P4games.org, copyright 2008

P4games.org, copyright 2009

Chapter Three: Classes and Objects in Greenfoot

Section 1: Adding Methods and Members to An Actor

Now that we understand more about methods and members, we can improve our simple Actor class definition. Lets assume I want to make a Bee actor a bit more robust. First, lets add methods for moveLeft and moveRight:

public class Bee extends Actor

{

 public void act()

 {

 moveRight();

 // moveUp();

 }

 public void moveRight()

 // This method changes the location from (x,y) to (x+1,y)

 {

 setLocation(getX() + 1 , getY());

 }

 public void moveLeft()

 // This method changes the location from (x,y) to (x-1,y)

 {

 setLocation(getX() - 1 , getY());

 }

}

In the code above are two methods, moveLeft and moveRight. Notice in the act() method is a call to the moveRight() method. There is also a commented out call to a non-existent moveUp() method. In the exercise below you will add that method and then you can uncomment the method call inside of act(). If you remove the comment characters before writing the code for the moveUp() method you will get an error message. Try it, you won’t break anything, just comment it out again or remove the line of code and recompile.

Section 2: Creating Actor Objects and Placing Them In The World Using Code

So far we have added objects to the world by hand. We click on the box of one of the defined classes and choose “new object” and then drag the newly created object out into the world. It is possible to add new objects to the world as part of our program.

Example: Populating the World Automatically

Create a new scenario similar to BugScenario from Chapter One. Create BugWorld as a subclass of World and Bug as a subclass of Actor. We will now change the code in BugWorld so that it will automatically create 3 Bug objects when the BugWorld is created. To do this, bring up the code window for BugWorld by double-clicking on its class box.

Change the code to look like this (you just need to add three lines of code) :

public class BugWorld extends World

{

 /**

 * Constructor for objects of class BugWorld.

 *

 */

 public BugWorld()

 {

 // Create a new world with 50x50 cells with a cell size of 10x10 pixels.

 super(50, 50, 10);

 // Add these three lines

 Bug theBug = new Bug();

 addObject(theBug, 10, 15);

 Bug theSecondBug = new Bug();

 addObject(theSecondBug, 12, 20);

 Bug theThirdBug = new Bug();

 addObject(theThirdBug, 23, 45);

 }

}

Each of the new lines of code creates a new Bug object and adds it to the world at the specified coordinates. The command new ClassName() will create a new object of type ClassName. In the example above we create new Bug objects. The command addObject(obj , x , y) will add the object “obj” into the world at grid cell location (x,y). In the example above the “obj” that is added is first theBug, then theSecondbug, and finally theThirdBug.

Section 3: Moving Left/Right Using a Velocity Member

In the proceeding examples The actor was moving left or right by one space. We might want the actor to move left/right by two spaces, or three spaces, or more. We can do this by creating a data member (otherwise know as a variable) to specify how many spaces the actor should move on each call to moveX(). By allowing xVelocity to hold either positive or negative values we can specify if the actor is moving right (positive value) or left (negative value). A data member is also known as a variable.

Scratch comparison note: If you have been programming in Scratch, you should have used variable. The variable/member is the same concept as the variable in Scratch. In scratch you can specify a variable to be “for this sprite only” or “for all sprites”. The “for this sprite only” is the same concept as a data member in Java.
Here is the code:

public class BeeUsingVelocity extends Actor

{

 private int xVelocity = 2 ; // how for little red will move each time moveX() is called

 public void act()

 {

 if(canMoveX())

 {

 moveX(); // move to the right, how far right is determined by xVelocity

 }

 else

 {

 // else we would go off the screen, so, negate the xVelocity to go in the other direction

 xVelocity = -1 * xVelocity ;

 }

 }

 public boolean canMoveX()

 {

 if (xVelocity > 0) // we want to move right

 {

 if ((getX() + xVelocity) < getWorld().getWidth())

 // if proposed new location is less than right side of the world

 return (true) ;

 else

 return(false) ;

 }

 else // we want to move left

 {

 if ((getX() + xVelocity) >= 0) // if proposed new location is greater than zero

 return (true) ;

 else

 return(false) ;

 }

 }

 // The following method does the same as canMoveX, but does it in less, and

 // arguably more readable, code by using a compound boolean expression

 public boolean canMoveXSecondWay()

 {

 if (((getX() + xVelocity) < getWorld().getWidth()) && ((getX() + xVelocity) >= 0))

 return (true) ;

 else

 return(false) ;

 }

 public void moveX()

 {

 setLocation(getX() + xVelocity , getY());

 }

}

Now if we want The actor to move by 3 cells, we only need to change the value for xVelocity once, all the rest of the code works correctly!

