
Cheat-Proof Peer-to-Peer Trading Card Games
Daniel Pittman

Department of Computer Science
University of Denver
dpittman@cs.du.edu

Chris GauthierDickey
Department of Computer Science

University of Denver
chrisg@cs.du.edu

Abstract—In trading card games (TCGs), players create a deck
of cards from a subset of all cards in the game to compete
with other players. Each card in the deck has some feature or
ability that may be used strategically to help a player defeat
her opponent. Recently, trading card games have been moving
from physical cards to digital, online versions. We propose a
cheat-proof peer-to-peer protocol for implementing online trading
card games. We break down actions common to all TCGs and
explain how they can be executed between two players without
the need for a third party referee (which usually requires an
unbiased server). In each action, the player is either prevented
from cheating or if they do cheat, the opponent will be able to
prove they have done so. We conclude by showing how these
methods are secure and how they may be intermixed for other
styles of TCGs and other peer-to-peer games.

I. INTRODUCTION

Trading card games (TCGs), also known as collectible card
games, are a type of card game where players purchase,
collect, or trade cards, allowing them to create a playing deck
from their collection which can be used to compete with other
players. Cards in the game have different features or abilities
and may be used strategically and in conjunction with other
cards in their deck. Recently, TCGs have started to move
to the computer game realm and typically use client/server
architectures primarily because a centralized location is needed
for handling game transactions, but also because servers can
act as a referee for game play, thereby preventing players from
cheating. The question naturally arises: can TCGs be played
without cheating in a purely peer-to-peer fashion? We present
a protocol showing that this is indeed possible.

The motivation for using peer-to-peer (P2P) protocols in-
stead of client/server protocols is that they can provide low-
latency communication and scalable services, but they intro-
duce problems with cheating. Further, P2P protocols have the
problem that today, many peers cannot directly connect to
each other due to network address translation (NAT). While
outside the scope of the protocol, we discuss NAT issues in
Section II. On the other hand, P2P protocols allow messages
to be sent directly (or almost directly) between peers, reducing
the latency of messages. This is important for TCGs with
instant-type cards, which are cards that are played immediately
in response to an action by the opponent, as it allows the
game play to progress quickly. In addition, P2P protocols can
scale to a large number of simultaneous players since a game
company would no longer be required to host online game
servers. Finally, on the rare occasions when users do not have

full connectivity to the Internet, players would still be able
to compete with a P2P TCG protocol (e.g., between mobile
devices on an airplane).

Our protocol is concerned primarily with preventing or
catching cheating within the game play of the TCG. We
assume that a system already exists for securely purchasing
digital cards from a vendor (see Section IV for details). For
a more complete architecture for online TCGs, one would
likely need various additional services, and some of these
would necessarily be client/server, especially those involving
financial transactions.

Modern trading card games consist of several styles of
play, including sealed-deck tournament games, draft games,
and constructed deck games. We decompose these types of
games into the primary sets of actions, from randomly and
fairly generating decks of cards, to ensuring that any card
played came from a deck that was fixed prior to when play
commenced. We then show how to securely perform these
steps so that all styles of play can be supported.

One might assume that the problems in TCGs are exactly
those in the game of mental poker [1], a fictional game where
two people can play poker without seeing each other’s cards
(e.g., over a phone without a built-in video camera). However,
TCGs are different in that the deck of cards is not shared
between players, which nicely side-steps the impossibility
results of mental poker. Further, TCGs typically have different
types of rules of play and therefore require slightly different
techniques to prevent cheating.

As with many card games, most TCGs do not have specific
time limits for playing individual cards to resolve a turn,
except those limits associated with social norms. This gives
TCGs some advantage in preventing cheating since certain
types of cheats no longer apply when time constraints are not
tightly bound. For example, research in the past has looked
at cheating in specific types of games such as role-playing,
first-person shooters, and real-time strategy games [2]–[4].
However, this prior work does not address cheating within
the actual game such as by not actually shuffling cards, or
choosing your most desired card instead of the next one
from the top of your deck. In particular, we see that many
of the issues related to cheating in TCGs can be solved by
securely and fairly generating random numbers. This is mainly
because TCGs rely on random generation of decks and the fair
shuffling of those decks for play. To the best of our knowledge,
this is the first work to address cheating in peer-to-peer TCGs.

To appear in the 10th Annual ACM/IEEE Network and Systems Support for Games (NetGames 2011).

