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ABSTRACT
Many Geographic Information Systems (GIS) handle large
geospatial datasets stored in raster representation. Spa-
tial joins over raster data are important queries in GIS for
data analysis and decision support. However, evaluating
spatial joins can be very time intensive due to the size of
these datasets. In this paper we propose a new interactive
framework that allows users to get approximate answers in
near instantaneous time, thus allowing for truly interactive
data exploration. Our method utilizes two proposed sta-
tistical approaches: probabilistic join and sampling based
join. Our probabilistic join method provides speedup of two
orders of magnitude with no correctness guarantee, while
our sampling based method provides an order of magnitude
improvement over the full quad-tree join and also provides
running confidence intervals. We propose a framework that
combines the two approaches to allow end users to trade-
off speed versus bounded accuracy. The two approaches are
evaluated empirically with real and synthetic datasets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Design, Performance

Keywords
raster spatial join, visualization, probabilistic join, sampling

1. INTRODUCTION
Geographic Information Systems (GIS) are used for stor-

age and retrieval of large spatial datasets. Each dataset is
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usually called a layer. Example layers may be roads, rivers,
land elevation, etc. Layers are related if they have the same
geographic coordinates. Spatial joins between two or more
data sets are one of the most common GIS queries for data
analysis. An example might be finding all roads within 100
feet of rivers located at 1000 feet altitude or less. GIS users
often want to visualize query results and being able to do
so in an interactive fashion would greatly increase the util-
ity of the GIS. Unfortunately, the large dataset size makes
interactive spatial joins difficult.

Geospatial data is usually stored in one of two alternative
data formats: raster (grid cells) and vector (point, line and
polygon). In this paper we focus on raster data, where little
research has been done on optimization or approximation
techniques for spatial joins. Currently, performing spatial
joins on raster data requires layers to be compared on a cell-
by-cell basis. This spatial join process, referred to as map
overlay, requires intensive computation time. To enable
interactive queries, more efficient methods for dealing with
raster data are needed.

GIS systems are often used to visualize results for the end
user to assist in decision making processes. In many applica-
tions, obtaining an approximate join result in a reasonably
short time is far more important than evaluating an exact
join over a long time period. Fast response times are es-
pecially important for user-driven data exploration used in
GIS. We believe GIS users should be given the chance to see
which are the “interesting” dataset join pairs without hav-
ing to wait to compute the actual full joins. In this paper we
propose an interactive query processing framework for spa-
tial join that enables GIS users to obtain an approximate
“big picture” visualization of an answer in two orders of
magnitude faster time than the time required for obtaining
the exact answer.

Our general interactive framework works as follows. Users
specify queries and get near instantaneous visualizations of
the answer using our proposed probabilistic join method.
These result visualizations are approximations with no guar-
anteed bound of correctness. For queries that had interest-
ing results users can either use our proposed sampling al-
gorithm to get a confidence bounded answer estimate, or,
compute the full join. By allowing the user to get near
instant approximate answers they are able to explore far
greater numbers and sizes of datasets than previously pos-
sible. This increase ability does come at the cost of possibly



making a mistake and hence may not be appropriate for
systems used in critical life decisions.

Our approach is based on two techniques:

Dataset R (8:16) Dataset S (9:16)Dataset R (8:16) Dataset S (9:16)

Figure 1: Raster cells of datasets R and S

• Probabilistic joins: The main idea is to calculate the
join probability and the expected number of the joined
cells of two raster datasets that have the same geo-
graphic coordinates. Data density (ratio of non-zero
data cells to total data cells) in each node of a quad-
tree of two datasets is used to calculate the join prob-
ability. Figure 1 shows an example of two datasets; R
and S represented by a 4×4 raster grid. In this exam-
ple, R has 8 non-zero data cells (density: 8/16) while
S has 9 non-zero data cells (density: 9/16). Then R
and S must intersect regardless of their shape and lo-
cation. The ratio of non-zero data cells to the total
number of data cells of each data set can be used in
the calculation of the join probability and the expected
number of joined cells.

• Sampling joins: Using quad-trees, overlapping blocks
(sub-regions) are used to filter candidate pairs in order
to speed up the joining process. Our sampling join ap-
proach is based on stratified random sampling from
quad-trees and performing joins on the incremental
samples to estimate the final answers of spatial joins
with bounded confidence intervals.

