
 1

Copyright 2005, Scott Leutenegger

Chapter 5: Buttons and Text I/O

So far we have learned to manipulate MovieClips on the screen but don’t have a way to

get text input from a user. The ability to get input from the user is important for many

computer applications. For example, we might ask the player how many gargoyles

should be created, or ask them for their name for a high score list. As another example,

how does one play hangman without a way for the player to enter their guesses? It is not

just games either. Consider an e-commerce site where the program needs to allow a user

to enter and display text information for names, address, id numbers, and the all

important credit card number. The process of supporting entering and displaying text

information is call text input/output, or text I/O for short. I/O can be to/from a

screen/keyboard, to/from a file on disk, or to/from other devices such as a mouse or

sensors. In flash, after entering text a user often pushes a button to signify that input is

complete. The use of buttons in Flash/Actionscript is so common that there are built in

button classes. We cover these first, and then cover how to use text boxes for input and

output.

5.1: Buttons

Actionscript “buttons” provide one form of user interactivity. Mostly buttons are used

for start/stop/modifying animation flow or to enable text input. Buttons are another built

in Actionscript class, hence check out the class definition in the help manual actionscript

dictionary. We will mostly be using the event handler Button.onPress().

Lets create our first button! Follow these steps:

- Open a new flash document, save it as some name

- Go to:

o (Flash MX 2004) Window -> Other Panels -> Common Libraries ->

Buttons

o (Flash 8) Window -> Other Panels -> Common Libraries -> Buttons

- Open the “arcade buttons”, and drag one of them onto the stage

- Go ahead and publish (F12), and click. It clicks! But it does not do anything else.

- Back on the flash stage, select the button, and then give the instance a name in the

Properties panel. Say “btn_first”. You can now use “btn_first” as an identifier

(i.e. a variable name) for this button inside of Actionscript code.

- Create a new layer for actionscript, and in the first frame add:

btn_first.onPress = function() {

 trace("ouch, you pressed me!") ;

}

 2

- Run the code by ctrl-enter so you can see the trace, move the output window to

the side so you can keep pressing the button and see the output

If you want, you can download a file I created as above:

 www.cs.du.edu/~leut/1671/flashFiles/c5_button1.fla

Look at the code above. It is just like our mouseHanlder.onMoveMouse() function. We

have put some code inside of a function and made it the onPress method of the button

named btn_first. This is another example of an event handler. So for we have seen the

onEnterFrame event handler, the mouse handlers, and now this button handler. They all

use the same framework: assign a function to execute the code when the event occurs. If

you want you can go and add more lines of code into the function and then run the code.

For example, change the function so it looks like:

btn_first.onPress = function() {

 trace("ouch, you pressed me!") ;

 trace("_xmouse is at " + _xmouse) ;

 trace("btn_first._x == " + btn_first._x) ;

}

If you preview this code and click on the mouse it now prints out three statements.

Notice that the two locations printed out are at about the same x-coordinate. This makes

sense because when you click on the mouse button the xmouse mouse location must be

within the button area for the click to occur. Try clicking on one side of the button and

then the other. You will see that xmouse moves, as it should, but both are still close to

the btn_first._x. What can you glean about the button’s registration from clicking on the

left side of the button and the right side of the button using the code above? Answer: the

registration’s x-coordinate is in the center.

 Buttons have other useful event handlers such as onRelease and onRollOver. Check out

the following code:

 www.cs.du.edu/~leut/1671/flashFiles/c5_button2.fla

btn_red1.onPress = function() {trace("pushed btn_red1") ; } ;

btn_red1.onRelease = function() {trace("released btn_red1") ; };

btn_red1.onRollOver = function() {trace("rolledOver btn_red1") ; } ;

btn_red2.onPress = function() {trace("pushed btn_red2") ; } ;

btn_red2.onRelease = function() {trace("released btn_red2") ; };

 3

btn_red2.onRollOver = function() {trace("rolled over btn_red2") ;} ;

Here we have two buttons. Load the file and preview it with ctrl-enter to see the trace

command outputs. Again, you may need to move the output window to the side to keep

seeing the output and the buttons at the same time.

Instead of just printing out messages, you can use the button event handlers to do

interesting things. Check out and run:

 www.cs.du.edu/~leut/1671/flashFiles/c5_button3.fla

btn_left.onPress = function() { mc_penguin._x -= 10 ;} ;

btn_right.onPress = function() { mc_penguin._x += 10 ; } ;

btn_DecSize.onPress = function() {

 mc_penguin._xscale -= 10 ;

 mc_penguin._yscale -= 10 ;

} ;

btn_IncSize.onPress = function() {

 mc_penguin._xscale += 10 ;

 mc_penguin._yscale += 10 ;

} ;

Run the program first before trying to understand the code. Now lets talk about the

layers in the flash file. To get a quick idea of which layer is which, click on the top

eyeball to hide all layers, then click on each layer’s eyeball one at a time to reveal just

that layer. The top layer contains the penguin image saved as a MovieClip and named

mc_penguin. Select the penguin and the check out the properties panel for the name.

The next layer contains the text found on the buttons. The next layer contains the four

buttons. If you select each button separately and look at the property panel you will see

their names. Finally, the bottom layer contains the actionscript code above. There are

four functions defined above and the code for each function is enclosed in its own set of

curly braces. The four functions are for the onPress event handler for each of the four

different buttons. The first two, btn_left and btn_right, just change the mc_pengiun

MovieClip _x property to move the penguin. The next two have two statements in each

function to modify both the _xscale and _yscale properties of the MovieClip.

5.2: Text I/O

In a moment we will see how to use buttons to control text input, but first we need to

introduce the Flash text boxes. I/O is done in action script through text boxes created by

the text tool. The text tool is the tools with the big letter “A” icon in the tool panel.

With the text tool we can create three types of text boxes:

 4

• Static: just used to put words on the screen, there is no way to modify them from

within AS.

• Dynamic: used to write text to the screen from action script. The box is

associated with an AS variable via the properties panel.

• Input: used to get input from the user. Again the text box is associated with an

AS variable via the properties panel.

Using a static textbox it is pretty straightforward, just select it, draw a box on the screen,

and type in the text you want. You modify the text properties, like font and size, via the

Properties panel.

Moving on to the Dynamic textbox, lets start by creating a program that prints out the

frame number every frame:

• Create a new document

• Click on the text tool

• In the properties panel select “dynamic text” (top left of the panel)

• Modify the font (size and name) if you wish

• On the stage click and hold down and drag out a box for the text

• IMPORTANT: now associate an AS variable with the box. In the Var field of

the properties panel type in “outbox”. This is just the variable name that you can

use to assign strings to the box from inside your AS code.

• Create a new layer for the AS code

• In frame one add the following AS code:

var frameNum:Number = 0 ;

onEnterFrame = function() {

 frameNum++ ;

 outbox = "frame " + frameNum ;

}

• Publish and run the code

Note, if you had problems, this example can be found in:

 www.cs.du.edu/~leut/1671/flashFiles/c5_io1.fla

 5

To do input we need to use the input text option for the text box, and again assign a

variable to the box via the properties panel. Download and open the following .fla:

 www.cs.du.edu/~leut/1671/flashFiles/c5_io2.fla

Inside of flash, select each of the three boxes, one after the other, and look at the

properties panel for each. The word “Input” is in a static text box. The box to the right is

input text, and the bottom box is dynamic text. Also notice that the variable field for

both the input box and the dynamic box is “inString”. Now publish/run the program.

Click on the input box (next to the word input) and type something in. As you type, each

character it is echoed in the box below. This is because every change made in the input

box automatically changes the content of the action script variable name “inString”. You

never even declared this variable in AS, that is okay, it is done automatically. The

dynamic text box is also tied to the variable “inString”, thus, any change to variable

“inString” is automatically sent to the dynamic text box associated with it. Granted, this

example is sort of weird, but it shows how the variable associated with input boxes is

automatically updated as the user types into the box, and how the dynamic text box

associated with a variable is automatically updated as the variable changes.

Now lets do something a bit more normal: ask the user for their name, and output a

welcome message. The following is contained in:

 www.cs.du.edu/~leut/1671/flashFiles/c5_io3.fla

btn_enter.onPress = function() {

 outString = "Welcome " + inString ;

}

Look at the .fla file. You will see there are three text boxes (one each of static, input,

dynamic) and a button. Two of the text boxes do not have the borders set to on, so they

show up in flash as dashed-lines. When the button is pressed the value of variable

outString, which is bound to the dynamic text box (you can see this by looking at the

properties panel), is assigned the string “welcome” concatenated with the string entered

by the user. The idea is the user fills in the input box, pushes the button, and gets the

desired welcome message.

5.3: Number Guessing Game

Lets write a simple number guessing game using are input/output knowledge. To do this

we first we need to be able to generate random numbers. Computer algorithms exist that

create a sequence of pseudo-random numbers that look truly random. There is a lot of

theory behind these algorithms that we will not explore. We do not need to understand

 6

the theory because ActionScript provides a Math.random() function. The Math class is

a top-level class, meaning you do not need to use a construct to invoke its methods. It

includes methods such as ceil(), floor(), min(), max(), log(), random() and a bunch more

including trigonometric functions. We will only consider the following three methods for

now:

1. random () This method generates random decimal point numbers between 0

and 1.0. Each number is equally likely to occur. This is known as an uniform

distribution.

2. floor () This method takes decimal number and truncates it to the closest

integer. As an example: 2.00543 is converted in 2, and 99.99943 is converted

into 99.

3. ceil() This method also converts a decimal point number to an integer but

does so by rounding up, not down. Examples: 2.00543 is converted to 3, and

99.99942 is converted into 100.

We show examples of using these three methods in file:

 www.cs.du.edu/~leut/1671/flashFiles/c5_math1.fla

var n1:Number = Math.random() ;

trace("n1 = " + n1) ;

var n2:Number = n1 * 10 ;

trace("n2 = " + n2) ;

var n3:Number = Math.floor(n2) ;

trace("n3 = " + n3) ;

var n4:Number = Math.ceil(n2) ;

trace("n4 = " + n4) ;

var n5:Number = Math.floor(Math.random() * 10) ;

trace("n5 = " + n5) ;

n5 = Math.floor(Math.random() * 10) ;

trace("next random num = " + n5) ;

n5 = Math.floor(Math.random() * 10) ;

trace("next random num = " + n5) ;

n5 = Math.floor(Math.random() * 10) ;

trace("next random num = " + n5) ;

n5 = Math.floor(Math.random() * 10) ;

trace("next random num = " + n5) ;

Each time this program is run you get different output do to the calls to Math.random().

The first trace statement prints out a random number between 0.0 and 1.0. The second

 7

takes this number and multiplies it by 10 to print out a random number between 0.0 and

10.0. If we want random integers we can create these by taking the floor or ceiling of

the numbers returned from Math.random(). If we chose to take the floor the random

numbers will be 0 .. 9, if we chose to take the ceiling the random numbers will be 1 .. 10.

Go ahead and play with this file to create other random numbers.

Lets say you want to generate random integers between 0 and 4 inclusive. You could

just call Math.random(), multiply by 5, and then take the floor:

var num1:Number = Math.floor (Math.random() * 4) ;

What if you want numbers between 10 and 14 inclusive? Do the same as above but add

10:

var num1:Number = Math.floor (Math.random() * 4) + 10 ;

Assume you want random integers between A and B inclusive. Can you come up with a

statement to do so using A and B as variables?

Okay, lets take our random number generation knowledge to create a number guessing

game:

 www.cs.du.edu/~leut/1671/flashFiles/c5_RandomGuess1.fla

var theNum:Number = Math.floor(Math.random() * 3) ;

theNum += 1 ; // so it is 1, 2, or 3; not 0, 1, or 2

btn_enter.onPress = function() {

 if (inString == theNum)

 outString = "You got it! Exit and play again" ;

 else

 outString = "Nope, guess again" ;

}

The game is pretty simple. The program generates a random number between 1 and 3.

The text in the static text box asks the player to guess a number between 1 and 3

inclusive. When the player presses the button, the btn_enter.onPress() function is called

and the code in that function compares the contents of variable inString with the

generated random number. If the two are equal the code puts “You got it!” into variable

“outString”, which is the variable name of the dynamic text box. Otherwise the code puts

“Nope, guess again” into outString and presumably the player keeps guessing.

 8

Exercises:

1. Write code to generate uniformly distributed random integers whose values are

between 20 and 39 inclusive.

2. Same but for values between 21 and 40 inclusive.

3. Save as above except for values between -49 and 0 inclusive.

4. Modify the code in www.cs.du.edu/~leut/1671/flashFiles/c5_RandomGuess1.fla

so that if the player guesses correctly, the code generates a congratulatory

message, but then generates a new random number and challenges the user to

guess again.

5.4: Timeline Manipulation and Game Phases

We can change the normal sequential timeline execution with a few action script

commands: gotoAndPlay(), gotoAndStop (), and stop (). For games this is necessary

to enable the flow from start screen, to game screen, to end screen.

First, load up the following .fla file and preview using ctrl-Enter so you can see the

trace() command outputs.

 www.cs.du.edu/~leut/1671/flashFiles/c5_goto1.fla

I set the frame rate to 1 FPS so frames advance once per second. The animation plays

frame 1, 2, 3, 4. Then the animation ends, and then restarts, so it just keeps printing out 1

to 4 over and over. By using ActionScript you can change the order that frames are

visited.

Now lets modify the frame play order by using the gotoAndPlay() command. Load the

following .fla file and again preview by using ctrl-enter.

 www.cs.du.edu/~leut/1671/flashFiles/c5_goto2.fla

The file has four frames, they contain the following ActionScript code.

Frame 1:

 9

trace("Inside frame 1") ;

gotoAndPlay(3) ;

Frame 2:

trace("inside frame 2") ;

gotoAndPlay(4) ;

Frame 3:

trace("inside frame 3") ;

gotoAndPlay(2) ;

Frame 4:

trace("inside frame 4") ;

// stop() ;

When the code is run you see that the frames visited are 1, 3, 2, 4, in that order, and then

execution stops. The command gotoAndPlay() causes the execution of flash to jump to

the frame specified as an argument. As a result, when frame 1 is played, it prints the trace

command but then jumps, immediately, not waiting for the frame duration to expire, to

frame 3. The code in frame 3 is immediately played and then execution jumps to frame

2, whereupon the trace command is executed and execution immediately jumps to frame

4. All of this happens without waiting for the frame duration (determined by the frame

rate) to expire. Then, we hit the end of the animation, wait for the frame duration to

expire, and then the whole animation starts over again at frame 1. So, every second you

see four lines followed by a blank line printed out showing the execution of frame 1, 3, 2,

4.

Consider what happens if you uncomment the stop() command on the last line of frame

4. This is what is done in:

 www.cs.du.edu/~leut/1671/flashFiles/c5_goto3.fla

The code is identical to a_goto_2.fla except frame 4 has a stop() command. The stop()

command stops the execution of the root MovieClip. Note, the main timeline is simply

the _root MovieClip, thus the main animation is stopped. Try moving the stop to frame

3. Yep, it plays frame 1, 3, and then stops.

 10

Now, lets add to frame 1 an onEnterFrame event handler:

 www.cs.du.edu/~leut/1671/flashFiles/c5_goto4.fla

onEnterFrame = function() {

 trace(" ") ;

 trace("inside _root.onEnterFrame()") ;

}

Run the code with ctrl-enter to see the trace command output. After the trace output

from frames 1, 3, 2, and 4, the code prints out “inside _root.onEnterFrame()”. The

visiting of frame 1, 3, 2, 4, only occurs once, as we expect with the stop() command, but

the onEnterFrame event handler keeps getting executed every second! This is because

the stop() command stops the execution of the main MovieClip(), but, it does not

cancels any event handlers. This is important since often you may put game code in an

event handler, get to the end of the game, or so you think, and the event handling code

still goes on! This can be fixed by deleting (i.e. canceling) the event handler when you

stop the animation. Check out:

 www.cs.du.edu/~leut/1671/flashFiles/c5_goto5.fla

In the 4
th
 frame our code now says:

trace("inside frame 4") ;

delete _root.onEnterFrame ;

stop() ;

If you load and run it, you see the onEnterFrame handler is never called, because it is

deleted.

It may seem like we just took a long digression from games, but it was an important one.

Most games have different types of screens. For example a start screen, a game screen,

and then an end screen. The start screen might explain the rules, or ask the user for input

like the difficulty level they wish to play. Perhaps there are additional screens for

different levels. The way to do this in flash is with gotoAndPlay(). Also, when a game

is over, you need to be able to stop the game. Lets put it all together with a modification

to our number guessing game.

Lets put it all together in one game. Download and look at each frame of:

 www.cs.du.edu/~leut/1671/flashFiles/c5_RandomGuess2.fla

 11

This file is a complete game with three phases. In phase one the player is asked to enter

lower and upper bounds for the range of numbers. Then, when the press the button they

are moved into phase 2 (frame 2). In phase two the player guesses numbers. If incorrect

they are prompted for another guess. If correct, then the game moves to phase 3 where

the player is congratulated for their clever success and asked if they want to play again.

If they want to play again control moves back to phase 1. A few things to note about this

game:

• Transition between frames is done by the gotoAndPlay() call. Each frame has a

stop in it to make frame advancement dependent on a button being pushed. Go

ahead and take a stop out of the first or second frame and see what happens.

Why?

• Each phase (frame) has a different background color to help you detect phase

changes.

• Dynamic and input text boxes are reset to empty strings when a frame is entered

to clear entries from the previous game

A final note about frames and frame numbers: we do not need to use the actual frame

numbers. Instead we can give a frame a “label”, which is simply a text string name that

we associate with the frame, and then use the label to reference which frame to goto. The

advantages of this approach are that: 1) the code is easier to follow; and 2) if one adds

frames in the middle of the timeline the change in frame numbering will not “break” the

code. Frame labels are created in the property panel when a frame is selected.

Exercises:

1. Modify one of the bouncing gargoyle animations to consist of two phases. In the

first phase the user is asked to set the gargoyle velocities. Then, when they click

done, the second phase is entered and the gargoyles bounce with those velocities.