II. BACKGROUND

Most modern trading card games have their roots in Magic:
The GatheringTM, which was released in 1993. The game
consists of a complete library of cards where players build
their own collection by purchasing packs of cards. Each
individual card has some level of rarity such that the more
rare a card is, the fewer copies are produced and randomly
distributed in card packs. Each card pack has some guarantee
of containing a set ratio of very rare, rare, and common cards.
For example, a card pack may be guaranteed to contain at
least one very rare card, three rare cards, and the rest common
cards. As one may guess, the rarest cards tend to be the most
valuable and are often the most powerful in terms of gameplay,
thereby creating an economy around collecting the rarest cards.
Other well-known examples of trading card games include
PokémonTM, the World of Warcraft Trading Card GameTM,
and the Yu-gi-oh! Trading Card GameTM.

The idea of playing cards in a distributed fashion without
cheating, termed mental poker, was first discussed by Shamir
et al. [1]. The authors show that its impossible to deal
from a shared deck of cards without one player knowing
what card another player received. They then described a
protocol that relies on commutative encryption to solve this
problem. Note that their impossibility result still holds: if one
could break the encryption in a reasonable amount of time,
dealing from a shared deck of cards without revealing who
received which card to the other player is still impossible. The
primary difference between this problem and our problem is
that in our case, the deck of cards between players are not
shared. Without a shared deck, our solution can avoid using
commutable encryption. As with their solution, we rely on
the encryption not being easily breakable, where easy means
within the span of time it takes to complete a game.

The protocol in this paper relies on being able to generate
a random number between two or more players fairly. In
this case, we define fairly as either player not being able to
influence the outcome of the generated random number and
this is solvable by the well-known coin flipping by telephone
protocol [5]. With this method, Alice picks a random number
rA, cryptographically hashes it and sends the hash, H(rA) to
Bob. Bob picks a random number, rB , signs it and sends it to
Alice. Alice then XORs rA and rB to determine the final value.
Alice can then reveal the result later by giving Bob her private
number allowing Bob to compute the same value. Note that
since Alice has no idea what number Bob will pick, she cannot
influence the final random value. Furthermore, Bob cannot
influence the final value since he has no idea what initial
value Alice chose. Expanding this to n players requires that
each player generates a private number and 1 public number
to share with the other n− 1 players. Each player then XORs
their private number with the n− 1 other public numbers.

Cheating in games can be categorized by the level at which
it occurs: the game, application, protocol or network [4].
Much of the research in cheat prevention in games has looked
at preventing protocol or application level cheats, i.e., those

cheats which occur by modifying network protocol behavior
or altering the application in order to gain an unfair advan-
tage [2]–[4], [6], [7]. In this paper, we focus specifically on
avoiding or detecting game level cheats, which are those cheats
that occur by breaking the rules of the game. We detail this
further in Section IV.

As a peer-to-peer protocol, users invariably have to deal
with the problem of network address translation (NAT). Using
consistent endpoint translation in the NAT and TCP hole-
punching, 80-90% of the peers can successfully connect to
each other [8]. However, this does not account for the case
where two users are behind the same NAT trying to connect
to other users. In this case, a 3rd party would need to be
used for relaying port numbers prior to TCP hole-punching.
However, this is outside the scope of our protocol.

III. PLAY STYLES

In modern trading card games there are multiple styles of
play. For each style, there are different steps and techniques
associated with them. When referring to the different gameplay
steps, play styles, and card selection techniques, it is important
to be clear on the terminology involved.

A. Definitions

1) Universe deck (Du) - The set of all cards that exist in
the game. This set is defined by the manufacturer of the
trading card game.

2) Base deck (Db) - The set of all cards a player owns
and is therefore authorized to use during a gameplay
session. Note that, Db ⊆ Du, since any card outside
of the universe deck cannot exist. Each player has their
own base deck, determined by their purchases or trades.

3) Play deck (Dp) - The set of cards from their base deck a
player has selected to use during this gameplay session.
The play deck must be a subset of the base deck, thus
Dp ⊆ Db ⊆ Du. The play deck is typically constructed
ahead of time based on the synergies of using particular
cards together.

B. Styles of Play

In modern trading card games, play styles can be divided
into the following common forms:

1) Sealed deck, where each player begins with a fresh
random set of cards. The random set of cards becomes
the player’s base deck for the duration of the session.

2) Draft deck, where each player drafts, or picks, cards
from a random set of cards. The drafted cards become
the player’s base deck for the duration of the session.

3) Constructed deck, where each player has already pur-
chased, collected, or traded cards to create their base
deck from which a subset of cards are chosen to con-
struct a play deck.

