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In this talk, we study the asymptotics for undirected sparse
exponential random graph models where the parameters may
depend on the number of vertices of the graph. We obtain exact
estimates for the mean and variance of the limiting probability
distribution and the limiting normalization constant of the
edge-(single)-star model. They are in sharp contrast to the
corresponding asymptotics in dense exponential random graph
models. Similar analysis is done for directed sparse exponential
random graph models parametrized by edges and multiple outward
stars.



The hierarchy

grand canonical ensemble exponential random graph
3 )
canonical ensemble constrained exponential random graph
3 \J

microcanonical ensemble constrained graph



What is an exponential random graph model?



What is an exponential random graph model?
Probability space: The set G, of all simple graphs G, on n vertices.
Probability mass function:

IPE(G,,):exp< (B1t(H1, Gn) + ... + Brt(Hk, Gn) — zﬂﬂ))

e f31,..., Bk are real parameters and Hy, ..., Hy are pre-chosen
finite simple graphs. Each H; has vertex set
V(H;) = {1, ..., ki} and edge set E(H;). By convention, we
take H; to be a single edge.

e Graph homomorphism hom(H;, G,) is a random vertex map
V(H;) — V(G,) that is edge-preserving. Homomorphism

. m [,Gn
density t(H;, G,) = W

e Normalization constant:

%Z)f_ 5 log Z exp (n*(Brt(Hy, Gn) + ... + Bit(Hi, Gn))) -
Gn€Gn



Bi =0 for i > 2:
PA(Gn) = exp (n(Brt(Hh, Go) — 7))
— exp (261 E(Gn)| — 2] ) .
Erd3s-Rényi graph G(n, p),

PA(Gy) = plE@I(1 — ) (2)—IECG,

Include edges independently with parameter p = 2%1/(1 + e2%).

(5)
eolruf) = 3 ew@nlEG) = (1)

GaCGn L=p



What happens with general 3,7

Problem: Graphs with different numbers of vertices belong to
different probability spaces!

Solution: Theory of graph limits (graphons)! (Borgs, Chayes,

Kahn, Lovasz, Sés, Szegedy, Simonovits, Vesztergombi, Khare,
Rajaratnam



What happens with general 3,7

Problem: Graphs with different numbers of vertices belong to
different probability spaces!

Solution: Theory of graph limits (graphons)! (Borgs, Chayes,
Kahn, Lovasz, Sés, Szegedy, Simonovits, Vesztergombi, Khare,
Rajaratnam,...; earlier work of Aldous and Hoover)

Graphon space W is the space of all symmetric measurable
functions h(x, y) from [0, 1] into [0,1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x, y) denotes the
probability of putting an edge between x and y.



Example: Erdés-Rényi graph G(n, p), h(x,y) = p.
Example: Any G, € G,,

[ 1, if ([nx],[ny]) is an edge in Gp;
h(x.y) = { 0, otherwise.




Why are we interested in exponential random graph models?



Why are we interested in exponential random graph models?
Dependence between the random edges is defined through certain
finite subgraphs H;, in imitation of the use of potential energy to
provide dependence between particle states in a grand canonical
ensemble of statistical physics. By varying the activity parameters
Bi, one could analyze the extent to which specific values of the
subgraph densities interfere with one another.



The hierarchy

grand canonical ensemble normalization constant
canonical ensemble conditional normalization constant

microcanonical ensemble entropy



The normalization constant encodes useful information about the
structure of the measure. By differentiating the normalization
constant with respect to appropriate parameters, averages of
various quantities of interest may be derived. Computation of the
normalization constant is also essential in statistics because it is
crucial for carrying out maximum likelihood estimates and
Bayesian inference of unknown parameters.



Important contributors:

Pioneers: Holland and Leinhardt (statistics); Frank and Strauss
(statistics); Haggstrom and Jonasson (probability)

Physics: Park and Newman; Zuev, Eisenberg, and Krioukov;
Anand and Bianconi

Probability, Statistical Physics: Chatterjee and Diaconis; Bhamidi,
Bresler, and Sly; Chatterjee and Dembo; Borgs, Chayes, Cohn, and
Zhao; Kenyon, Radin, Ren, and Sadun; Lubetzky and Peres;
Lubetzky and Zhao; Aristoff and Zhu

Statistics, Psychology, Sociology: Wasserman and Faust; Snijders,
Pattison, Robins, and Handcock; Rinaldo, Fienberg, and Zhou;
Hunter, Handcock, Butts, Goodreau, and Morris



Large deviation and Concentration of measure:

P = max (,Blt(Hl, h) + ...+ Bit(Hk, h) — / l(h)dxdy> ,
hew [0,1]2
where:

t(H;, h) = / (x,-,xj')dxl...dxk,.,
[0,17" )EE

and / : [0,1] — R is the function
1 1
I(u) = iulogu + 5(1 — u)log(1 — u).

