- Schema + Query Language Determine Application Program

- Goal: Have a schema let in the query simply avoids Redundancy, update anomalies, loss of info

Example:

Schema 1:
Emp (eno, ename, bvr, sl1, cl1)
Dept (dno, dname, floor, mgr)
e1 or m1

Q1: Find all employees we make more than their manager:

Select E.ename
From Emp E, Dept D, Emp E2
where (D.mgr = E2.eno) and (E.dno = D.dno)
and (E.sal > E2.sal)

Q2: Find all employees with a mes salary > 2x query salaries

Select (d.dname)
From Emp E, Dept D
where (D.dname = E.dno)
Group by d.dname
having D.max (E.sal) > 2*AVG(E.sal)

Schema 2:
E0 (eno, ename, bvr, sl1, dno, dname, floor, mgr)

Q1: Select e.ename
From E0 e1, E0 e2
where (E1.bvr = E2.bvr) and (E1.sl1 > E2.sl1)

Q2: Select E.dname
From E0 e
Group by E.dno, E.dname
having MAX(E.sal) > 2*AVG(E.sal)
* We get simpler queries, but we also get into trouble:

- **Redundancy**
 - Each dept is repeated once for each employee.
 - There is potential inconsistency (update anomalies).
 - We may change the location of a dept in one
 multiple leaving it with the old value in another.
 - A simple change is translated into multiple replacements.
 (e.g., change the manager of the "shoe" department.)

- **No independent existence:**
 - A dept cannot exist without employees.
 - When we delete the last employee of a dept, we
 automatically lose track of the dept.

Objective of DB Design

- No redundancy for space efficiency.
- Update integrity.
- Semantic clarity.
- Linguistic efficiency (the simpler the queries the better for
 both the user and query optimizer).
- Performance (binary relations imply most queries will have
 a large number of joins.)
Tools for DO design: Functional Dependencies & Normalization

Functional Dependency: Let A, B be sets of attributes of R.

The F_D $A \rightarrow B$ holds if a value for A uniquely determines a value for B.

Formally: $A \rightarrow B$ if:

- For all pairs (t_1, t_2) of tuples in relation R such that $t_1[A] = t_2[A]$, it is also the case $t_1[B] = t_2[B]$.

Note: let K be a super-key of R, then $K \rightarrow R$.

Examples

Emp:
- $emp \rightarrow ename$
- $emp \rightarrow dno$

Dept:
- $dno \rightarrow mgr$
- $dno \rightarrow floor$

EO:
- $dno \rightarrow floor$
- $emp \rightarrow ss$
- $emp \rightarrow mgr$
Note, a FD is a property of a particular relation schema, and not of its instance.

Example

<table>
<thead>
<tr>
<th>enue</th>
<th>enue</th>
<th>byr</th>
<th>Stl</th>
<th>duv</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Mike</td>
<td>60</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Sally</td>
<td>55</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Sara</td>
<td>65</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>Julie</td>
<td>70</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>John</td>
<td>48</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Alex</td>
<td>70</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>Mike</td>
<td>60</td>
<td>45</td>
<td>1</td>
</tr>
</tbody>
</table>

It looks like

\[
\text{enue} \rightarrow \text{byr} \\
\text{enue} \rightarrow \text{duv}
\]

But this is not right. For example, I could add tuple

23 Mike 49 22 6
Various types of FD's help identify bad designs:

- **Trivial Dependency**: \((A, B) \rightarrow A\) (Identity)

- **Partial Dependency**: \((A, B)\) is a key and \(A \rightarrow C\)

 Ex: supply \((540, puo, proj40, scity, project, qty)\)
 Key is \((540, puo, proj40)\)

 \[\begin{align*}
 540 & \rightarrow \text{scity} \\
 \text{proj40} & \rightarrow \text{project}
 \end{align*}\]
 partial dependencies

- **Transitive Dependency**: \(A\) is a key, \(B\) is not, and \(A \rightarrow B \rightarrow C\)

 Ex: ED(eno, ehr, dna, wgr) where eno is the key.

 \[\begin{align*}
 \text{eno} & \rightarrow \text{dna} \rightarrow \text{wgr} \\
 \text{eno} & \rightarrow \text{wgr}
 \end{align*}\]
 transitive dependency

Depending on the existence of various FDs, schemes are classified in various Normal Forms.
INF: Every attribute has a atomic value (as opposed to set value) value. All relational model schemas are by definition INF.

