, all algorithms produce the same
set of PMCCs which amounts to predicting 0 for all PMCCs. The 2% sample
points, or 0.02% data density, show little improvement because the data is still
too sparse to support sufficient intersection between movies.

To confirm that 0.02% data density was too low, Figure 6 displays the mean
number of transitive neighbors found by TPMCC and the number of direct



Using Transitivity to Increase Accuracy of Sample-Based PMCCs 13

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0%2% 10% 25% 50%

R
M

SE

Percent of Data Used for Training

Original
OrigHeuristicA
OrigHeuristicB

Transitive
TransHeuristicA
TransHeuristicB

Fig. 5: RMSE vs. percent of Netflix Prize data used, Transitive and both heuris-
tics for each. Note that Original actually increases RMSE as amount of data
increases until 50% data, while Transitive is able to make increasingly notable
improvements starting with 10% data.

neighbors for normal PMCCs. For the 2% predictions, it is clear that neither
transitive nor direct neighbors exist in usable quantities.
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Fig. 6: Mean direct sample size and mean transitive sample size vs. percent of
Netflix Prize data used. Note that neither reach usable quantities for 2% data
density, but at 10% the mean number of transitive neighbors reaches 50, while
mean number of direct neighbors only reaches just over 2. At 50% data there
are nearly 1300 and 50 mean transitive and direct neighbors respectively.

The next point at 10% (0.1% data density) shows an interesting trend. With
nearly 100 transitive neighbors, Transitive reduces the RMSE of Original,
by 12.5%. The heuristics for Transitive fail to make additional improvement.
Original and its heuristics actually perform slightly worse than predicting 0 for
all PMCCs. This demonstrates that such sparse data causes overfitting, and in
this case, can actually be improved by not utilizing the data at all.
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At 25% (0.25% data density) Original is still being out performed by pre-
dicting 0 for all PMCCs. Its heuristics do slightly better, but Transitive is able
to achieve a 34.8% reduction in RMSE over Original. Back to 50% of the Netflix
Prize data, Original makes a drastic improvement with a mean intersection size
of 51. Transitive continues to improve reaching a 40.1% reduction overOriginal.
Note that the heuristics operating on Transitive are always only made worse,
demonstrating that the TPMCC algorithm has already reduced overfitting be-
yond the aid of those heuristics.

It is interesting to note that the Transitive PMCC algorithm is able to begin
reducing RMSE with only 100 transitive neighbors as shown in the 0.1% data
density point in the plots above. However, with 0.5% data density, it further
benefits from over 1000 neighbors. This means that the Transitive algorithm
benefits from being in a wide data set, or a data set that has lots of users
and movies in the case of the Netflix data set. If there were only 10 movies, it
would be very difficult for the Transitive algorithm to find a sufficient number
of neighbors. With the Netflix Prize data, almost 20,000 movies along with half
a million users exist, given plenty of opportunities to find different neighbors,
transitive or not.

7 Conclusions and Future Work

The proposed nearest neighbor PMCC algorithm increases the accuracy of PM-
CCs estimations when dealing with sparse, sample-based data. In such sample-
based data, statistical models can suffer from the lack of data and represent
random error instead of underlying trends in a phenomenon known as overfit-
ting. The results of the experiments with the Netflix Prize data demonstrate
that the proposed heuristics and TPMCC algorithm are able to reduce the error
in such PMCC estimations.

The PMCCs computed from the random test set reduced the error of pre-
dicting 0 for all PMCCs by only 13.7%. The heuristics reduced the error of the
test set PMCCs by up to 9.8%, while our TPMCC algorithm, which took ad-
vantage of transitive relationships, was able to achieve a 40.1% reduction. For
Pearson estimates with direct sample sizes of two, which account for 13.6% of
the population, the TPMCC reduced the error by over 50%. Lastly, the TPMCC
algorithm is able to provide comparable improvements with reduced amounts of
data. This reduction in error of PMCCs will strengthen the variety of applica-
tions in which they are applied and allow statistical models to be utilized in
situations where they otherwise could not. Furthermore, the abstract notion of
gathering information from transitive neighbors is likely to have a positive effect
in new applications.

For future work, we plan on exploring how measures of similarity other than
PMCC, like the Jaccard index, Euclidean distance, and Spearman rank coef-
ficient, could be improved by discovering transitive relationships in the data
sets. The TPMCC’s temporal computational complexity is O(n3), requiring an
O(n) operation for each of the O(n2) unique PMCCs. This running time could be
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reduced to O(kn2) = O(n2) by selecting some well- chosen subset of size k to rep-
resent all possible neighbor candidates. Furthermore, if the TPMCC algorithm
was computed on a subset of c PMCCs, those that are likely to benefit the most
(e.g. those with a very small sample size), it could be reduced to O(ckn) = O(n)
which could make it much more pragmatic in real life situations.
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