Although the gameplay styles of these three forms are
unique, the individual steps that compose these styles have
significant overlap. By decomposing these styles into discrete
securable steps, we can reduce the problem space, allowing us

to present a common solution for each kind of problem faced
by these different play styles. Note that from these common
steps, new gameplay styles can be crafted.

C. Sealed Deck Play

In a sealed deck game, each player is given an unopened
deck of cards which is used to strategically construct a play
deck prior to the actual match. This set of cards represents
the player’s base deck. Sealed deck games come from tourna-
ments, where the idea is that if the decks are chosen randomly
(consisting of some distribution of common, rare and very rare
cards), then the matches are more representative of the skills of
the players. Beyond this initial step in creating the play deck,
sealed deck games are similar to constructed play styles. In the
online equivalent of this type of game, a randomly generated
deck of k cards (from the entire universe of cards) must be
chosen fairly for each player. The securable steps needed to
play this game can be described as:

1) Randomly generate a set of cards from the universe deck
to represent each player’s base deck. Typically a server
would perform the random deck generation, but in a
peer-to-peer system, the protocol must handle this step.

2) Have each player select a play deck from their base deck
in a verifiable manner.

3) Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

4) Verify when a card is played that it came from the set
of that players’ play deck.

D. Draft Deck Play

In draft deck play, each player participates in N draft steps.
In each draft step, a player starts with draft deck consisting of
a small number of random cards from the universe deck. The
player then selects one card from this deck and then passes
the deck to the next player. This “select and pass” step repeats
until all cards are selected, at which point the next draft step
starts except with the order of passing reversed. After all draft
steps have completed, each player uses their drafted cards as
their base deck and then constructs a play deck from it. The
securable steps needed to play this style of game are:

1) Randomly generate N sets of cards from the universe
deck to represent each player’s starting draft deck each
draft round. Note that this problem can be reduced to
holding N rounds of the random base deck generation
step used in the sealed deck play style.

2) Pass a player’s draft deck to another player in a verifiable
manner. This verification is similar to the verification of
a card during gameplay. The main difference is that all
cards are verified at once instead of one at a time as
they are played.

3) Have each player select a play deck from their base deck
in a verifiable manner.

4) Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

5) Verify when a card is played that it came from the set
of that players’ play deck.

E. Constructed Deck Play

Constructed play is a game where each player creates a
play deck by strategically choosing a subset of cards from
their base deck and then plays according to the card game
rules. Their base deck consists of all cards which they have
purchased or traded with other players and verification that
a player owns a particular card can be achieved by verifying
the signature from a purchasing authority. Constructed games
represent those games where players or friends compete with
each other. The securable steps needed to play this game can
be described as:

1) Have each player select a play deck from their base
deck in a verifiable manner. Selecting a play deck from
a player’s collection is no different than the problem of
selecting a play deck from a randomly generated deck,
so this problem can be solved similarly.

2) Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

3) When a card is played, verify that it came from the set
of that players’ play deck.

F. Securable Steps

Now that we have enumerated the popular play styles and
their individual steps, we can create a master list of securable
play steps for online trading card games:

• Randomly generate a set of cards from the universe deck
to represent each player’s base deck (or draft deck).

• Pass a player’s base deck (or draft deck) to another player
in a verifiable manner.

• Have each player select a play deck from their base deck
in a verifiable manner.

• Draw a card at random from the play deck.
• Verify when a card is played that it came from the set of

that player’s play deck.
With this common securable framework, game designers

could mix and match game steps to create completely new
styles of play, allowing flexibility in the game style. We
acknowledge that while this list may not be completely com-
prehensive for creating all possible game styles, it may be
possible to add new securable steps using similar ideas to those
presented here.

IV. PROTOCOLS

For each of the play steps which must be secured, we
have developed an appropriate method to ensure that a player
cannot cheat in that step. Composing a game from these steps
leads to a particular play style. We begin by describing our
assumptions, notation, the list of threats we are attempting to
prevent, and then detail the protocols individually.

A. Preliminaries

In order for our protocols to work successfully, we make a
few important but reasonable assumptions. First, each player
has a unique identifier. Second, the size of the universe deck
in the TCG is n. Without a loss of generality, we assign the
numbers 1...n as unique identifiers for each card. Third, we

assume that since duplicates of each card in the set of cards can
exist in a player’s deck of cards, each valid card has a second
number from 1...m. When a player purchases a card from a
company, this card first has its unique identifier, and second
has this monotonically increasing sequence number (1...m)
depending on how many of that card the player owns. Cards
are then signed by the company with both numbers and with
the player’s unique identifier to prove that they were purchased
legally.