2NF: INF and no partial dependencies.

3NF: 2NF and no transitive dependencies to attributes that are not part of a key. Equivalently, if \(X \rightarrow A \) is a FD then either:
- a) it is trivial, or
- b) \(X \) is a superkey, or
- c) \(A \) is a subset of a candidate key.

BCNF: (Boyce-Codd Normal Form) 3NF and no transitive dependencies. Equivalently, if \(X \rightarrow A \) is a FD then either:
- a) it is trivial, or
- b) \(X \) is a superkey.

4NF (5,6,...) Multivalued dependencies (rarely used, usually just theory for theory sake)

Distinguish Example Schemes

INF but not 2NF: Supply(sno, pno, order, qty, order, qty, qty, qty, qty, qty)

Key = (sno, pno, order)

2NF but not 3NF: ED(eno, ename, byr, sal, do, division, floor, mgr)

Key = (eno)
One receipt per person, food pair

3NF but not BCNF: Restaurant (person, food, rec_number)

Key = (person, food)

This is 3NF because it has transitive dependency to an attribute that is part of the key.

Each normal form is included in the next one higher up:

Ideally, a decomposer should satisfy:
- BCNF
- Lossless joins
- Dependency preservation

If we can not get this, we settle for:
- 3NF
- Lossless joins
- Dependency preservation

3NF example: name, floor, qsc, RA1id

Result is not 17
Lossless joins: The decomposition should be done in a way such that no information is lost.

Example:
\[\text{Baron} = (\text{bruce, lorn, charne, quount}) \]

\[\downarrow \text{decompose} \]

Att.-scheme:
- \((\text{quount, charne}) \)

Loan-scheme:
- \((\text{bruce, lorn, quount}) \)

<table>
<thead>
<tr>
<th>bruce</th>
<th>lorn</th>
<th>quount</th>
</tr>
</thead>
<tbody>
<tr>
<td>hampton</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>norfolk</td>
<td>2</td>
<td>1500</td>
</tr>
<tr>
<td>lorn</td>
<td>3</td>
<td>2000</td>
</tr>
<tr>
<td>NN</td>
<td>4</td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quount</th>
<th>charne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Sue</td>
</tr>
<tr>
<td>1500</td>
<td>Mike</td>
</tr>
<tr>
<td>2000</td>
<td>Biff</td>
</tr>
<tr>
<td>1500</td>
<td>Jane</td>
</tr>
</tbody>
</table>

\(\text{aut} \times \text{lorn} \)

\[\begin{array}{c|c|c|l}
\text{bruce} & \text{lorn} & \text{quount} & \text{charne} \\
\hline
\text{hampton} & 1 & 1000 & \text{Sue} \\
\text{norfolk} & 2 & 1500 & \text{Mike} \\
\text{norfolk} & 2 & 1500 & \text{Jane} \\
\text{lorn} & 3 & 2000 & \text{Biff} \\
\text{NN} & 4 & 1500 & \text{Mike} \\
\text{NN} & 4 & 1500 & \text{Jane} \\
\end{array} \]

Gives us incorrect results! Hence we have lost information.
Let \(F = \text{Set of all semi-trivial FDs} \)

Move FDs can be inferred from \(F \)

\[F^+ = \text{Set of all inferred FDs} \]

Example:

\[F = \{ A \rightarrow B, A \rightarrow C, B \rightarrow K \} \]

Then,

\[F^+ = \{ A \rightarrow B, A \rightarrow C, A \rightarrow K, B \rightarrow K \} \]

The closure of \(F \) can be systematically determined using the inference rules:

(Note: \(F \vdash \{ x \rightarrow y \} \) denotes that \(x \rightarrow y \) can be inferred from \(F \)).

1. Reflexive rule: If \(x \subseteq Y \), then \(x \rightarrow y \)
2. Augmentation rule:
 - a) \(\{ x \rightarrow Y \} \vdash xZ \rightarrow YZ \)
 - b) \(\{ x \rightarrow Y \} \vdash xZ \rightarrow Y \)
3. Transitive rule: \(\{ x \rightarrow Y, y \rightarrow Z \} \vdash x \rightarrow Z \)
4. Decomposition rule: \(\{ x \rightarrow YZ \} \vdash x \rightarrow Y \)
5. Additive rule: \(\{ x \rightarrow Y, x \rightarrow Z \} \vdash x \rightarrow YZ \)
6. Pseudotransitive rule: \(\{ x \rightarrow Y, y \rightarrow Z \} \vdash x \rightarrow Z \)
When decomposing a schema we must make sure there are no lossless joins. This can be done as follows:

Let \(R \) be a schema we are to decompose. \(R_1 + R_2 \) be the decomposed schema. (Let \(R_1 \cup R_2 = R \))

The decomposition is a lossless-join decomposition if one of the two is true:

1. \(R_1 \cap R_2 \rightarrow R_1 \)
2. \(R_1 \cap R_2 \rightarrow R_2 \)

Note

\[\text{Aut-scheme} \land \text{Lom-scheme} = \text{equivalent} \]

\[\text{equivalent} \rightarrow \text{Aut-scheme} \]

\[\text{equivalent} \rightarrow \text{Lom-scheme} \]

Hence, decompositions may lose information if is rejected.

Dependency Preservation

The goal is to preserve functional dependencies without requiring a join. (The purpose of DBMS checks whether or not the inserts, deletes, modifications.

- First, let \(F = \{(S, T, R) \mid \text{of all functional dependencies in } R \} \)

- The closure of \(F \), denoted by \(F^+ \), is the set of all logically implied dependencies.

\[
\begin{align*}
F &= \{(A \rightarrow B), (A \rightarrow C), (B \rightarrow H)\}, & F^+ &= \{(A \rightarrow B), (A \rightarrow C), (A \rightarrow H), (B \rightarrow H)\}
\end{align*}
\]
(1), (2), and (3) are known as Armstrong's axioms.

- Armstrong axioms are complete, i.e. by repeatedly applying (1) \(F^+ \) can be determined.

Algorithm for determining closure of attribute set \(\delta \):

\[
\text{result} = \delta \\
\text{while (changes to result)} \\
\begin{align*}
&\text{for each FD} \quad \beta \rightarrow \gamma \in F \\
&\text{if } \beta \subseteq \text{result} \\
&\quad \text{then } \text{result} = \text{result} \cup \gamma \\
\end{align*}
\]

Example:

Assume \(F = \{ A \rightarrow B, A \rightarrow C, C \rightarrow H, C \rightarrow I, B \rightarrow H \} \)

\(A^+ \) (the closure of \(A \) under \(F \)) can be calculated:

\[
\begin{array}{c|c|c}
\text{level} & \text{result} \\
0 & A \\
1 & A, B \quad A \rightarrow B \\
1 & A, B, C \quad C \rightarrow H, C \rightarrow I, B \rightarrow H \\
1 & A, B, C, H \quad \text{thus } A^+ = \{ A, B, C, H \} \\
\end{array}
\]
Har about \(\{AG\}^+ \)?

I do not know.

Note \(F^+ = \{A, B, C, G, H, I\}^+ \)

In worst case this alphabet may be the true attribute in the size of \(F \). There is a linear (but non-complex) algorithm.

- Often \(F_D \) are used to make sure the DB does not move into an incorrect state by the insertion of a fake or delete.

- In order to minimize the number of \(F_D \) that need to be tested, restrict \(F \) into a smaller (but just as meaningful) set.
 1. combine several \(F_D \) into one where possible
 2. remove extraneous attributes

- Attribute \(A \) is extraneous in \(\alpha \) if \(A \in \alpha \) and \(F \) logically implies \((F - 3D \rightarrow B) \cup 3 (\alpha - A) \rightarrow B \)

- Attribute \(A \) is extraneous in \(\beta \) (\(\alpha \rightarrow \beta \)) if \(A \in \beta \) and \(F \) logically implies \((F - 3D \rightarrow B) \cup 3D \rightarrow (\beta - A) \)
A canonical cover (or minimal cover) F_c
is a set of FD such that F logically
implies all FD in F_c, and F_c logically
implies all FD in F. Furthermore, F_c must
have the following properties:
(i) no FD in F_c contain an extraneous attribute
(ii) every FD has a single value on the RHS.
(iii) we can not remove a FD and still be equivalent to F.

Example: calculate F_c for $F =$

\[A \rightarrow BC \]
\[B \rightarrow C \]
\[A \rightarrow B \]
\[AB \rightarrow C \]

1) Write RHS true single value only
\[F = \begin{align*}
A \rightarrow B \\
A \rightarrow C \\
B \rightarrow C
\end{align*} \]

2) A is extraneous in $AB \rightarrow C$ since $B \rightarrow C$ logically implies $AB \rightarrow C$.