Our proposed interactive framework combines the two pro-
posed statistical approaches in order to speed up the process
of obtaining estimations of the final join result in a reason-
able time compared to the total time needed to perform a
full join. Augmented quad-trees with non-zero data cells are
used in the framework. We provide experimental results for
both synthetic and real GIS datasets that demonstrate the
efficacy of our approach comparing to full quad-tree joins.
The speedup relative to a full quad-tree join increases as
dataset size increases.

2. RELATED WORK
One common raster data spatial join technique is map

overlay [10]. Raster overlay is straightforward when the in-
put rasters have the same cell boundaries. The resulting
raster can be obtained cell by cell from the originals using
the relevant operations on the cell values. However, little
research work has been done on map overlay optimization
techniques.

Since GIS data can reach gigabytes and possibly terabytes
in size, full layer overlays could take hours and even days to
complete. This necessitates a need for approximation tech-
niques. Most of the work on relational database join approx-
imations can not be directly applied to spatial databases. In

[3, 4] the authors presented an approximation technique of
vector-based spatial joins. First they converted vector data
to raster format and filtered the possible joined pairs us-
ing the Four Color Raster Signature in [3] and the Three
Color Raster Signature in [4]. They combined progressive
and conservative approximations [2] in a single approxima-
tion to speed up the filtering step in identifying intersecting
polygons. Their proposed techniques motivated us to obtain
the join probability of two raster datasets.

The quad-tree is a very popular hierarchical data struc-
ture for the representation of binary images and maps and it
is commonly used in spatial databases [1, 11], i.e., indexing
for query processing, and optimizing decomposition. Our
work assumes datasets are indexed by quad-trees. Quad-
tree based sampling has been proposed in [8, 11]. In [11],
the authors presented the analysis of four different sampling
methods proposed by [8]. They applied sampling algorithms
to specific quad-tree implementations to obtain approximate
aggregate query results. They proposed two models in or-
der to analyze sampling costs while our sampling approach
provides a faster approximation of the join result with a
bounded confidence interval.

The idea of incremental sampling technique using R-trees
to provide interactive spatial join processing was proposed
in [12]. The authors proposed two R-tree based sampling
methods that were used to incrementally refine the esti-
mated join result while providing a bounded confidence in-
terval. Their approach was applied for vector-based data
rather than raster data. The proposed sampling method in
this paper follows the same framework but using quad-trees
instead of R-trees and with a more sophisticated sampling
method.

Probabilistic query evaluation was studied for uncertain
continuously changing data in relational databases [5]. In
[6], the authors proposed probabilistic join over uncertain
data. They provided techniques to answer queries that re-
turn results with probabilities exceeding a given threshold.

To the best of our knowledge, our work is the first attempt
to apply probabilistic approaches to estimate raster-based
spatial joins.

3. A FRAMEWORK FOR SPATIAL JOINS
OVER RASTER DATA

3.1 Augmented Quad-tree
Statistical methods are concerned with the estimations of

parameters of the population in GIS. These approaches use
information associated with the population, samples drawn
from the population and distribution of the samples.

Augmented quad-tree data structure is used for PJ and
ISSJ . Specifically, we augment nodes to include the total
number of non-zero data cells of the subtree below. Our
proposed statistical approaches use these augmented quad-
trees for obtaining information associated with the popula-
tion. Figure 2 (a) and (b) show two augmented quad-trees
of the raster dataset examples in Figure 1. The nodes of the
quad-trees are displayed in counter clock-wise order start-
ing from the north-west. In our framework, all datasets are
indexed by augmented quad-trees.

3.2 Probabilistic Joins vs. Random Sampling
In PJ , the augmented value (number of non-zero data

cells) of each node of given two datasets is used to calculate
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Figure 2: Examples of augmented quad-trees of datasets R and S

the join probability and the expected number of joined data
cells for each pair of subregions in the two joined datasets.
PJ accesses nodes from the top to the bottom hence PJ is
referred to as a top-down approach. PJ does not need to
access all levels of quad-tree to calculate an estimate. It
is mostly enough to access only a small number of top lev-
els. Thus, it can greatly reduce time-consuming disk I/O
operations in practice. The number of levels to be accessed
is a system parameter. The greater number of levels is ac-
cessed, the more accurate the estimation can be. However,
this would result in more I/Os. In the experiments, we set
the number of levels to 4 resulting in only 64 nodes needed
in memory, hence it is practical to store only required top
level nodes of quad-trees for all joined data sets in memory.
Although PJ provides no accuracy guarantee, our experi-
mental results of synthetic and real data sets show the error
bound is reasonably tight, e.g., a 9% error for 4th level join
(Section 5).

