
A Games First Approach to Teaching Introductory

Programming

Scott Leutenegger
University of Denver

Computer Science Department

2360 South Gaylord Street, Denver Colorado, 80208

303.871.2812

leut@cs.du.edu

Jeffrey Edgington
University of Denver

Computer Science Department

2360 South Gaylord Street, Denver Colorado, 80208

303.871.3297

jedgingt@du.edu

ABSTRACT
In this paper we argue for using a “Game First” approach to
teaching introductory programming. We believe that concerns
over whether an OO approach or a procedural approach should be
used first are secondary to the course assignment and example
content. If examples are not compelling, student interests often
lags thus making the OO versus procedural argument moot. We
believe that game programming motivates most new
programmers. Compelling assignments mean that students are far
more likely to learn because they are interested, and the visual
component allows students to see mistakes in their code as
manifested in the resultant graphics. We describe our experiences
after redesigning and offering a new introductory computer
science sequence using 2D game development as a unifying
theme. We teach fundamental programming concepts via two
dimensional game development in Flash and ActionScript during
the first quarter, transition to C++ to solidify concepts and add
pointers during the second quarter, then teach a multi-phase
project based game approach using C++ and openGL (2D
graphics only) during the third quarter. Our surveys show that this
approach improved student understanding of all seven basic topics
examined.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer Science Education. D.m
[Software]: Miscellaneous – games.

General Terms
Human Factors, Languages, Theory.

Keywords
Computer Science Education, CS1, Introductory Programming,
Game Programming, Game Development.

1.INTRODUCTION
How best to deliver fundamental programming concepts in a CS1
class has been an ongoing discussion since the beginning of

computer science education. We believe that recent societal
changes have caused both a need and an opportunity for a new
approach. The need is caused by plummeting enrollments in
computer science. Between 2000 and 2005 there has been a 60 -
70% reduction in incoming freshman computer science majors
[18]. This drop makes retention especially important. The
opportunity is found in the vast increase in computer/video game
use among new students. The majority of people 30 years old
and younger either play games occasionally or frequently. Further,
contrary to common misperceptions, women make of 45% of all
game players [6]. This huge interest in games can be used to
entice students toward computer science: introductory
programming classes using game creation is one compelling
example. In fact, some schools are creating entire programs
around game development [2,7,9,12,19]. These programs typically
have a strong computer science component.

Our goal is thus to attract and retain majors without “watering
down” the technical content of our classes. Thus, to us, the issue
is not about objects first versus objects late or procedural versus
objects, rather, it is about engaging students with interesting
assignments. If the assignments truly interest students then it
stands to reason there should be a much higher probability of
learning success and retention. We use games for this purpose.
The arguments in favor of this approach are similar to the
arguments in favor of the media approach used in Python courses
[8,14].

Note, many others have been using games as motivating
examples. In [1,3,11,17] game programming projects are used as
practical examples and motivators in CS1 and/or CS2. A recent
SIGCSE panel [16] discussed how games are used to spark
interest in general programming and software engineering.

The rise of the game industry and education of students for this
industry has given rise to classes aiming to teach the game
creation process itself. Perhaps the best source for game
curriculum ideas is the International Game Developers
Association Education Committee Framework [10]. Again, in a
recent SIGCSE panel [16] some panel members discussed courses
aimed at teaching the game creation process. In [5] the authors
present a framework for integrating game programming into an
existing computer science curriculum. In [13] a capstone project
course that also helps train student for the industry is described.

As a secondary note, although we have stated that the OO versus
procedural approach is secondary to the application content, it
does remain an important issue impacting our curriculum. We
believe students should learn how to use existing classes of
objects before learning how to create new classes [15]. As
described below this is reflected in our curriculum.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2.OUR SITUATION
Recently, the University of Denver has created a Game
Development undergraduate degree. In part to accommodate this
new degree we have made changes to our existing computer
science curriculum that we believe has also resulted in
strengthening our approach for traditional computer science
majors. Two major factors impacted our changes. First our
curriculum must able to accommodate both Game Development
majors and “normal” Computer Science majors and allow students
to switch between these majors within the first two years. Second,
we have a limited number of teaching faculty and cannot afford to
offer more than one introductory sequence. Thus, it is necessary
to have a unified sequence of courses for all our freshman CS and
Game Development students.

Since our institution uses the quarter system, we have a year-long
introductory sequence before data structures and algorithms, thus,
or model is based on a three quarter freshmen introductory
sequence. Our Game Development major is a demanding degree
requiring later courses in Operating System, Graphics, and Game
Programming, thus, our freshmen sequence needs to be “solid”
and prepare students for the rigors expected in traditional
computer science degrees.