1) Notation: We use the letter U to indicate the entire
universe of cards in the trading card game, where |U | is the
number of cards in the set. H(i) is the cryptographically
secure hash of i while EA(i) is i encrypted by A (usually
Alice in this case). A digital signature of i is noted as SA(i).
Recall that SA(i) = EA(H(i)). As such, SA(i) does not reveal
any information about i but can be held as proof that i was
the value when i is either revealed (i.e., if using a public-
key cryptography system) or if the key KA was revealed
with i since KA(SA(i)) = H(i) and the cryptographic hash
functions are known to all parties.

Sc(cuid, sn, pid) indicates a card which is digitally signed
by the company (Sc), with its card unique identifier (cuid),
its purchased sequence number (sn) and the player’s unique
identifier (pid). sn is not a unique number, but the signed tuple
Sc(cuid, sn, pid) is a unique tuple.

B. Threat Model

For our threat model, we assume a typical computationally-
bounded adversary, capable of injecting packets and passive
listening. We assume standard cryptography will prevent the
attacker from decrypting packets in a reasonable amount of
time (i.e., before the end of the game). Peer-to-peer TCGs are
susceptible to the following types of threats:

1) Unfairness in Card Selection - We must be sure
that while cards are being generated for a player that
the player cannot unfairly influence the outcome of
that operation. For example, during the generation of
a random deck for a sealed deck game, we must prevent
a player from influencing the set of cards generated for
the random deck.

2) Discovery of Private Information - We must ensure
that an opponent cannot garner private data concerning
which cards another player has during the information
exchanges needed in the setup and running of a game-
play session.

3) Changing Cards at Playtime - As with a real TCG,
players cannot be allowed to add or remove cards from
their play deck during game play. Thus, any played card
must be able to be verified during game play that it was
actually a card from the player’s play deck.

4) Collusion - The mechanism developed for generating
and verifying cards must be resistant to collusion. Group
operations (such as generating a random base deck) must
be performed in such a way as to mitigate the case
where some, but not all, of the players in the game are
attempting to influence the outcome.

5) Replay - We must be able to prevent an adversary
from replaying moves they eavesdropped on so that they
cannot fool another player into thinking that the replayed
packet is a cheating attempt by the originator of the
move.

To verify if specific game rules (such as how cards behave)
are broken or not, each player must keep a log of the game.
Since each card is identified and digital signatures are used
with moves, one can prove if a player cheats by their signed
invalid actions during gameplay. However, for a log system
to work, an additional sequence number is required for each
move in a match so that a total ordering on the TCG moves
can be identified.

C. Securely Generating a Base Deck

We begin by describing how Alice and Bob fairly generate a
random base deck from a universe deck in a purely distribution
fashion. This deck forms the basis for providing a sealed deck
for the sealed deck game style and the base decks for the draft
play styles.

1) Alice randomly generates a private number iA and a
public number jA.

2) Alice signs her private number and only sends the sig-
nature SA(iA, nonce) to Bob. Recall from our notation
that this is simply Alice’s digital signature of the tuple
(iA, nonce) and does not include the actual values.

3) Bob randomly generates a private number iB and a
public number jB .

4) Bob signs his private number and gives SB(iB , nonce)
to Alice.

5) Alice and Bob exchange the tuples (jA, SA(jA)) and
(jB , SB(jB)). In other words, they exchange their public
numbers and sign those numbers (so that they cannot
later argue that they gave different public numbers).

6) Alice XORs jB with iA to create a new random number,
kA, while Bob XORs jA with iB to create kB .

7) kA mod |U | is the unique identifier of Alice’s card
from U , while kB mod |U | is Bob’s first card from
U .

At any step, either of the players may refuse to continue.
For example, after Alice gives Bob her SA(iA) for a particular
card, she may wait for Bob’s SB(jB) in step 5, but not give
her SA(jA) to Bob. If so, Bob can simply refuse to continue
playing as nothing (but time) has been lost. As with the coin-
flipping protocol, Alice cannot choose her iA in such a way so
that the resulting kA is a card that she wants because she does
not know jB before she has encrypted and sent iA to Bob.
The same holds for Bob’s choice of jB—he cannot influence
kA so that Alice gets a poor card from the deck because he
has no idea what iA is. Thus, Alice and Bob can fairly and
randomly choose a card from U to be part of their tournament
deck.