In the code above we introduced two more concepts: 1) Boolean variables; and 2) the fact that methods can return a data value, a Boolean value in the example above. To best explain this we need to digress a tad:

Section 3.1: Java Concept: Variables

We have been thinking of variables as “boxes” of computer memory which hold values of a specified type. The type of the value is specified when the variable is declared.

The built-in types for numbers are: int, float, and double. Variables of type int can hold integer (positive or negative whole numbers including zero). Variables of type float can hold decimal numbers. Variables of type double can hold decimal numbers which are larger or contain more precision than those that float variables can hold.

To change the value of a variable use = (called the assignment operator). This is not the same as the equal sign used in math, nor the = sign in the Scratch programming language. You should read the following statement:

int someNumber = 5 ;

to mean “the variable someNumber gets the value of 5” not “the variable someNumber equals 5”.

The arithmetic operators are +, -, * (multiplication), / (division).

For Scratch programmers the following table shows equivalent commands. Notice in the third row that if you want to say equals, you must use two equals signs, as in “==”. The reason is because a single = sign means assignment: assign the value on the right side of the = to the variable on the left side. The following assumes a variable for numLeft was declared in Java like:

int numLeft ;

	numLeft = 5 ;
	[image: image1.png]et numlett [0 @

	numLeft = numLeft + 1 ;
	[image: image2.png]aet numien [to

	numLeft = numLeft + 1 ;
	[image: image3.png]change numlet by @

	numLeft++ ;
	numLeft = numLeft + 1 ;

	if (numLeft == 0)

{

 Greenfoot.stopSimulation() ;
}
	[image: image4.png]

Section 3.2: Java Concept: Boolean Variables

A boolean variable can hold only two values: true or false. The following code will create a boolean variable named “hungry” and then set its value to true:

boolean hungry;

hungry = true;

Boolean variables may also be used as the “test” in if statements:

 if (hungry)

 {

 lookForFood();

 }

 else

 {

 sleepUntilHungry();

 }

If the variable hungry holds the value of true, the method lookForFood() will be called otherwise the method sleepUntilHungry() will be called.

When we compare two numeric values using <, <=, >, >=, or ==, the result is a boolean value (either true or false). These symbols are called relational operators because they determine or test the relationship between two values. This is why we can write if statements such as:

 if (getX() < 30) // if new location will be less than 30

return(true) ;

 else

 return(false);

When

When we compare two numeric
When we want to build more complex Boolean expressions we can use the three logical operators: && || !

· && means AND

· || means OR

· ! means NOT

The following table shows some equivalent Boolean expressions in Scratch and Java. The first row includes a full if statement, the others are just the Boolean expression. To allow for longer expressions the table list a Java expression followed on the next row by a Scratch expression. Notice the explicit nesting/ordering of parenthesis in Java to get the desired Boolean expression. Also notice in the last Java expression equals is two equal signs, i.e. ==, not just one equal sign.

	if ((numLeft < 5) && (getX() < 10))

{

 setLocation(getX() – 1, getY()) ;

}

	[image: image5.png]x position

	(numLeft < 5) || (getX() < 10)

	[image: image6.png]

	(getY() > 0) && ((numLeft < 5) || (getX() < 10))

	[image: image7.png]¥ position > @ and numieft <@ or x position <

	(getY() > 0) && (! (numLeft == 1))

	[image: image8.png]¥ position > (@ and not numLeft

Section 3.3: Java Concept: Methods Can Return a Value

We know methods can take in information (by passing parameter values inside the parenthesis). Methods can also return information. We have already seen examples of this in the canMoveLeft() and canMoveRight() methods. These return true or false based on whether The actor can move and still stay inside the world.

Returning a value from a method allows objects to answer questions asked by other objects. For instance, a method called getHeight() could be added to the Person class:

 int getHeight()

 {

 return height;

 }

The first line of code says that this method is called getHeight and that it returns an integer value back to whoever calls it. So it is now possible to say:

 Person george = new Person();

 int georgeHeight = george.getHeight();

and the variable georgeHeight will now hold the value of george’s height.