3. COURSE SEQUENCE DESCRIPTION
As mentioned before we have not changed the fact that our
introductory sequence is comprised of a 3-quarter sequence. What
we have changed is the focus on games while retaining every
concept as offered before. In the subsequent sections we describe
the curriculum for each of these three classes.

3.1 First Quarter
We assume that students taking this class have had little or no
programming experience. We continue to find this to be true for
the majority of our incoming freshmen. We start by teaching the
Flash development environment and ActionScript syntax. We
quickly show how to create and move a graphical object around
the screen by using the ActionScript onEnterFrame function. We
feel it is important to start with a simple object on the screen as
then programming logic and correctness can be viewed by
watching the resultant animation. For example, consider the
following snippet of code:

var xIncrement:Number = 6 ;
onEnterFrame = function() {
 theBall._x += xIncrement ; // move the ball
 if (theBall._x > Stage.width) xIncrement *= -1 ;
 if (theBall._x < 0) xIncrement *= -1 ;
}

In this example we demonstrate if statements. Assuming
“theBall” is an ActionScript MovieClip object that contains a
picture of a ball, then the ball will move back and forth on the
screen. Students can instantly see the effect of the if statement
and if there is an error they will see that the animation does not
perform as expected. This trivial example illustrates a major asset
of our approach: instant visual feedback for the student. This
same feedback helps students see if their code is correct for the
other concepts.

The other concepts taught in the first quarter class include:

• variables

• If/else/switch

• Looping (while and for)

• Arrays (one and two dimensional)

• Using existing objects and classes (string, MovieClip, date)

• Creating one’s own classes

• Functions and Scope

• Event driving programming include mouse, keyboard, and
onEnterFrame

Only the last item is non-standard, the rest provide a fairly typical
coverage of introductory concepts. Our innovation lies not in the
topics covered, but rather in the game focus. We use the pair-
programming model and have also found this approach is
beneficial. During the quarter, three different game projects are
assigned which increase in difficulty and complexity. Students
are shown how to create new object classes near the end of the
course.

3.2 Second Quarter
We switch programming languages at the beginning of the second
course and teach C++ and the Unix operating system. The
students gain more experience implementing new object classes.
We teach pointers (which are not available in ActionScript) and
dynamic memory allocation. We also introduce recursion,
inheritance, and dynamic data structures (lists and trees).
Programming projects are again assigned to teams of two
students.

3.3 Third Quarter
This synthesis course continues with C++ programming. The
students are introduced to simple graphics programming using the
OpenGL API. Again the projects are game and simulation
oriented but the teams are larger: three or four students. We
introduce UML class diagrams and sequence diagrams as part of
the project requirements. The goal of this class are to:

• Create larger projects that solidify skills learned in the first two
quarters.

• Learn basic software software engineering concepts such as
UML class, sequence, and object diagrams as well as unit
testing

• Learn how to program using an API. In this case the API is
openGL

• Learn how to work in groups

4. LANGUAGE CHOICE JUSTIFICATION
Language choices for intro classes are often determined by many
factors including both faculty passion for a particular language as
well as faculty inertia! In this section we justify our language
choices.

4.1Why We Use Flash and ActionScript
There are many reasons we chose Flash/Actionscript. Perhaps the
main reasons are that Flash is fun and it is relatively simple to
start writing interesting games and applications in ActionScript.
The initial learning overhead is quite low. Unlike java that
requires significant “scaffolding” before one can do something
interesting, ActionScript programs can be written very few easy to
understand lines of code [4].

Second, using Flash/ActionScript provides immediate graphical
feedback. The existence of an error, and often the probably
causes, can be determined “visually” by observing the animation
or game behavior.

Third, elementary ActionScript syntax is almost identical to C++.
This provides an easy transition from the first quarter to the
second quarter.

Fourth, our university also offers degrees in Digital Media Studies
and Electronic Media Arts Design. Teaching Flash and
ActionScript has attracted a number of these students to our
course. In the upcoming year about one third of our introductory
programming students will be drawn from these two other majors.

Fifth, Flash and ActionScript are used in the “real world”.
Students love the fact that they are learning a language that has
immediate applications.

Finally, many simple two dimensional web games are written
using Flash and ActionScript. It is important that all Game
Development majors learn and understand two-dimensional game
programming. This is covered in the Game Development courses
(taken in the second or third year of study) but basic concepts
should be introduced as soon as possible.

4.2ActionScript Is Not A Perfect Introductory

Language
Unfortunately ActionScript has a few problems for use as an
introductory language. It was not specifically designed for novice
users or teaching, although it is fairly easy to use them for this
purpose. Perhaps the biggest drawback is that ActionScript does
not require declaration of variables. Thus, typographical errors
can create problems which are sometimes difficult to find.
Students get down right angry when they find that a one letter
error goes undetected yet makes the program not run correctly.
Note, if Adobe were to add a compile flag option to do strong type
checking this problem would disappear, making the language very
attractive as a first language. Finally, despite the syntax
similarities to C++, some students still had trouble making the
transition from ActionScript to C++. For these students, several
fundamental concepts had to be revisited. We are further
investigating this last issue in the upcoming year’s offering.

4.3Why C++ and OpenGL
We choose C++ for several reasons. First, this is the language that
our department has settled on for our CS majors as the “standard”
language of most classes. Second, C++ enables meaningful
exploration of pointers and dynamic memory allocation. Third,
the game industry is heavily dependent on C and C++, thus
making the language choice relevant to our graduates.
Subsequent classes in our Game Development major require C
and C++ also.

We believe that teaching how to program using an API is
important given software development’s heavy use of APIs. The
OpenGL API has the benefit of being relatively easy to use (for
2D applications), a clean design, and again provides the visual
feedback we have found so helpful.

5.Women and Games
Given the drop in already low female freshman CS enrollments
[18], it is especially imperative that we do not discourage the
small number of women who do make it into our classrooms.
Some critics of our approach have hypothesized that women are
less interested in games than men and that this may drive women

away from computer science Although anecdotal evidence
affirms that women are less attracted to violent and online
multiplayer games such as World of Warcraft, a recent survey by
the Entertainment Software Association indicates 45% of all game
players are women. Anecdotal evidence indicates women are
often more interested in so-call “casual games”. If that is true, our
approach is then especially relevant as 2D Flash games lend
themselves nicely to developing simple games within this medium
supposedly preferred by women. Our experience so far has been
that women are just as motivated by our game approach as men.
See our results section below for numbers to back up this
assertion.

6.RESULTS AND CONCLUSIONS
The students completed three informal surveys: one after the first
quarter and two separate surveys after the third quarter.

Thirty students participated in the first survey. Of these 11 were
female and 19 were male. The high percentage of women (as
compared to the current national norm) is due to having a
significant number of digital media studies majors in our course.
On a scale of 1 to 4, where {1 = “boring”; 2 = “so-so”; 3 = “fun”,
and 4 = “awesome”}, most of the students reported that the first
quarter course was fun giving an average of 2.82 / 4.0. Students
were asked if they liked the game approach where {1 = “hated
using games”; 2 = “Focus neither hurt nor helped”; 3 = “Game
focus was good”; and 4 = “Game focus made it great”. The
average score for this question was 3.26 / 4.0 thus making it clear
the students liked the approach. Since some people have
conjectured that a game approach would discourage women we
tabulated the same results for women only. The 11 women
reported a “fun” average of 2.9 / 4.0 and a game approach good/
bad average of 3.18 / 4.0. Not a single woman gave a rating of
“1” to either question. Thus, it appears based on this sample that
women were as favorably impacted by this approach as men.

Students were also asked to rate their level of understanding of
various topics. The rating system was {1 = “no clue” ; 2 = “so-
so”; 3 = “Think I understand” ; and 4 = “mastered”}. The first
quarter survey results are shown in the first column of Table 1.

Quarter 1 Quarter 3

Variables 3.50 3.84

Input/Output 3.21 3.79

Loops 2.94 3.74

Arrays 2.76 3.53

Functions 2.79 3.63

Using Objects 3.09 3.37

Creating Own Classes 2.21 3.45

F l a s h / A c t i o n s c r i p t
environment

2.79 NA

Inheritance NA 2.95

Vectors NA 2..79

Pointers NA 3.00

C++ NA 2.45

Table 1: First Quarter and Third Quarter Survey Averages

As can be seen from the table, after the first quarter, students in
general appeared confident in all topics except creating their own
classes. This later is not surprising as it was taught at the end of
the quarter. Both instructors felt that the exam results agree with
the students self assessment from the surveys.

The second survey was given at the end of the third quarter.
Nineteen students participated in this survey. The results are
found in the second column of table 1. We asked the same
concept questions as in the first quarter plus additional concept
questions. The rating systems was the same. The results clearly
showed the students felt very confident on basic programming
concepts and reasonable comfortable on the C++, inheritance, and
pointers.

The third survey attempted to determine what the students
believed they had learned. They were asked whether their
knowledge of Objects, Classes, Inheritance, Pointers, C++, and
Separate Compilation had stayed the same, increased, or greatly
increased during the year. In all categories (except Objects) the
average responses were above “improved”. The results are shown
in Table 2.

Average (max of 3.0)

Objects 1.79

Classes 2.05

Inheritance 2.05

Pointers 2.18

C++ 2.05

Separate Compilation 2.16

Table 2: Average Increase of Understanding, where a value of
1.0 means “no change”, 2.0 means “increased”, and 3.0 means
“greatly increased”

Overall our surveys indicate that the students did learn effectively
and that the second and third quarter classes helped solidify earlier
concepts.

Enrollment in our courses has increased for several reasons: the
new Game Development degree draws new students to the
university, the Media students are interested in learning Flash and
ActionScript, and the courses have a new reputation of being fun
and interesting. In Fall 2005 we started with 36 students in the
introductory sequence. In Fall 2006 we have 60 students starting
in the introductory sequence. Given the continuing declines in
national CS enrollments and our doubling in enrollments, perhaps
the game approach is something that should be seriously
considered by additional schools.

Retention through the sequence has improved considerably over
past years. Of the intended majors who started in the Fall, 85%
took all three classes. In addition, a few non-majors ended up
taking all three classes and at least one has switched to majoring
in Game Development.

Finally, despite some claims that a game-oriented approach would
cause women to be discouraged, our results show that women are
equally encouraged by this approach as men.

In summary, it appears that our new approach has resulted in
higher retention, increased attraction of new students, and that
women seem to be positively influenced just as men.
Furthermore, it appears that we have achieved these goals without
sacrificing technical depth.

7.ACKNOWLEDGMENTS
We thank teaching assistants Mohammed Albow and Daniel
Pittman who have been especially helpful in delivering this new
curriculum during the past year.

8.REFERENCES
[1] Adams, J.C., Chance-it: an OO capstone project for cs-1,

SIGCSE'98, 10-14, 1998.

[2] Argent, L., Depper, B., Fajardo, R., Ghertson, S.,
Leutenegger, S., Lopez, M. and Rutenbeck, J, Builidng a
Game Development Program, IEEE Computer, Vol 39, no 2,
52-61, 2006.

[3] Becker, K., Teaching with games: the minesweeper and
asteroids experience, J. Comput. Small Coll, 17(2), 23-33,
2001.

[4] Crawford, S., Boese, E. ActionScript: A Gentle Introduction
to Programming. Journal of Computing Sciences in Colleges,
Volume 21, Issue 3 (February 2006), pp. 156-168.

[5] Coleman, R., Krembs, M., Labouseur, A., and Weir, J., Game
design & programming concentration within the computer
science curriculum, SIGCSE'05, 545-550, 2005.

[6] ESA, “Essential Facts About the Computer and Video Game
Industry. Entertainment Software Association, 2005. http://
www.theesa.com/files/2005EssentialFacts.pdf

[7] Fullerton, T., Play-Dentric Games Education, IEEE
Computer, Vol 39, no 2, 36-42, 2006.

[8] Guzdial, M. A Media Computation Course for Non-Majors,
ITiCSE’03, June 30 - July 2, 2003, Thessaloniki, Greece, pp.
104-108.

[9] Horswill, I., and Noval, M., Evolving the Artist-
Technologist, IEEE Computer, Vol 39, no 2, 53-62, 2006.

[10] International Game Developers Association Education
Committee, The curriculum framework, 2003

[11] Lorenzen, T., Heilman, W., Cs1 and cs2: write computer
games in java! SIGCSE Bull., 34(4), 99-100, 2002.

[12] Murray, J., Bogost, I., Mataes, M., and Nitsche, M., Game
Design Education: Integrating Computation and Culture ,
IEEE Computer, Vol 39, no 2, 3-51, 2006.

[13] Parberry, I., Roden, T., Kazemzadeh, M.B., Experience with
an industry-driven capstone course on game programming,
SIGCSE'05, 91-95, 2005.

[14] Ranum, D., Miller, B., Zelle, J., Guzdial, M. Successful
Approaches to Teaching Introductory Computer Science
Courses with Python, Special Session, SIGCSE’06, March
1-5, 2006, Houston, Texas, USA.

[15] Roumani, H. Practice What You Preach: Full Separation of
Concerns in CS1/CS2. SIGCSE’06, March 1-5, 2006,
Houston, Texas, USA.

[16] Sweedyk, E., deLaet, M., Slattery, M.C., Kuffner, J.,
Computer games and cs education: why and how.
SIGCSE'05, 256-257, 2005

[17] Trono, J.A., Taxman revisited, SIGCSE Bull., 26(4), 56-58,
1994.

[18] Vegso, J, Drop in CS Bachelor’s Degree Production.
Computing Research News, Vol 18, No 2, March 2006,
http://www.cra.org/CRN/articles/march06/vegso.html

[19] Zyda, M., Educating the Next Generation of Game
Developers, IEEE Computer, Vol 39, no 2, 30-35, 2006.