In ISSJ , stratified random sampling is used to estimate
the final answer of spatial joins. An accuracy guarantee is
provided in the form of error bound confidence intervals. In
contrast to PJ , ISSJ is performed on sampled leaf level
data cells. Although far less number of I/Os are required in
ISSJ comparing to a full quad-tree join, obtaining a rea-
sonable confidence interval requires a significantly greater
number of I/Os comparing to PJ .

3.3 Framework Overview
We proposed a query processing framework that combines

the proposed statistical approaches. The framework consists
of three main processes: probabilistic joins, result visualiza-
tions and sampling joins. The main idea is to use PJ and a
visualization technique to allow users to discover “interest-
ing” data set pairs and areas for further data exploration.
Once the user identifies interesting data sets, he/she can
have the system perform ISSJ in order to produce tighter
running estimates of join results, or the user can have the
system use the full quad-tree join to obtain the exact answer.

Figure 3 shows the overview of the framework, where two
relations R and S are joined. 1) Probabilistic Joins (PJ):
Given the user’s interesting data sets, all higher level nodes
(from level 0 to level 3 in our experiments) of the two data
sets’ quad-trees are loaded in memory. Then the join prob-
ability of each pair of the corresponding nodes is obtained
from a look-up table. Since join probability is defined on
continuous space, the system can use a lookup table for dis-
crete values of join probability. 2) Visualization and user
interface: Based on a visualized result of probabilistic joins,
the user can identify “interesting join pairs”. 3) Incremental
Stratified Sampling Joins (ISSJ): ISSJ starts incremental

sampling process with the interesting pairs. Samples (non-
zero cells) are randomly chosen from the outer relation R
using stratified random sampling. Spatial joining on the
corresponding cells of the inner data set is performed. The
number of joined cells in each step is used to calculate a run-
ning estimate and a confidence interval for the final result.
Finally, the calculated running estimate and confidence in-
terval are combined with the intermediate result into a query
result through visualization process. Then the query result
is reported to the user. The user can stop the query process
if the given confidence interval is sufficient or if the user sees
satisfying trends from the visualized actual join locations
(intermediate result), otherwise, each step of the process is
repeated in an incremental manner to calculate new esti-
mates until a desired confidence interval is achieved. Thus,
the time to get join estimates needs to be compared to the
time required for the full quad-tree join.

4. STATISTICAL JOIN APPROACHES

4.1 Probabilistic Join
Given a set X and two randomly chosen subsets A and

B of X, what is the probability that A ∩ B 6= ∅? Let us
denote this probability by p. There is an easy answer in
the finite case. Let |X| = n, |A| = a, |B| = b. Then

p = 1 − (n−a
b )

(n
b)

, since this is the probability that a ran-

domly chosen b-element subset of X will not avoid a given
a-element subset of X. But there is no reasonable answer in
the infinite case, since we run into the well-known problems
with (i) what is meant by “random” (the answer depends on
how the experiment is conducted), (ii) measurability (how
to determine the size of a set).

We therefore restrict our attention to subsets of special
kind, and use the obtained answers as approximations to
the (unsolvable) general case.

Theorem 4.1. (Join Probability for intervals)
Let X = [0, 1], and let A, B be randomly chosen intervals in
X of length a, b, respectively. Then, the probability p that
A ∩B 6= ∅ depends only on a, b, and can be calculated by:

p(a, b)1 = 1
1−b

∫ 1−b

0

min{x+b,1−a}−max{0,x−a}
1−a

dx

Proof. Let A and B be [al, ah] and [bl, bh], respectively,
such that alah = |A| = a and blbh = |B| = b. If A and B
are picked at random, then al ∈ [0, 1− a] and bl ∈ [0, 1− b]
(see Figure 4). Assuming that x is a random variable for
the value of bl, we have x ∈ [0, 1 − b]. Then p(a, b), the
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Figure 3: A framework for raster joins

Figure 4: Join of two intervals

probability that A ∩B 6= ∅ (A intersects B), is as follows:

p(a, b)1 ≡ P ((ah ≥ bl) ∧ (al ≤ bh))

≡ P ((ah ≥ x) ∧ (al ≤ min{x + b, 1− a}))
≡ P ((al ≥ x− a) ∧ (al ≤ min{x + b, 1− a}))
≡ P (max{x− a, 0} ≤ al ≤ min{x + b, 1− a})

In order to have p(a, b) 6= 0, we need to pick al between
max{x − a, 0} and min{x + b, 1 − a} from the continuous
space in which the range of x (bl) is [0, 1− b] and the range
of al is [0, 1− a]. Then we have the following equation.

p(a, b)1 = 1
(1−a)(1−b)

∫ 1−b

0
min{x+b, 1−a}−max{0, x−a}dx

Theorem 4.1 can now be generalized to any number of di-
mensions. The 2-dimensional case is as follows:

Let X = [0, 1]2, and let A, B be rectangles in X of area a,
b, respectively. If the sides of A are of length a1, a2 = a/a1

and the sides of B are of length b1, b2 = b/b1, then we can
use the 1-dimensional case to deduce that P (A ∩ B 6= ∅) =
p(a1, b1) · p(a2, b2). However, we do not know a1 and b1. All
we know is that a1 ∈ [a, 1] (since the length of each side of A
has to be at least a) and b1 ∈ [b, 1]. We therefore conclude
that:

p(a, b)2 = 1
(1−a)(1−b)

∫ 1

a

∫ 1

b
p(a1, b1) · p( a

a1
, b

b1
)da1db1

It is now easy to see the general formula for two n-d prisms
A, B in X = [0, 1]n of volumes a, b, respectively. Let the

lengths of sides of A and B be (a1, ..., an), (b1, ..., bn), re-
spectively. Then

p(a, b)n = 1
(1−a)(1−b)

∫ 1

a

∫ 1
a

a1
· · · ∫ 1

a
a1···an−1

∫ 1

b

∫ 1
b

b1
· · ·

· · · ∫ 1
b

b1···bn−1
udbn−1 · · · db1dan−1 · · · da1,

where u=p(a1, b1) · ·p(an−1, bn−1)p( a
(a1··an−1)

, b
(b1··bn−1)

)

The expected overlapped length (area, volume) of A and B
can be calculated using the conditional probability, since it
is assumed that the two datasets are chosen independently:

P (A ∩B) = P (A) · P (B)

The formulae for the join probability and the expected join
numbers can be extended to more than two datasets joins.

4.2 Incremental Stratified Sampling Join
Sampling methods are used to estimate the final result

from a subset (samples) of the data and to provide a bounded
confidence interval. Query estimations and confidence in-
tervals are statistically meaningful only if samples are re-
trieved at random. A weighted random sampling method,
Acceptance/Rejection [8], is used in the ISSJ algorithm.
We study stratified random sampling without replacement
for raster data spatial joins. Each sampling is conducted
in an incremental manner and the performance is evaluated
with varying data sets and buffer sizes.

4.2.1 Stratified Random Sampling
Stratified random sampling is chosen because its prop-

erty matches the property of quad-trees that provides sys-
tematic decomposition of a space with no overlaps between
subregions. In stratified random sampling, the given region
(population of all data cells) is divided into a number of
non-overlapping subregions called strata. Then each stra-
tum contains a set of raster data cells. Stratified random
sampling can result in smaller error bounds on an estima-
tion and can reduce the sampling cost [9].

In our algorithm, stratification is based on non-overlapping
geometric forms such as rectangles (nodes at each level). We
define the internal nodes of the quad-tree for a given level
as strata, i.e., the second level nodes of quad-tree are used
as strata in our experiments. We assume that the strata is



pre-defined in our experiments. Algorithm 1 describes the
ISSJ algorithm.

Samples (non-zero cells) are then randomly chosen from
each stratum by conducting simple random sampling. The
sample size of each stratum ni, i=1, ..k, is calculated for ev-
ery sampling step, and it is proportional to the total number
of non-zero cells within that stratum. Then the sampling
size for a sampling step is ns =

∑k
i=1 ni. If the value of

the chosen data cell is 1, searching the corresponding joined
cell of the inner data set is performed in the quad-tree of
the inner data set (line 15 of Algorithm 1). If the value of
the corresponding cell is 1, then two data cell join. For each
stratum, we obtain the number of joined cells, and this num-
ber is used to calculate the estimate and confidence interval
for the corresponding stratum. The sum of the joined cells
of each stratum is the current intermediate result, and the
estimates and confidence intervals of all strata are combined
for an estimate and a confidence interval of the final answer.
The user can stop the query process if the given confidence
interval is sufficient, otherwise the process repeats.

Algorithm 1 ISSJ(R, S, ST )

1: ST = {ST1, . . , STk}; ST is a set of strata
2: I1, . . , Ik ← 0; CI ← 0 {the current joined cells for

stratum i; confidence interval}
3: ns ← 0; ninit ← 30 {the sample size for a sampling step;

the initial incremental sample size for a sampling}
4: n1, . , nk ← 0; s1, . , sk ← 0 {the sample size for

stratum i; the incremental sample size for stratum i}
5: repeat
6: compute s1, s2, . . , sk for ST1, ST2, .., STk using ninit

7: S ← ∑k
i=0 si; ns ← ns + S

8: for i = 1 to k do
9: ni ← ni + si

10: for j = 1 to si do
11: L ← choose a leaf from STi at random
12: cr ← choose a non-zero cell from L at random
13: if cell cr’s value is 1 then
14: Pr ← the center point of the chosen cell cr

15: cs ← findJoinedCell(S, Pr)
16: if cell cs’s value is 1 then
17: Ii ← add 1
18: end if
19: end if
20: remove cr from L
21: end for
22: remove L from STi if L is empty
23: end for
24: I ← ∑k

i=0 Ii

25: CI ← Compute a confidence interval w/all Ii and ni

26: EV ← Compute an estimate w/all Ii and ni

27: report EV , CI , and I
28: until CI is sufficient to the user or all STi are empty

4.2.2 Estimates for Stratified Random Sampling
To provide bounds on the accuracy of our result, we in-

crementally calculate the current estimate with a confidence
interval. The estimates and confidence intervals of ISSJ are
based on population proportion and the Central Limit The-
orem (CLT) [7, 9]. We use the binomial probability distri-
bution [9] for statistics of ISSJ . In ISSJ , the population is
the non-zero cells of the outer relation R and p̂ is the fraction

of the elements in the sample that possess the characteristic
of interest (“join” in our algorithm). Hence p̂ is the fraction
of cells in the sample that joins with the corresponding cell
of the inner relation S. Confidence intervals depend on the
size of samples and the distribution of the sample space (i.e.,
Student t-distribution).

Let N be the size of population (total number of non-
zero cells of the outer datasets) and ns be the sample size
for a sampling step. If Ni is the number of non-zero cells
in stratum i, and ni is the sample size for stratum i, then
N =

∑k
i=1 Ni, and ns =

∑k
i=1 ni, where k is the number of

strata. Let Ii be the total number of cells that join the cor-
responding cells of S in stratum i. The following equations
are used for a sampling step for ISSJ :
Estimator of the population proportion, where p̂i = Ii

ni
:

p̂ =
1

N
(N1p̂1 + N2p̂2 + ... + Nkp̂k) =

1

N

k∑
i=1

Nip̂i (1)

Estimate variance of p̂:

V̂ (p̂) =
1

N2

k∑
i=1

N2
i (

Ni − ni

Ni
)(

p̂iq̂i

ni − 1
) (2)

Confidence interval:

E = tc

√
V̂ (p̂) (3)

where tc is the critical value for confidence level c taken from
a Student t-distribution. Equations (1), (2) and (3) are valid
for the incremental stratified sampling process. The proof of
incremental equations can be found in our technical report
[13].

5. EXPERIMENTS
In this section, we present experimental results of PJ and

ISSJ with both synthetic and real GIS datasets. The per-
formances of two are compared with each other as well as
with the full quad-tree join.

5.1 Data Sets and Experimental Methodology
In our experiments, we consider both synthetic and real

data sets shown in Table 1. We generated four sets of uni-
formly distributed raster data and four sets of exponentially
distributed (a mean of 0.3 and a standard deviation of 0.3)
raster data. Our real data sets are from the 2001 and
2005 U.S. Geological Survey [14]: six datasets are chosen
from Arizona, Colorado, Oregon and Wyoming in the US.
These datasets are about minerals, stream sediments, water
sediments, rocks, pluto sediments and unconsolidated sedi-
ments. Each dataset was converted into raster format. In
Table 1, we present the total number of data cells (pixels),
the total number of non-zero data cells and the data density
for the synthetic and real datasets.

