Lecture 2:   if/else, sensing, bouncing sprites around in 2D with variables

Often in programming we want to do a set of actions only when a certain condition is true.  For example, if the account is overdrawn, then send the customer a nasty gram and fine them.  In programming this is usually done with an if statement.  In Scratch this is done with the “if” block from the CONTROL block section:

[image: image1.png]



If the stuff inside the elongated hexagon shape is true, then do the commands nested inside the if statement block.  We need to find hexagon shaped blocks to fit inside the hexagon space of the if statement.  This can be found in the SENSING and NUMBERS blocks.  For now look in the sensing and specifically the “touching” block.  Drag the “touching” block into the if block space:

[image: image2.png]



Notice I clicked inside the touch block to set it to “edge”.  This now says, “if this sprite is touching the edge, then do the stuff in the if block”.  Currently there is nothing there.  If I want to make it so that the sprite turns away from the edge and moves 10 steps when it touches and edge I would do the following:

[image: image3.png]touching cdge
turn G €D degrees

move @) steps





Now, lets embed this statement block into code you have already seen.  The result of the following code is my sprite moves back and forth forever!  Note, the first “point in direction” block just starts my sprite of pointing to the right every time I click on the green button.

[image: image4.png][50)

(150

m

|wait (D secs




This is great, it moves back and forth, but it flips upside down!  Another way to do this without the flip is to use a variable.

A variable is simply a bit of computer memory that can be used to store and retrieve values.  It is the same concept as a variable in math: the variable takes on different values.

First create a variable by clicking on “variables” in the block type area in the top left of the scratch interface, and then click on “Make a variable”.

[image: image5.png]point in direction

et veix [to @

move velx steps

set vei [to @)% velx

move Velx steps




Note, you can dynamically change the value of velX with the slider on the stage, just double click on the variable:

[image: image6.png]g ===
==




Moving in two directions:

You can create movement around the stage by using two variables, which I have named velX and velY.  First I check to see if the sprite is touching an edge.  If it is, then it could be touching any of the four edges.  If it is touching the left or right edge, then we want to negate the variable “velX”.  Given that we are touching an edge, so see if it is left or right we can do:

[image: image7.png]



We do a similar check for seeing if we are touching the top/bottom edge.  The final code then looks like the following.  Note, if we duplicate this sprite many times we then can have many sprites bouncing around the screen.

[image: image8.png]g0 to x: x position + velX y: "y position + velY.

v position > {E) or * y position < EED




Notice the use of “go to x: ( ) y: ( ) “ above.  This is the same as two statements of changeX and changeY as follows:

[image: image9.png]



EXAMPLE CODE:   2D_motion.sb

Removing sprites by clicking on them with the mouse.

You can not actually remove sprites from the stage, but you can hide them.  The following code block snippet checks to see if the sprite is touching the mouse point AND that the mouse if down.

If both conditions are true then the if statement condition is true and the sprite is hidden.

[image: image10.png]2 and mouse down?





The following full script for a sprite will move it around the screen in 2D, and if the player clicks the mouse on the sprite it goes away (by hiding it).  Note the “show” command at the top of the script.  This is important for when you re-run the script or else the sprites will still be hidden from the previous run.

[image: image11.png][heny - Jeicked

set veX |to

et Vel |to

set velX [to velx *

set Vel |to

ety *





Keeping Track of How Many Sprites Left and Declaring Victory!

Lets say we want to put 3 sprites on the screen, make them disappear when we click on them, and then specify the player has won once all three are gone.  Using the above example we know how to put three on the screen and make them go away, but we need a way to keep count of how many are left.

One way to do this is create a new variable, I’ll call it “numLeft”, but for this variable when we make it we select “for all sprites” as follows:

[image: image12.png]Variable name?

numLeft

® For allsprites O For this sprite only

ox Cancel





We can now use this variable to keep track of how many sprites are still left.  When we remove a sprite (again, we are not REALLY removing it, just hiding it), we decrement this variable:

[image: image13.png]2 and mouse down?





We can add this to the end of the forever loop in the previous example and then everytime we click on a sprite the global variable “NumLeft” will decrement by one.  We can then add code to the stage to check for hitting zero and show a win screen.  

THIS IS NEW:  up until now we have not added code to the stage object.  Just to the left of the sprites you will see a small representation of the stage. Click on this and add the following script:

[image: image14.png]switch to background backoround!





You will notice the new command “switch to background”.  In this example there are two backgrounds.  At the beginning the background is set to “background1”.  When NumLeft = 0 we switch to “wonBackground”.  With the stage slected click on the “Backgrounds” tab on the top.  Here you can add new backgrounds.  In my example I have:

[image: image15.png]New background: (20N TSR3

E background1

GheEn ©

wonBackground

GheEn ©




Now there is one final change we need to make this work smoothly.  At it is now, when you click on a sprite and hold the mouse down multiple “hits” are registered, even though the sprite has been hidden, and hence the counter NumLeft gets decremented multiple times.  To stop this from happening we can just associate another variable with each sprite.  Lets call it “stillActive” and use a value of 1 to mean it has not been hidden yet and a value of 0 to mean it has been hidden.  The code then looks like:

[image: image16.png]R ——





Notice how we took a <    <> and <>  >  statement and embedded another < > and <> statement as an operand of the first and statement.  One can build complex Boolean statements by embedding and / or statements this way.

EXAMPLE CODE:     2D_removeWithWinCondition.sb

