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Abstract. Geographic information systems (GIS) must support large
georeferenced data sets. Due to the size of these data sets finding ex-
act answers to spatial queries can be very time consuming. We present
an incremental refining spatial join algorithm that can be used to re-
port query result estimates while simultaneously provide incrementally
refined confidence intervals for these estimates. Our approach allows for
more interactive data exploration. While similar work has been done in
relational databases, to the best of our knowledge this is the first work
using this approach in GIS. We investigate different sampling method-
ologies and evaluate them through extensive experimental performance
comparisons. Experiments on real and synthetic data show an order of
magnitude response time improvement relative to the exact answer ob-
tained when using the R-tree join.

1 Introduction

Geographic Information Systems (GIS) are used in many fields and applications
for exploring large data sets in order to obtain intuition and insight into the
stored information. GIS queries often compute exact numerical query answers.
However, computing the exact answers to queries in large databases can be time
consuming. Often an approximate answer is sufficient and can prevent wasted
computation time, thus allowing a more interactive exploration of the data. Our
goal is to speed up the exploratory process of GIS data while providing a statis-
tical confidence of preliminary results through an incremental refining process.
For example, instead of waiting a long time for an exact answer, we compute an
approximate answer, say bounded by 5% of the exact answer with 95% proba-
bility (confidence level), in % of the time needed for an exact answer. To make
the system more interactive, the user is given the ability to stop queries when-
ever the answer is “good enough”. This approach allows the user to quickly
obtain an idea of whether or not the query is useful and can therefore modify
it or stop it accordingly. While GIS and spatial databases offer many sophisti-
cated algorithms for computing exact query answers for spatial data, many of
these techniques are time prohibitive for the exploration of large spatial data
sets. Thus, many GIS applications can benefit from our approximate and fast
approach.



In this paper we present the Incremental Refining Spatial Join (IRSJ) al-
gorithm. The TRSJ algorithm provides an order of magnitude improvement in
response time relative to a full R-tree join. The algorithm achieves its reduced
execution time by providing query estimates obtained from a subset of the full
join directed by random sampling. We experimentally compare two versions of
the TRSJ algorithm against each other as well as against the time needed to
obtain an exact answer using a full R-tree join algorithm.

2 Background

2.1 Overview of GIS and Motivation

GIS data are used to describe the geometry and location of various types of
geographic phenomena [12]. Geographic or spatial queries are performed on a
spatially indexed database in order to obtain answers that depend on spatial
relationships between data items [13]. Examples of spatial relationships include
intersection, containment, and adjacency. While our approach can be used for
any of these, in this paper we focus on finding an estimate of the number of
intersections. An example where our method would be useful is “How many
mineral plants intersect radiometric aged areas in the US?”, where this query
returns the number of areas that can be of interest to geologists to estimate the
earth’s age. Such a query would likely take a long time to find the exact number
of intersections. Our approach allows the time to be dramatically reduced if the
user is willing to accept an estimated value within a bounded confidence interval.

2.2 Related Work

Our work follows the lead of online query processing work done at the Univer-
sity of California-Berkeley [1,3,4]. The authors proposed an interface for online
relational aggregation to provide the user with the ability to control the query
execution process. The goal was to minimize time by obtaining an approximate
query answer instead of computing the exact answer. They proposed the “ripple
join” as part of this paradigm. We follow their general framework but devise a
new approximate sampling based join algorithm to work for spatial data.
Spatial relations are usually indexed using R-trees [8]. An R-tree is a height
balanced tree structure adapted from the B-tree to support spatial data. An
R-tree stores the minimum bounding rectangles (MBRs) of objects. When per-
forming a query, all rectangles that intersect the query region are retrieved. This
is done in a recursive way starting from the root and following the paths down
to the leaf level. A spatial join computes the pairwise intersection of all data
objects in two spatial data sets. Many spatial join algorithms based on R-trees
have been proposed with perhaps two of the most common being found in [9,
10]. Our algorithm follows a similar approach to that found in [10]. A data item
from one data set is joined with the other data set by executing a window query.
For example, if we join “cities” and “rivers”, then the MBR of a city provides



the query MBR to be executed against the river data set. Our work differs from
the past work in that we only execute intersection queries for a subset of the
“outer” data set through sampling. We incrementally refine the query answer
until we get the desired confidence interval accuracy.

Another approach for obtaining join selectivity estimates is to use histogram-
based methods [11]. Such methods offer the promise of even faster query esti-
mates than our method, but still have disadvantages. Although the experimental
results in [11] show low error, the method is not bounded whereas our method
provides error confidence intervals and the ability to incrementally tighten the
intervals. Also the histogram methods provide an estimate of the number of
joins, but they do not provide actual join results. Our method can be used to
produce a subset of the actual join results rather than just an estimate of the
number of tuples that will join.

3 The Incremental Refining Spatial Join in GIS

Our incremental refining spatial join algorithm consists of three steps: sampling,
spatial joining, and refining the estimation of the query result.

3.1 Random Data Sampling

Sampling chooses a subset of the data to obtain query estimates. Chosen samples
should accurately represent the entire data set, and a confidence interval is used
to reflect the accuracy of the estimated value [14, 15]. We consider two common
database sampling methods: tuple-level and page-level [5]. In tuple-level sam-
pling, a number of tuples are chosen as samples, each with the same probability.
Tuple-level sampling obtains random samples regardless of data clustering, how-
ever, its performance is poor if no index is available. If an index is available, then
performance is improved since the sampling predicate is applied inside the in-
dex of leaf pages. In page-level sampling, pages are chosen as samples instead of
tuples. If a page is chosen at random, all tuples in that page are processed to cal-
culate the number of intersections for that page. Page-level sampling has better
performance than tuple-level in terms of I/Os [5]. However, aggregate estimate
accuracy can be worse when using page-level sampling due to the correlation of
data within a page. The query estimations and the confidence intervals are sta-
tistically meaningful only if samples are retrieved in random order. [6] presented
techniques for random sampling from various indices to produce meaningful con-
fidence intervals.

In our experiments we used one of the weighted random sampling methods,
Acceptance/Rejection in [6,7], in which the inclusion probability is propor-
tional to some parameter of the item sampled. We investigated tuple-level and
page-level sampling with varying data sets and buffer sizes. We do sampling
incrementally without replacement.



Algorithm 1 TRSJ, (R, S,Cy,n)
1: C « 0; C; < 0 { count, confidence interval}
2: repeat
3: fori=0tokdo
L « Choose leaf from R at random
M — MBR of a randomly chosen tuple within L
I «— number of intersections of a Window Query (M, S)
C—C+1I
end for
9: (7 « Compute confidence interval using C'
10:  EV «— Compute estimated value using C
11: until The desired confidence interval C is attained

3.2 The Incremental Refining Spatial Join Algorithm (IRS.J)

We have developed and compared two IRSJ versions: IRSJ; and IRSJ, for
tuple-based and page-based sampling, respectively. Assume we have two data
sets, denoted R and S, that we wish to join. Let R be the outer data set and S
be the inner data set. We assume R and S are both indexed by R-trees.

In TRSJ; we select a page of R at random and choose one tuple within this
page at random. We use the MBR of this tuple as the MBR of an intersec-
tion query to query data set S using its R-tree. The number of intersections is
reported and used in calculating a running estimated value and a confidence in-
terval. Algorithm 1 describes I RSJ;, where Cy is the desired confidence interval
and k (updating rate) is the number of tuples in each sampling step. A tradeoff
exists between the rate at which the confidence intervals are updated and the
time to which the interval length decreases at each update. In our experiments
we used k = 30. Since pages may contain a different number of tuples, especially
if R is indexed by an R-tree, it is necessary to choose pages with a probability
relative to the number of tuples within the page.

In IRSJ, we sample a page of R at random for each update. The difference
between IRSJ; and IRSJ, is that in IRSJ, we compute an intersection query
for each tuple within a sampled page, then use the obtained average as a single
sample. Due to likely correlation of tuples within a page, it is necessary to treat
the average of the page as a single value when calculating the confidence interval.