It is necessary that both the outer and inner datasets are
indexed by augmented quad-trees and they have the same
number of data cells as well as the same size of cells. Our
experiments were conducted using the following parame-
ters: Augmented quad-trees are implemented for PJ and
ISSJ while nonaugmented quad-trees are used for the full
quad-tree join. The page size of the quad-tree was set to
4Kbytes, resulting in 100 nodes and 64 nodes for the non-
augmented tree and augmented tree, respectively. Assum-
ing an LRU replacement policy, we vary the buffer size: 5%,



synthetic datasets real datasets
uni1 uni2 uni3 uni4 exp1 exp2 exp3 exp4 AZ CO OR WY

# total cells 65536 65536 262144 262144 65536 65536 262144 262144 65536 65536 65536 65536
# N.E. cells 17325 28365 39120 48298 14256 24736 36290 45231 6 datasets

density 0.26 0.43 0.15 0.18 0.22 0.38 0.14 0.17 Mineral Resources
description uniformly distributed data exponentially distributed data from USGS

Table 1: Synthetic and real datasets

10% and 20% of the size of one of the two relations. For
all presented results, the estimates and the corresponding
confidence intervals are shown with a 95% confidence level.

5.2 Experimental Evaluation
First we present the accuracy of join probability using

the 1-dimensional formula (p1) and 2-dimensional formula
(p2) discussed in Section 4. The total number of joins ob-
tained by the 1-d and 2-d join probability were compared
with the total number of actual joins. For discrete values
of join probability, we created two lookup tables (20×20).
Table 2 illustrates a portion of 2-d join probabilities from
the lookup table used in the experiments. We randomly se-
lected two corresponding nodes from the quad-trees of two
real datasets. We checked the occupancy rates (non-zero
data cells/total data cells) in the two chosen nodes and ob-
tained the 1-d and 2-d join probabilities from the lookup
tables. Then the expected numbers of joins were calculated.
We repeated this process for varying size of sample pairs:
5%, 10%, 20% and 50% of the total quad-tree nodes. We
ran the experiment 10000 times with each of the sample
sizes and presented the average. In Table 3 we show the re-
sults of a join, unconsolidated sediments ./ minerals in CO.
The table entries are actual error values, thus, for example,
an error of 0.1060 is a 10.60% error. Clearly, the 2-d join
probability provides better approximation of the actual join.

To evaluate the quality of the “big picture” visualization
obtained by PJ , we calculated the expected number of joins
using the 4th level tree nodes. When using the 4th levels
of two quad-trees, only 64 subregions are joined. As a re-
sult, users can obtain the approximate result visualization
in near instantaneous time with a truly interactive man-
ner. We present results showing the difference between the
PJ method and the full quad-tree join method (see Table
4). For the real datasets we compared PJ and ISSJ for
all 15 possible pairwise joins of the 6 datasets. We grouped
the synthetic datasets into two: group 1 (uni1, uni2, exp1,
exp2) and group 2 (uni3, uni4, exp3, exp4). We computed
all possible 6 pairwise joins of each of the two groups. In Ta-
ble 4, we present the average differences in the join density.
The minimum and maximum of maximum difference, and
the average maximum difference are also presented. Finally
we calculated the average error in the expected number of
joins of all the pairwise joins. As can be seen, PJ is rea-
sonably accurate in all the cases of both real and synthetic
datasets. With real data sets, PJ resulted in less accuracy
due to the scattered clusters found in the datasets. As shown
later in Figure 6, for the data we explored, these modest in-
accuracies have little effect on the overall visual join-result
appearance.

Next, we present the performance of ISSJ compared to
the augmented full quad-tree join. Figure 5 shows the re-

P 0.2 0.4 0.6 0.8 1.0

0.2 0.7683 0.9277 0.9903 1.0 1.0
0.4 0.9277 0.9937 1.0 1.0 1.0
0.6 0.9903 1.0 1.0 1.0 1.0
0.8 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Example of a 2-d lookup table

sample size actual join 2-d (error) 1-d (error)

5 % 54 48 (0.1060) 39 (0.2778)
10 % 109 99 (0.0917) 78 (0.2844)
20 % 218 197 (0.0963) 155 (0.2889)
50 % 545 494 (0.0936) 389 (0.2862)

Table 3: Join probability

sult using the real datasets (minerals ./ unconsolidated sed-
iments from Colorado). The estimates and confidence in-
tervals are plotted versus the number of samples (non-zero
data cells) processed as well as the exact answer. Figure 5
(a) shows the estimated values of the final joins calculated
by ISSJ . Figure 5 (b) shows how fast the confidence in-
tervals converge. By showing the deviations from the actual
joins, we demonstrate that ISSJ provides good estimates of
the final answer. In Figure 5 (c), we showed how fast an ac-
curate estimation could be calculated compared to the time
required for the full quad-tree join. For example, it took
about 1900 I/Os to reach an estimate with a 5% confidence
interval while 8,000 I/Os were required for the exact answer
obtained by the full quad-tree join.