Thus, $(\{A \rightarrow C\} \cup \{B \rightarrow C\})$ logically implies F^+.

Removing A from $AB \rightarrow C$ gives $B \rightarrow C$ which is

Liu and result
\[F^+ \Rightarrow \{ A \rightarrow B \}
\]

3) We can remove $A \rightarrow C$ and still be equivalent to F

\[F^+ \Rightarrow \{ A \rightarrow B \} \Rightarrow F^+ \]

\[F_c = \{ A \rightarrow B \} \]

\[\{ B \rightarrow C \} \]
Minimal Cover

Formal Algorithm:

1. \(s \) \(\mathcal{G} = \mathcal{F} \)
2. replace each \(FD \) \(x \rightarrow A_1, A_2, \ldots, A_n \) in \(\mathcal{G} \) by \(FDs \) \(x \rightarrow A_1, x \rightarrow A_2, \ldots, x \rightarrow A_n \)
3. \((4)\) for each \(FD \) \(x \rightarrow A \) in \(\mathcal{G} \)
 - compute \(x^+ \) with respect to \(\mathcal{G} - \{ x \rightarrow A \} \)
 - if \(x^+ \) contains \(A \), remove \(x \rightarrow A \) for \(\mathcal{G} \)
4. \((5)\) for each remaining \(FD \) \(x \rightarrow A \) in \(\mathcal{G} \)
 - for each attribute \(B \) in \(x \) not an element of \(x \)
 - compute \((x-B)^+ \) with respect to \(\mathcal{G} - \{ x \rightarrow A \} \)
 - if \((x-B)^+ \) contains \(A \), replace \(x \rightarrow A \) with \((x-B) \rightarrow A \) in \(\mathcal{G} \)

These methods can be used to determine if a relation schema decomposition is dependency preserving.
Minimal Cover Example

\[F = \{ A \rightarrow B \rightarrow C, F \rightarrow A, E \rightarrow F, G \rightarrow C, H \rightarrow F \} \]

STEP 1

\(A \rightarrow B \rightarrow C \)

\(A \rightarrow D \)

\(C \rightarrow E \)

\(B \rightarrow G \rightarrow F \)

STEP 2

1. Does \((A \rightarrow B)^* \in C\) if \(G\) is removed?
 - No → can remove \(G\)
2. Does \(A^+ \in C\) if removed \(G\) → No
3. Does \(C^+ \in E\) if removed \(G\) → No
4. Does \((B \rightarrow G)^+ \in E\) if removed \(G\)?
 - Yes, can remove \(C\)
5. \(F^+ \in A\) if removed \(G\)? No
6. \(F^+ \in B\) → Can remove \(F\)
7. No
8. No
STEP 2: Venue: Nunnari ATTR

1. Is A extreem in $A0H \rightarrow C$?

 Yes, if $A0H \rightarrow C$. Then derive E from $E = (A0H \rightarrow C) \land (B0H \rightarrow C)$. Further:

 - $B0H \rightarrow E$
 - $E \rightarrow F \Rightarrow B0H \rightarrow A$
 - $F \rightarrow AO \Rightarrow A0H \rightarrow C$

2. Is B extreem in $B0H \rightarrow C$? NO

3. Is H extreem in $B0H \rightarrow C$? NO

4. Is G extreem in $B6H \rightarrow F$?
\[BH \rightarrow E \]
\[E \rightarrow F \]

\[\text{thus } BGH \rightarrow F, \text{ e.g. G is } \]
\[\text{ext} \]
\[\Rightarrow BH \rightarrow F \]

\textit{End of Step 2}

- BH \rightarrow C
- A \rightarrow D
- C \rightarrow E
- DH \rightarrow F
- F \rightarrow A
- E \rightarrow F

\textit{Initial cover}

\text{Step 3}

- C \rightarrow E
- A \rightarrow D

\text{remove}

\text{redundant}

F \rightarrow A
E \rightarrow F

BH \rightarrow E
No, how about schema decomposition:

Let R be decomposed into R_1, R_2, \ldots, R_n.

The restriction of F to R_i is the set F_i of all functional dependencies that include only attributes of R_i.

Let $F' = F_1 \cup F_2 \cup \ldots \cup F_n$.

If $F'^+ = F^+$ the decomposition is dependency preserving.