4 Confidence Interval Calculation

To provide bounds on the accuracy of our incremental result, we concurrently
calculate and return to the user the current estimated value and confidence in-
terval. We give an overview of the statistical method used in IRSJ and present
the confidence interval of a population proportion based on the Central Limit
Theorem (CLT) [2, 14, 15]. CLT states that the sampling distribution of the sam-
ple mean approximates a normal distribution for a specified number of samples



from any population. The approximation improves with more samples. For the
confidence interval we use the binomial probability distribution. The outcome
of each trial (join) is either “intersect” or “does not intersect”. The binomial
distribution is determined by the number of trials n and the probability p of
success in a single trial. The probability of a success remains the same from one
trial to the next. We assume that the normal curve is a good approximation to
the binomial distribution. Empirical studies have shown that these methods are
quite good when both np > 5 and ng > 5, where ¢ =1 — p [15].

We describe the way to obtain the confidence intervals of a population pro-
portion. Let 7 be the number of successes out of n trials in a binomial experiment.
We take the sample proportion of successes p = r/n as our point estimate for p,
the population proportion of successes, and point estimate for q is ¢ = 1 —p. The
difference between the actual value of p and the estimate p is called the error
estimate for using p as a point estimate for p. For large samples the distribution
of p is well approximated by a normal curve with mean = p and standard error
o = /2. Since the distribution of p is approximately normal, we use features
of the standard normal distribution to find the difference p — p. An interval that
estimates a population parameter within a range of possible values at a specified
probability is called confidence level c. Let z. be the number such that an area
equal to ¢ under the standard normal curve falls between —z. and z.. Then we
have P(—z¢y/BL < p—p < 2./ =c.

We call E the maximal error tolerance of the error of estimate |p — p| for a
confidence level. To find the confidence interval for p, we have P(p—FE < p < p+
E) = c. The difficulty is that we may not know the actual values of p or g in most
situations, so we use our point estimates p =~ p and ¢ =1 —p ~ 1 —p to estimate
E. These estimates are safe for most practical purposes since we are dealing with
large-sample theory. Then the confidence interval for pis p — F < p < p+ FE,
where p = ©: we have £ = zcy/@ = Z %‘f, where z.= critical value for
confidence level ¢ taken from a normal distribution.

In TRSJ;, n = n, the number of tuples processed and in IRSJ,, n = ny,
the number of pages processed. Note that n, < n,. Different sampling methods
generalize the standard CLT of confidence interval formulas [14]. We use the
following formula for the confidence interval of IRSJ;:

3
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5 Experiments

In this section we present experimental results of the TRSJ; and IRSJ, algo-
rithms on both synthetic and real GIS data sets. We compare the algorithms to
each other as well as to obtain an exact answer using a full R-tree join algorithm
[9]. We show the estimated values and the corresponding confidence intervals re-
turned to the user with a 95% confidence level. We present the number of I/Os
with varied buffer sizes as well as the number of node (page) accesses. All code
is implemented in Java.



5.1 Datasets and Experimental Methodology

We consider both synthetic and real data sets in our studies. Our synthetic
data sets consist of (i) uniform (random) and (ii) skewed (hyper-exponential)
distributions. For the uniform data set, (x,y) locations are distributed uniformly
and independently between 0 and 1. The (x,y) locations for the skewed data
sets are independently drawn from a hyper-exponential distribution with mean
0.3 and variance 0.25. Let U and S denote uniform and skewed distributed data
sets, respectively. We considered all join combinations: S > S, U < S, S < U,
U < U. We vary the number of tuples of each data set between 100,000 and
600,000 tuples. We only present the most illustrative subset of our results due to
space limitations. Results not shown also resulted in up to an order of magnitude
improvement in performance. Our real data sets are from the U.S. Geological
Survey in 2001 and 2005 [16]: (i) Mineral Resources in the US (outer relation
R): U.S. Geological Survey, 2005. (ii) Geochemistry of unconsolidated sediments
in the US (inner relation S): U.S. Geological Survey, 2001. The two data sets
have 300,434 and 199,850 tuples (MBRs), respectively.