We next show how accurately the proposed approaches
provide a “big picture” of the actual join. Figure 6 (a), (b)
and (c) show three datasets for the state of Colorado: uncon-
solidated sediments (P ), minerals (Q) and water sediments
(S). The results of PJ and ISSJ for P ./ Q and Q ./ S are
presented as well as that of the actual join. The result from
left to right corresponds to: ISSJ with a 10% confidence
interval (d), ISSJ with a 5% confidence interval (e), actual
joins (f) and finally PJ of the 4th level nodes (g). PJ and
ISSJ with a 5% confidence interval provided a reasonably
accurate approximation of the actual join.

In Figure 7 we present I/O comparisons between PJ and
ISSJ with varying the confidence intervals, as well as with
the full nonaugmented quad-tree join (QT ). All possible
pairwise joins from the six datasets of CO and AZ were run
and the number of I/Os were plotted for buffer sizes of 5%,
10% and 20% of the size of one dataset quad-tree. We plot
the average total number of I/Os of each method averaged



join datasets real datasets synthetic datasets
AZ CO OR WY group1 group2

average diff. 0.0060 0.0087 0.0049 0.0058 0.0032 0.0024
minimum of max. diff. 0.0047 0.0038 0.0045 0.0014 0.0018 0.0015
maximum of max. diff. 0.1208 0.0973 0.0849 0.1143 0.0410 0.0312

average max. diff. 0.0329 0.0237 0.0214 0.0199 0.0201 0.0182
average error of estimates 0.1105 0.0729 0.0629 0.0904 0.0324 0.0229

Table 4: Join density differences of probabilistic joins from actual joins (4th level)
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Figure 5: Estimates, confidence intervals and I/Os of ISSJ: unconsolidated sediment ./ mineral in CO
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Figure 6: Expected number of joins: ISSJ vs. PJ vs. Actual joins for real datasets in CO
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Figure 7: Number of I/Os of PJ, ISSJ and the full quad-tree join

over all 15 pairwise joins. The results for PJ are on the
left, then ISSJ for confidence interval bounds of 10, 7, 5, 3,
2 and 1%, and finally the results for the full quad-tree join
on the right. Note that the performance difference varying
buffer sizes is very small since there is few re-visiting of the
leaf nodes hence little opportunity to benefit from buffer
caching.

The PJ method resulted in up to two orders of magnitude
less I/Os than QT for both datasets. The ISSJ algorithm
obtained a very reasonable confidence interval (e.g. 5%)
with far less I/Os compared to QT . PJ is significantly faster
than the ISSJ algorithm, but does not provide correctness
bounds. However, PJ does provide a good overall picture
for the data explored even though there is no guarantee of
the quality of the estimate.

6. CONCLUSIONS AND FUTURE WORK
Due to the large dataset size, spatial joins of GIS data

may take unreasonably long time to complete. The tradi-
tional map overlay joining method does not provide any idea
of how the final result will look like until the join is com-
pleted. Hence, to enable an interactive data exploration, it
is essential to allow a user to get a fast estimation, ideally a
“big picture” visualization, of the join result. User comfort
in using approximations can be increased by a method that
also provides a confidence interval bound on the estimate.

In this paper, we proposed two statistical approaches for
estimating spatial joins on quad-tree indexed raster data,
namely, Probabilistic Joins (PJ) and Incremental Stratified
Sampling Joins (ISSJ). We proposed a framework that
combines two statistical approaches to allow fast interactive
data explorations and the opportunity for the user to then
drill down with full spatial joins if desired. Experimental
evaluations on real and synthetic datasets showed that our
proposed PJ method resulted in reasonably accurate results
with near zero response time. Our ISSJ method, while not
as fast as PJ , provides results with bounded confidence in-
tervals up to an order of magnitude faster than full quad-tree
join. Our framework can be used to build an end-user query
visualization tool that allows true interactive exploration of
large raster based GIS databases.

In the future we plan to expand the PJ method for esti-
mating the overlapping area of vector data (polygon) and in-
tegrating spatial joins between raster and vector data.
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