Example of how this is used:

Banker-Schema: $(\text{branch-name}, \text{customer-name}, \text{banker-name})$

$F = \{\text{banker} \rightarrow \text{branch}, \text{customer, branch} \rightarrow \text{banker}\}$

Note, key = $(\text{customer, branch})$

Banker-Schema is not BCNF, why?

banker \rightarrow branch, banker is not a super key, dependency is non-trivial.

\[\downarrow \text{decompose} \]

Banker-Branch-Schema (banker, branch)

Customer-Banker-Schema $(\text{customer, banker})$

This is BCNF + lossless, but does it preserve dependency?
\[F_1 = \{ \text{baker} \rightarrow \text{bunch} \} \]
\[F_2 = \emptyset \quad \text{(no trans. dependencies)} \]
\[\Rightarrow F'^+ \neq F^+ \]

Thus, we could not satisfy
a) BCNF, and
b) lossless, and
c) dependency preserving

But, we can get 3NF, lossless, dependency-preserving since

\[\text{Baker-Scheme is 3NF} \]

\[\text{Customer, bunch, baker} \]

1. \(X \rightarrow B \), \(X \) is a superkey
2. \(B \rightarrow A \), \(A \) is a subset of a candidate key

Advantage of Normal Form approach:
→ It is a way to formalize a process that is usually only done using intuition.
1) Try to decompose R into BCNF (lossless)

Algorithm:

1) set $D = E(R)$
2) while \exists schema $G \in D$ that is not BCNF

 a) choose $G \in D$ that is not BCNF
 b) find FD $X \rightarrow Y$ that violates BCNF
 c) replace G by the schemas $(G - Y) \cup (xU)$

Note: the final decomposition may not be lossless dependency preserving.

2) => test to see if dependency preserving

3) If not dependency preserving, decompose as lossless & dependency preserving 3NF

Algorithm:

1) find minimal cover F_c for F
2) for each left-hand side $X \in F_c$

 create a relation schema $(xU_A, U_A, U \ldots A_n)$

 where $X \rightarrow A_1, X \rightarrow A_2, \ldots X \rightarrow A_n$ are all F_c

 dependencies in F_c with X in left-hand side
3) replace all remaining (unplaced) attributes in

 a single relation
4) if one of the relation schemas contains k

 key of R, create one more relation schema

 that contains k attributes that form a new
Example:

\[
\text{lots} (\text{property}, \text{country}, \text{name}, \text{lot#}, \text{area}, \text{price}, \text{tax})
\]

\[\downarrow \text{abbreviate}\]

\[
\text{lots} (\text{pid}, \text{country}, \text{lot#}, \text{area}, \text{price}, \text{tax})
\]

\[
F = \left\{ \begin{array}{c}
\text{pid} \rightarrow \text{country, lot#}, \text{area}, \text{price}, \text{tax} \\
\text{country, lot#} \rightarrow \text{pid}, \text{area}, \text{price}, \text{tax} \\
\text{country} \rightarrow \text{tax} \\
\text{area} \rightarrow \text{price}
\end{array} \right\}
\]

\[\text{Note: } F^+ = F\]

Is lots BCNF?

No: \(\text{area} \rightarrow \text{price}\) is a partial dependency, not even 3NF!

Decompose (BCNF decomposition algorithm)

lots1 (\text{pid, country, lot#}, \text{area}, \text{price})
lots2 (\text{country, tax})

Are both of these BCNF?

No: \(\text{area} \rightarrow \text{price}\) is part of a transitive dependency!

\[
\begin{align*}
\text{lots1} & (\text{pid, country, lot#}, \text{area}) \\
\text{lots2} & (\text{country, tax}) \\
\text{BCNF?} & \text{ Yes!}
\end{align*}
\]
But is it dependent preserving?

\[\begin{align*}
F_{\pi} &= \{ \text{pid} \to \text{curnc}, \text{lot#}, \text{quer} \} \\
F_{\Sigma} &= \{ \text{curnc}, \text{lot#} \to \text{pid}, \text{quer} \}
\end{align*} \]

\[F_{j} = \{ \text{curnc} \to \text{tax} \} \]

\[F_{1}^{+} = \begin{cases}
\text{pid} \to \text{curnc}, \text{lot#}, \text{quer} \\
\text{curnc}, \text{lot#} \to \text{pid}, \text{quer} \\
\text{quer} \to \text{price} \\
\text{curnc} \to \text{tax}
\end{cases} +
\]

\[= F_{1}^{+} \]

\[\text{So, Yes! It is dependent preserving.} \]
Let's add a 3rd FD to our example:

\[\text{avc} \rightarrow \text{curnc} \]

In this case, lets say is need BCF

\[\text{avc, poa} \]

1. lots1x (pid, avc, lot#) ⊆ lotsby (avc, curnc)
2. lots1b (avc, price) ⊆ lots2 (curnc, tax)

Is it BCF? Yes

Is it dependent preserving?

\[F_1 = \text{pid} \rightarrow \text{avc}, \text{lot#} \]
\[F_2 = \text{avc} \rightarrow \text{curnc} \]
\[F_3 = \text{avc} \rightarrow \text{price} \]
\[F_4 = \text{avc} \rightarrow \text{tax} \]

\[F_1^+ = \{ \text{pid} \rightarrow \text{curnc}, \text{lot#}, \text{avc}, \text{price}, \text{tax} \}
\]
\[\text{curnc} \rightarrow \text{tax}
\]
\[\text{avc} \rightarrow \text{price}, \text{curnc}, \text{tax} \]

but NOT curnc, lot# → pid, avc, price, tax!

\[\text{Not Dmitry Preservin} \]
Thus, we must settle for IMF, lacking presence, tasteless and here use list decomposition algorithm:

$$F = \begin{cases}
\text{pid} \rightarrow \text{crime, lot#, area, price, tax} \\
\text{crime, lot#} \rightarrow \text{pid, area, price, tax} \\
\text{crime} \rightarrow \text{tax} \\
\text{area} \rightarrow \text{price} \\
\text{area} \rightarrow \text{crime}
\end{cases}$$

Find limited cover:

\begin{align*}
1 & \text{ pid } \rightarrow \text{crime} \\
2 & \text{ " } \rightarrow \text{lot#} \\
3 & \text{ " } \rightarrow \text{area} \\
4 & \text{ " } \rightarrow \text{price} \\
5 & \text{ " } \rightarrow \text{tax} \\
6 & \text{crime, lot#} \rightarrow \text{pid} \\
7 & \text{ " } \rightarrow \text{area} \\
8 & \text{ " } \rightarrow \text{price} \\
9 & \text{ " } \rightarrow \text{tax} \\
10 & \text{area } \rightarrow \text{price} \\
11 & \text{area } \rightarrow \text{crime} \\
12 & \text{crime} \rightarrow \text{tax} \\
\end{align*}

\begin{align*}
\text{pid } & \Rightarrow \text{crime, lot#, area, price, tax} \\
\text{this includes crime, hence can remove 1} \\
\text{can not remove 2} \\
\text{hct 7} \\
\text{yes 4} \\
\text{yes 5} \\
\text{hct 6} \\
\text{yes 7} \\
\text{yes 8} \\
\text{crime, lot# } \rightarrow \text{pid} \\
\text{yes 5} \\
\text{hct 10} \\
\text{hct 11} \\
\text{hct 12} \\
\end{align*}
\[F^c = \text{minimal cover} = \{ \begin{align*} \text{pid} &\rightarrow \#_1 \\
\text{pid} &\rightarrow \text{area} \\
(\text{name, \#_1}) &\rightarrow \text{pid} \\
\text{area} &\rightarrow \text{price} \\
\text{area} &\rightarrow \text{name} \\
\text{name} &\rightarrow \text{tax} \end{align*} \]

BNF: lessless, presence code control:

\(\gamma (\text{pid, \#_1, area}) \quad \gamma (\text{area, price, name}) \)

\(\gamma (\text{name, \#_1, pid}) \quad \gamma (\text{name} \rightarrow \text{tax}) \)

It is 2NF:

(marked as OCMF because \(\text{name, \#_1} \rightarrow \text{pid} \))
Check if it is depending presently:

\[F_1 = \text{pid} \rightarrow \text{1#}, \text{area} \]
\[F_2 = \text{area} \rightarrow \text{price}, \text{name} \]
\[F_3 = \text{name,1#} \rightarrow \text{pid} \]
\[F_4 = \text{area} \rightarrow \text{tax} \]

\[F^+ = \begin{cases} \text{pid} \rightarrow \text{1#}, \text{area}, \text{price}, \text{name}, \text{tax} \\ \text{name,1#} \rightarrow \text{pid}, \text{area}, \text{price}, \text{tax} \\ \text{area} \rightarrow \text{tax} \\ \text{area} \rightarrow \text{price}, \text{name}, \text{tax} \end{cases} \]