The above sequence of steps can be repeated k times so that
each player has an base deck of k cards. However, the players
can speed up the processes by generating a sequence of private

xor(bob_num,++
alice_num)+Bob+ Alice+

Card+10+ Card+11+ Card+12+ Card+13+

sign(H(bob_num))+

sign(H(alice_num))+

Bob’s+
Number+

Alice’s++
Number+

Fig. 1. Random Card Selection: This diagram shows how Bob and Alice
can participate in random number selection in a verifiable manner while not
revealing information about their random number to each other

and public numbers. In the first step, Alice generates k private
numbers i1A...ikA and public numbers j1A...jkA. Bob does
the same thing for private and public numbers. In the second
and fourth steps, each private number is signed individually
(instead of encrypting the entire sequence) since the values
and nonces are revealed as the cards are played to show that
they indeed came from the base deck of k cards.

At this point, Alice and Bob have base decks consisting of
k cards. Figure 1 diagrams the flow of steps for random card
selection.

D. Play Deck Creation

Once a base deck of k cards has been selected, Alice and
Bob must typically choose a subset of s cards from the base
deck to form their play deck. Note that Alice and Bob choose
cards for their play deck strategically as certain cards may
work better with other cards. Further, the play deck does not
have a specific size (i.e., Alice and Bob need not have exactly
the same sized play deck) since for strategic reasons they may
choose to construct a larger (for more variety) or smaller (for
a higher probability of certain cards) deck.

The primary rule for creating the play deck is that it must be
done entirely before the game begins. One cannot add cards
to the play deck from the base deck during gameplay. Thus,
the following steps must occur to fairly choose the play deck:

• Alice chooses a card for her play deck. Recall that Bob
sent her k public numbers for each of the k cards in her
base deck. Alice sends (p, SA(p)) where p corresponds to
the order of the 1...k values Bob sent her. For example,
if the card she chose for her play deck was selected
by XORing her 5th private number with his 5th public
number, she sends (5, SA(5)) to Bob. Alice repeats this
for every card she adds to her play deck from her base
deck. This prevents Bob from knowing Alice’s play deck,
though he knows her base deck.

• Bob chooses a card for his play deck, sending her
(p, SB(p)) for his chosen card, where p is the order of

Bob$

Alice$

Card10 Card11 Card12 Card13

Fig. 2. Play Deck Selection: This diagram shows how Allice can be informed
what cards Bob is selecting for his deck ahead of time without revealing the
value of the card

the public values correponding to the card he chose. Bob
repeats this step for every card he adds to his play deck
from his base deck.

Choosing the play deck must occur before gameplay begins
and both Alice and Bob may create their decks simultaneously,
though order does not matter in this case. When Alice or Bob
play a card from their play deck, they reveal the associated
private number and the order value (which they sent to
represent each card). For example, when Alice plays the card
that was chosen by Bob’s 5th public number, Alice sends the
tuple (5, i5, SA(5, i5)) to Bob. As Bob knows his 5th public
value and was previously sent the hash of Alice’s 5th private
value, he can calculate the hash of i5 to see if it matches the
previously sent hash. Further, he can XOR i5 with his 5th
public number to determine the cuid of the card and verify
that the correct card was played.

A diagram describing the process of selecting a card from
the base deck is shown in Figure 2.

E. Drawing a Card from the Play Deck

Once a play deck has been created, we need to ensure
that when a player chooses a card randomly from their deck
during gameplay that the card they chose is truly random. In a
physical game, the decks are shuffled and opponents may even
cut the cards to introduce additional randomness. Players in
fact typically want their cards shuffled so that they get an even
distribution of various types of resource cards while playing
as they cannot predict how the game will unfold. However,
since the players cannot observe each other during play, we
have to ensure that we get the equivalent of a deck shuffle
without cheating. The protocol for this scenario is described
below:

1) Alice’s play deck, consisting of p cards are shuffled.
Recall that she has already told Bob which cards are in
her play deck by referring to them by their pth order
value.

xor(bob_num,++
alice_num)+

Bob+ Alice+Card+10+

(bob_num)+

Bob’s+Number+for+Card+10+

Plays+

Verify+

Fig. 3. Card Verification: This diagram shows how Allice can verify a
card played by Bob during gameplay, allowing for real-time verification of
correctness in gameplay

2) For each card in her deck, Alice sends SA(p, nonce) to
Bob.

3) Bob further shuffles the deck to ensure that Alice shuf-
fled it properly. When Alice needs a card, she simply
asks Bob for the next one, which he sends.

