Normalization Highlights

Need to know from book:

- definiton of trivial FD
- definiton of partial FD
- definiton of transitive FD
- definitions of 1NF, 2NF, 3NF, and BCNF and be able to understand when schemas are in which normal form.

Goal: BCNF, lossless, DP

If can not achieve goal, settle for 3NF, lossless, DP

Assume R is decomposed into R_1 , R_2 . The decomposition is lossless if either:

- $R_1 \cap R_2 \to R_1$ or
- $R_1 \cap R_2 \to R_2$

Def: F^+ = closure of F = set of all logically implied FDs

Algorithm for determining closure of attr set α :

```
\begin{aligned} \text{resultAttr} &= \alpha \\ \text{resultFD} &= \{ \} \\ \text{while (changes to either result set)} \\ \{ \\ \forall \ FD \ \beta \rightarrow \gamma \ \in F \\ \text{if } \beta \subset resultAttr \\ \text{then } \{ \\ \text{resultAttr} = resultAttr \cup \gamma \\ \text{resultAttr} = resultFD \cup (\beta \rightarrow \gamma) \\ \} \end{aligned}
```

Example1:

Assume $R = \{A, B, C, D, E, F, G\}$ and $F = \{B \rightarrow D, A \rightarrow B, CE \rightarrow F, CE \rightarrow G, A \rightarrow C\}$

Calculate A^+ :

iteration	$\operatorname{resultAttr}$	resultFD
initial	А	
1	A,B	$A \to B$
1	A, B, C	$A \to B, A \to C$
2	A,B,C,D	$A \to B, A \to C, B \to D$
3	no change	no change

thus, $A^+ = \{A, B, C, D\} \{A \rightarrow B, A \rightarrow C, B \rightarrow D\}.$

Example2:

 $F = \{B \rightarrow D, A \rightarrow B, CE \rightarrow F, CE \rightarrow G, A \rightarrow C\}$

Calculate AE^+ :

iteration	$\operatorname{resultAttr}$	resultFD
initial	A,E	
1	A,B,E	$A \to B$
1	A,B,C,E	$A \to B, A \to C$
2	A,B,C,D,E	$A \to B, A \to C, B \to D$
2	A,B,C,D,E,F	$A \to B, A \to C, B \to D, CE \to F$
2	A,B,C,D,E,F,G	$A \to B, A \to C, B \to D, CE \to F, CE \to G$
3	no change	no change

thus, AE is a candidate key

Minimal Cover

Before defining minimal cover, we need to define extraneous attribute.

Def: Attr A is extraneous in α , $\alpha \to \beta$, if $A \in \alpha$ and $[(F - (\alpha \to \beta)) \cup ((\alpha - A) \to \beta)]^+ \equiv F^+$

Def: Attr A is extraneous in β , $\alpha \to \beta$, if $A \in \beta$ and $[(F - (\alpha \to \beta)) \cup (\alpha \to (\beta - A))]^+ \equiv F^+$

Def: F_c = minimal cover = set of FD such that:

- $F_c^+ \equiv F^+$
- no $FD \in F_c$ contains extraneous attributes
- every $FD \in F_c$ has a single value on the right hand side
- can not remove a FD from F_c and stil have equivalance to F^+

Minimal Cover Construction Algorithm:

- 1. Set G = F
- 2. replace each FD, $X \to A_1, A_2, \ldots, A_n \in G$ by FDs $X \to A_1, X \to A_2, \ldots, X \to A_n$
- 3. \forall FD $X \rightarrow A \in G$:

 \forall attribute B that is an element of X:

- if $((G \{X \to A\}) \cup \{(X B) \to A\})$ is equivalent to G, then replace $X \to A$ with $(X B) \to A$ in G.
- 4. \forall FD $X \to A \in G$, compute X^+ with respect to $\{G (X \to A)\}$. If $A \in X^+$, remove $X \to A$ from G.

Note, you must do the steps in order. As your book shows, reversal of 3 and 4 may result in something that is NOT a minimal cover.

Example:

Let $F = \{A \to BC, B \to C, A \to B, AB \to C\}$. In step 2 we rewrite G as $\{A \to B, A \to C, B \to C, A \to B, AB \to C\}$. There are no extraneous attributes to remove in step 3. In step 4 we remove the first $A \to B$, then remove $A \to C$, then finally remove $AB \to C$. Thus, $F_c = \{A \to B, B \to C\}$.

Dependency Preservation

Consider the decomposition $R \Rightarrow R_1, R_2, \ldots R_N$.

- Def: F_i = restriction of F to F_i = set of FDS that include only attributes of R_i .
- Let $F' = F_1 \cup F_2 \cup \ldots F_N$.
- If $F'^+ \equiv F^+$, then the decomposition is dependency preserving.

BCNF and Lossless Deomposition of R Algorithm:

- 1. Set $D = \{R\}$
- 2. while \exists schema $Q \in D$ that is not BCNF {
 - (a) choose $Q \in D$ that is not BCNF
 - (b) find FD $X \to Y$ that violates BCNF
 - (c) replace Q by the two schemas (Q Y) and $(X \cup Y)$
 - }

Note, this decomposition is NOT guaranteed to be dependency preserving.

3NF, Lossless, and Dependency Preserving Deomposition of R Algorithm:

- 1. Find a minimal cover F_c for F
- 2. For each left hand side $X \in F_c$, create a relation scheme $(X \cup A_1 \cup A_2 \cup \ldots A_N)$ where $X \to A_1, X \to A_2, \ldots X \to A_N$ are all the dependencies in F_c with X in the left hand side.