Our experiments are conducted using the following parameters: R-tree page
size of 4Kbytes with fan-out size of 100 for leaf and non-leaf nodes and minimum
capacity of 40. Since R-trees are disk-based index structures, the natural per-
formance metric is the number of page I/Os required for a given buffer size. We
assume an LRU buffer and vary buffer size between 300 and 1800 pages resulting
in the buffer holding between 3% and 60% of the inner R-tree.

5.2 Synthetic Data Results

We first present results for the synthetic data sets. In Figure 1 (a) and (c¢) we
plot the running estimated query result versus the numbers of tuples processed.
The smoother line is for IRSJ; while the jagged line is for IRSJ,. In Figure
1 (a) the outer data set is uniform while the inner data set is skewed, and in
Figure 1 (c) the outer data set is skewed while the inner data set is uniform.
In Figure 1 (b) and (d) we plot the confidence interval versus time measured
as the number of buffer misses. Figure (b) corresponds to (a) and figure (d) to
(c). The time to process a page of tuples in TRSJ), is greater than the time to
process a tuple in I RS Jy, thus, the most fair comparison is time which is directly
proportional to the number of buffer misses. The top curve is for ITRS.J, and
the lower curve is for I RS J;. The vertical line on the right is the execution time
needed for a full R-tree join algorithm. The estimate accuracy is significantly
worse under I RSJ, than IRSJ;. Put another way, the IRSJ; algorithm takes
less time to obtain the same accuracy as IRSJ,. Note that the time to obtain
an exact answer is more than an order of magnitude greater than that needed
to get an accuracy within 5% using IRSJ;.

In Figure 2 we show experimental results when we vary the size of the data
sets and also vary buffer size to keep the buffer size fixed at 10% of the inner R-
tree size. As can be seen, the full R-tree join requires 4-16 times more disk access
than ITRSJ;, with a 5% half confidence interval. As the data set size increases
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the advantage of I RSJ; over the full R-tree join increases. Thus, for larger data
sets, as expected in a real GIS, the benefit of our proposed approach will be
even greater. Figure 3 shows the results for an experiment where the size of data
sets is varied while buffer size is fixed at 1200 pages. Experiment results show
that IRSJ; provides an I/0O performance improvement of more than an order of
magnitude relative to the R-tree join.

5.3 GIS Real Data Result

We now present results for the U.S.G.S. data sets. Our query is to join min-
eral resources with geochemical unconsolidated sediments in the US. The query
returns the number of intersections of mineral resources and geochemical uncon-
solidated sediments. In Figure 4 we plot the accuracy and confidence intervals for
IRSJ; and IRSJ,. Again, the smoother line is for IRSJ; while the jagged line
is for IRSJ,,. As can be seen, IRSJ; takes less I/Os to get the same accuracy as
IRSJ,. In Table 1 on page 10 we present the number of I/Os and the number of
node accesses with buffer size 5% and 10% of the inner R-tree. For a buffer size
of 10%, the R-tree join requires 74 times more I/Os than the TRSJ; with a 5%
half confidence interval. In Figure 5 we present results of our experiments when
we vary buffer size from 300 to 1800 pages. The experiment results again show
that TRSJ; provides a good estimation in very early query processing stages.
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6 Conclusions

In this paper we proposed the Incremental Refining Spatial Join (IRSJ) al-
gorithm to efficiently estimate the results to spatial queries. We implemented
two versions of I RSJ: one based on tuple-level sampling (I RSJ;) and the other
based on page-level sampling (IRSJ,). Our experiments show that the time
(I/0s) required to obtain a reasonably accurate estimate was order of magni-
tude smaller than the time needed for an exact answer obtained using a full
R-tree join algorithm using both real and synthetic data sets. We also observed
that as the size of data sets increases, the improvement of IRSJ; over the full
R-tree join also increases. Thus, the benefit of our approach will be even greater
for larger GIS data sets. Perhaps surprisingly, our tuple-level sampling algo-
rithm performed better than our page-level sampling algorithm. This is a result
of only being able to use one datum in confidence interval calculation due to
data set clustering which violates the needed independence. In our future work
we plan to investigate different sampling methods to improve the performance
of IRSJ and develop a mathematical model to determine the optimal sampling
strategy. Further, we plan to explore the utility of I RSJ for answering multiway
joins.
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