Section 7: Random Movement

Often we want game sprites to move around on their own behalf. We have made actor objects move back and forth or up and down, but we might prefer a more random movement. Later in the book we will show how to create a patrolling type of movement behavior.

In order to get random movement we need random numbers. The built-in Greenfoot method Greenfoot.getRandomNumber(N) returns a random integer between 0 and N-1. Thus, if you say Greenfoot.getRandomNumber(5), it will return one of the numbers {0, 1, 2, 3, 4} randomly and with equal probability. We can use this to create random motion by getting a random number between 0 and 3, and then if the number is 0 moving right, if it is 1 move left, if 2 move down, and if 3 move up. Below is the code.
public void act()

 {

 int rnum = Greenfoot.getRandomNumber(4) ;

 if (rnum == 0)

 {

 setLocation(getX() + 1 , getY()) ;

 }

 if (rnum == 1)

 {

 setLocation(getX() - 1 , getY()) ;

 }

 if (rnum == 2)

 {

 setLocation(getX() , getY() + 1) ;

 }

 if (rnum == 3)

 {

 setLocation(getX() , getY() - 1) ;

 }

 }

Section 8: Constructing Objects

Sometimes we wish to control what happens when an object is created. This is accomplished by defining special methods for a class called constructors. Usually constructors assign initial values to the various member variables defined in the class. Constructor methods always have the same name as the name of the class itself. For example, we could define the following constructor for the Person class:

 public Person()

 {

 age = 45;

 height = 12;

 weight = 15;

 name = “Kermit”;

 }

This constructor sets the age to 45, the height to 12, the weight to 15, and the name to Kermit. If the code:

 Person somebody = new Person();

then the somebody object would be a person with the age, height, weight, and name defined above. It is also possible to have constructors which take parameters (or specified information). An example of this is:

 public Person(string aName, int anAge, int aHeight, int aWeight)

 {

 name = aName;

 age = anAge;

 height = aHeight;

 weight = aWeight;

 }

This constructor requires values to be specified when it is called:

 Person anotherbody = new Person(“Kermit”, 65, 12, 15);

The constructor would then set anotherbody’s name to Kermit, age to 65, height to 12, and weight to 15. Consider the following Redhood1 world constructor from the Redhood1 scenario:
public class RedHood1 extends World

{

 // Constructor for objects of class RedHood1

 public RedHood1()

 {

 super(60, 50, 10); // make the world 60x50 cells with a 10x10 pixel cell size

 SimpleRed aSimpleRed = new SimpleRed() ;

 addObject(aSimpleRed,6,12);

 BooleanRed aBooleanRed = new BooleanRed();

 addObject(aBooleanRed,6,20);

 VelocityRed aVelRed = new VelocityRed() ;

 addObject(aVelRed,6,28);

 }

}

One can see that RedHood1 is a class definition for a Greenfoot world as it “extends World”. The constructor method has the exact same name as the class name. This is required for a constructor. In the constructor we set the world size to (60,50,10), create three objects using “new”, and place the objects in the world using the “addObject()” method.

EXERCISE 2.1:

 (A): Type in the above code for a Bee actor. Compile. Place an object in the world and right click on the object and call the moveLeft() and moveRight() methods.

 (B): Add two more methods for moveUp() and moveDown(). Compile. Place an object in the world and right click on the object to call the moveUp() and moveDown() methods.

 (C) Change the moveRight() method to take a parameter “numSteps”. Compile. Place an object in the world and right click on the object to call the moveRight() method. When you do this Greenfoot will pop up a window asking you to enter the parameter value.

e Exercise 2.3:

Modify your Bee class so that it has a constructor that takes as an argument the initial velocity for the Bee objects and sets the xVelocity data member value to this argument.

Modify your Bee class so that the Bee moves with random motion and the distance it moves on each call to act is determined by the argument to the conASSROOM KINETIC EXERCISE 1:

Instructor: Create a grid on the floor of 1’ x 1’ or 2’ x 2’ square. Make the grid about 6x5. Now write code for Person objects using the setLocation(), moveLeft() , moveRight(), moveUp(), and moveDown() methods. Use actual students as person objects so they must figure out where they are to move and hence understand the coordinate system.

�

