P4games.org, copyright 2008

P4games.org, copyright 2009

Chapter Two: Classes and Objects

Section 1: Real Objects Versus Virtual Objects

Computer games do not have to match reality. In them we can violate the rules of physics (or make up our own), pigs can fly (well virtual pigs can virtually fly), fire can be hot or cold (or both), and people can be 100 feet tall. The game developers choose what is reality inside the program. We can create any virtual objects we like and we can have them interact and behave in any way we like.

Thinking about programs in terms of objects that interact is known as object oriented programming. The Java language supports this style of programming and is called an object oriented programming language. There are many other different programming languages and ways of designing and creating programs but object oriented programming is arguably the dominant programming models.

We have been talking about classes, objects, and methods without defining them. In this chapter we explain these concepts. In Object-Oriented-Programming the term “Class” is an abstract concept used to signify what data objects contain and what objects can do. The code for an object is found in the class description. All instances of the class, otherwise known as objects, share the same code. You can think of a class as a cookie cutter and objects as the cookies. The cookie cutter determines what the cookies will look like. One uses the cutter (class) to make one or more cookies (objects). You can also think of a class as a mold, something that is used to create object multiples. We start with another real-world analogy and then give specific Java examples.

Example 2.1: The Person Class

In life it is a bad idea to treat people as objects, but it is a helpful learning analogy for our purposes. Lets say there is a mold for making people. The mold specifies the data members that a person object will hold and the methods (actions) that a person object can use. Lets say I create a Person class that specifies members and methods. The members are the data items an object of that type of class has. The actual data values in the different objects can, and usually does, differ. The methods are the actions that an object can perform.

Assume the following (note, this is not exact Java syntax, but it is close):

Person Class

Members:

 Integer height ; // in inches

 Integer weight; // in pounds

 Integer age ; // in years

 String name; // a string of characters that make up the name

Methods:

 bakeCake() ;

 stepForward();

 stepForward(int numSteps) ;

 stepBackward();

 stepBackward(int numSteps) ;

 jumpInPlace();

 raiseLeftHand() ;

 raiseRightHand() ;

 sayHello() ;

 getAge() ;

 setAge(int newAge) ;

 getName() ;

 setName(char newName) ;

 getHeight() ;

 setHeight(int newHeight) ;

 getWeight() ;

 setWeight(int newWeight) ;

Given this class one can create objects of this class type and invoke methods on those objects. For example, I could say (again, not exact Java code, but similar):
Person p1 = new Person(72,190,23,”Bob”) ;

Person p2 = new Person(64,115,22,”Sue”) ;

Person p3 = new Person(75,225,30,”Jimmy”) ;
The above “code” would create three person objects: p1, p2, and p3. Object p1 is initialized with data member values of 72, 190, 23, and “Bob” for height, weight, age and name respectively. Similarly for objects p2 and p3.

One could then say:

p1.stepForward() ;

p2.sayHello();

p3.stepBackward();

 p2.bakeCake() ;

The code for these methods can contain anything the programmer wishes, but usually one has the method name match what the code does, so presumably the p1 object, i.e. the person “Bob”, would move one step forward, the p3 object would move one step back, and the p2 object would say hello.

Sometimes the method code is more complex and has many steps. For example, the bakeCake() method might be a long list of things the person object does such as:

· preheat oven to 350

· get out flour

· get out sugar

· get out butter

· get out salt

· get out baking soda

· get out eggs

· mix dry incredients

· beat sugar and butter together

· add eggs to butter and sugar and mix

· mix in dry ingredients

· pour batter into prepared 9" round cake pans

· bake at 350 for 25 minutes or until toothpick comes out clean

So now when I as a programmer want a person object p1 to bake a cake all I have to do is say: p1.bakeCake(). This is a very powerful way of simplifying coding.

Often methods have parameters, which allow the programmer to pass information into the method. For example

 p1.stepForward(3) ;

p2.stepBackward(2) ;

p3.setAge(16) ;

The values of the parameters in the above three lines of code are 3, 2, and 45 respectively. Here presumably the p1 object would now take 3 steps forward, the p2 object would take two steps backward, and the p3 object would have it’s age data member changed to 16.

Section 2: Object Oriented Programming

There are two main parts to an object: the information that it “knows” and the different ways it can “change” or “behave”. The information is stored in member variables. The behavior is found in method code.

Member Variables

These are a collection of “boxes” or memory storage locations which hold values. Each object owns the information stored in these “boxes”. For example, each Person object (from the example above) has its own “box” which holds the current value of that person’s height. We can make a person taller or shorter by changing the value stored in the person object’s height member variable. The person objects above also have “boxes” that hold the object’s name, age, and weight.

Methods and Behavior

The different ways that an object can behave are encoded in its methods. Methods are instructions written in code. For example, each Person object can raise their right hand or step forward. The raiseRightHand method defines what it means for a Person object to do this in our virtual world. Often methods exist which change the values of the member variables, such as the setAge(int newAge) method.

Example: Invoking methods on a Person object

We will create a Person object and then show how to get it to perform various actions. First we create a Person object named “george”:

Person george = new Person();

The code to the left of the = creates a variable (or “box) capable of holding a Person object and gives the memory location the name of “george”. The code on the right of the = creates a new Person object. The new Person object automatically contains the memory space, or “boxes”, that can hold the height, weight, age, and name member variables that belong to every Person object.

Then we can have “george” perform actions by invoking different methods:

george.raiseRightHand();

george.jumpInPlace();

george.sayHello();

george.bakeCake() ;

Notice in each case, we specify the name of the variable, followed by a dot (or period), and then the name of the method we wish that object to perform.

The collection of methods of an object is often referred to as the interface of the object. The methods represent all of the ways an object can interact or interface with the rest of the virtual world. The methods completely define the behavior of the object. It cannot do anything else. If we try something like:

george.singTheNationalAnthem();

We will get an error because there is no singTheNationalAnthem() method defined for Person objects.

Classes of Objects

Since many individual objects are similar (they store the same kinds of information and exhibit the same kinds of behavior, there is a way to define member variables and methods for whole groups of objects at once. Objects in the same group are said to be in the same class or have the same class type.

In this style of programming, we create classes which describe information and behavior of objects. Classes are templates or cookie cutters from which individual objects are created. One cookie cutter can be used to create many cookies. Each cookie is a different individual cookie and exists on its own. Each cookie may be different in some way (they contain different molecules of cookie dough, or one may have a slightly larger diameter) and similar in other ways (same shape (circle) and contents (four, sugar, butter, egg, vanilla, baking soda).

Similarly, a class can be used to create many objects in a program. The objects are different individual entities in the virtual world of the program. Each object may be different in some ways and similar in other ways. In particular, each object will store the same types of information in its member variables but may have different values stored in those member variables.

For instance, every person has an age and weight but each person may have different age and weight values.

A Java Person Class

In our example above we stated that the code was close to java. Here is a template for actual Java code for the Person class. Note, there are still missing statements inside each method:

class Person

{

 // Member Variables

 int age;

 int height;

 int weight;

 string name;

 // Methods

 public void stepForward()

 {

 // Add code here to Move One Step Forward

 }

 public void stepForward(int numSteps)

 {

 // Add code here to Move “numSteps” steps forward

 }

 public void stepBackward()

 {

 // Add code here to Move One Step Backward

 }

 public void stepBackward(int numSteps)

 {

 // Add code here to Move “numSteps” steps backward

 }

 public void jumpInPlace()

 {

 // Add code here to Jump in Place

 }

 public void raiseLeftHand()

 {

 // Add code here to Raise Left Hand

 }

 public void raiseRightHand()

 {

 // Add code here to Raise Right Hand

 }

 public void sayHello()

 {

 // Add code here to Say Hello

 }

 public int getAge()

 {

 return age;

 }

 public void setAge(int newAge)

 {

 age = newAge ;

 }

 public int getWeight()

 {

 return weight;

 }

 public void setWeight(int newWeight)

 {

 weight = newWeight ;

 }

 public int getHeight()

 {

 return height;

 }

 public void setHeight(int newHeight)

 {

 height = newHeight ;

 }

 public string getName()

 {

 return name;

 }

 public void setName(int newName)

 {

 name = newName ;

 }

}

Notice there are two stepForward() and two stepBackward methods. One does not take a parameter, and according to the comments in the method moves the object forward/backward one step, the second does take a parameter and according to the comments in the class definition moves the object forward/backward “numSteps” steps, where numSteps is passed into the method when the method is called.

COMMENTS: Note, in the java language and words after a the “//” characters are completely ignored. The “//” is called a comment because one can write “comments” about the code.
HELPFUL HINT: In Greenfoot, we can invoke methods on individual objects using the object menu (right-click on the object’s image in the World and choose which method should be executed or performed). This is one way to test a method to see if it works (and does what it is supposed to do).