Bob repeats the procedure for his play deck so that Alice
can ensure his cards are shuffled. When either player plays a
card, they can reveal the values (p, nonce) so that the other
player can verify that the card is not still in his or her deck
from which cards are being dealt.

F. Playtime Verification of Cards

Playtime verification of cards is a two step process. First,
the card has to be determined to be legitimately selected from
the base deck. Second, the card has to be verified as a card
that exists in the play deck.

Base deck verification depends on how the cards were
generated, either randomly or user-selected. If the card comes
from a user-selected base deck, the verification step is simply
verifying the purchasing authority’s signature on the card to
ensure that the player has legitimately purchased that card.
In the randomly generated base deck, since both Alice and
Bob know the set U , and hence all the cards have unique
identifiers, it suffices for a player to reveal the kth private value
with its associated nonce to the other player which the other
player can then XOR with the kth public value and match the
unique identifier with the card just played. For example, Alice
plays a card that was generated from the 5th public number,
(j5B , SB(j5B)), Bob gave to her. When she plays the card,
she also sends (i5, nonce5), SA(i5, nonce5) to Bob. Using i5
and nonce5, Bob can check to see if this was the same value
that Alice gave to him previously. If not, he knows she is
cheating and has proof of it since he already has her hash of
HA(i5, nonce5) that she sent in step 2.

A diagram describing the process of verifing that a card
came from a player’s base deck is shown in Figure 3.

Play deck verification occurs when Alice needs to play a
card from her play deck. Alice sends the tuple (p, ip, SA(p, ip))
where p indicates the order value of the public and private

numbers for generating the card. Since she has already told
Bob what order values she was using previously, he can easily
verify if she is lying or not about its real value.

G. Passing a Base Deck to Another Player
When a base deck (or draft deck) is passed amongst players,

it is important to make sure that the deck of cards being
passed is not changed. Assuming the decks being passed were
generated using the algorithms described above, verification
occurs when the private values used to choose the base deck
are revealed. Note that this occurs only when using the Draft
Deck or Sealed Deck play styles. For example, Alice who
generated a random base deck would reveal all the k private
numbers i1A...ikA.

With multiple players, revealing the private numbers for the
randomly generated base decks does not leak information as all
players must know all finalized base decks before play begins.
Furthermore, a player cannot insert a new card for this exact
same reason.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated how using a set of
common peer-to-peer protocols, one can develop multiple
TCGs using different play styles while ensuring cheat-proof
play. This common framework for peer-to-peer based card
games enables the community to develop new styles of play
without having to resolve the common problems facing games
of this genre.

We believe there is a connection between generating sealed
decks for online TCGs and automatically generating the mon-
sters, treasures and maps for a game level. One could apply
these ideas for fairly generating game content between players,
especially if those levels are of a competitive nature.

For future work, we plan on evaluating the performance
of these protocols in depth and developing other aspects of
a P2P TCG architecture. We further plan on developing a
common library for TCGs that will implement the protocols
developed in this paper allowing game developers to focus on
game design without having to worry about cheating.

REFERENCES

[1] A. Shamir, R. L. Rivest, and L. M. Adleman, “Mental Poker,” The
Mathematical Gardner, pp. 37–43, 1981.

[2] N. E. Baughman, M. Liberatore, and B. N. Levine, “Cheat-proof play-
out for centralized and peer-to-peer gaming,” IEEE/ACM Trans. Netw.,
vol. 15, pp. 1–13, February 2007.

[3] C. Chambers, W.-C. Feng, W.-C. Feng, and D. Saha, “Mitigating infor-
mation exposure to cheaters in real-time strategy games,” in Proceedings
of ACM NOSSDAV, 2005, pp. 7–12.

[4] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low latency and
cheat-proof event ordering for peer-to-peer games,” in Proceedings of
ACM NOSSDAV, June 2004.

[5] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” SIGACT News, vol. 15, no. 1, pp. 23–27, January 1983.

[6] E. Cronin, B. Filstrup, and S. Jamin, “Cheat-proofing dead reckoned
multiplayer games,” in International Conference on Application and
Development of Computer Games, January 2003.

[7] C. Mönch, G. Grimen, and R. Midstraum, “Protecting online games
against cheating,” in Proceedings of ACM NetGames, Oct. 2006.

[8] F. Bryan, P. Srisuresh, and D. Kagel, “Peer-to-peer communication across
network address translators,” in Proceedings of the USENIX Annual
Technical Conference, 2005.