Let F* be the set of maximizers. G, lies close to F* with high
probability for large n. When the parameters 53; are non-negative,
the graph behaves like an Erd6s-Rényi random graph in the large n
limit, where the edge formation probability p depends on all
parameters. Nevertheless, not much is known when some of the
parameters are negative. (Chatterjee and Varadhan; Chatterjee
and Diaconis)



The standard model is centered on dense graphs (number of edges
comparable to the square of number of vertices), but most
networks data are sparse in the real world. What would be a
typical random graph drawn from a sparse exponential model?



Let ﬁf") = Bja, where a, — 00 as n — oo. For §; negative this

ensures that ﬁf") — —oo and translates to sparse graphs.
(sparse) Probability mass function:

P3(Gn) = exp (n2(anBit(Hh, Go) + . + anfit(He, Go) = 15))

(sparse) Normalization constant:

1
¢ﬁ = log Z exp (nz(anﬂlt(Hl, Gp) + ... + anBrt(Hx, G,,))) )
Gn€Gn



Let Xj; = 1 when there is an edge between vertex i and vertex j
and Xj; = 0 otherwise. Assume that 31, ..., B are all negative. If
limp—yoo n?€227P1 = 0 and lim,_,oc 22 = 0, then

jm P2 =1

n—o00 e20‘"ﬁ1 '
O PR(Xy =1,X = 1) .
n||~>n;o etanBr =1 i#J

This indicates that when the rate of divergence of «, is between
the order of log n and n, the graph displays Erdés-Rényi behavior
in the large n limit, where the edge formation probability

p = €21 |t only depends on 31 and n and decays to 0 as

n — oo. This is in sharp contrast to the standard exponential
model where the parameters (1, ..., 8k are not scaled by a, and
are instead held fixed. (Y and Zhu)



Sketch of Proof.

2(;)E[X1;ea""2 22:1 ﬁpt(HmGn)]

P3 (X, =1) =
=) 2(3) E[enm Xpma Bot( sG]

2b)E [XliXueO‘"”2 g1 Bpt(Hp,Gn)
IEDf(XII =1,X = 1) =

() E[en™ Yoot Bot(Ho,Gr))
Denominator:

1

2()E e Tt 5ot Cr)) > 2(3)
2(2)

=1

2G)E [0 Lo FotlHCr)] - < o) [ (s Co))

n

— <1+62anﬁ1)(2) 1



Sketch of Proof Continued.
Numerator of the mean:

20| [)<ll.eofnn2 Sh ﬁpt(H,,,Gn)]

> Z(Q)E [eo‘""2 Sp-1 Bot(Hp,Gn)

Xli = 17Xi’j’ = 07 (i/a.j,) 7é (17 I):|
P (X1 =1, Xy = 0,(7",j') # (1,1))

_ ezanﬁ1+ann2 Sk _p BpcpnIV(HP)I ~ 2By

2(Z)E[X1,-ea"”2 pet Bpt(prGn)] < Q(Z)E[Xheannzﬁu(HhGn)]

e2a,,,81 (1 4 e2an51>(’21)_1

= b1,



Sketch of Proof Continued.
Numerator of the variance:

20)E [X1,'X1jea"”2 Spt Bpf(HPvG")}

> 20K [eann2 e BotHe.Go) X, = Xyj = 1, Xyjr = 0,

(110 # (1) and (1) # (1)

P (X1 = Xy =1, Xy = 0,(i",j) # (1,0) and (7',)") # (1,)))

_ e4an61+ann2 25:2 chpn_‘V(Hp)l - e4°‘"f31.

2V E[Xy Xy e Zper Fot(Ho, )] < ()R] Xy e Art(Hh.Go)]

= e4an51 (1 + e2anﬂ1>(g)_2

= e406n51 X



Region of sparsity in the edge-p-star model:
Under suitable assumptions,

1
Uy = et B <Oand By + 2 <0,
coincides with the limiting normalization constant of an

Erdés-Rényi random graph with edge formation probability
p — ezoén/Bll

1 _
Ph =< Tp%e%’ B1=0and 5> <0,

where 2a,82e(P~ D p — ~, (Y and Zhu)



Similar analysis may be done for directed sparse exponential
random graph models parametrized by edges and multiple outward
stars.



Similar analysis may be done for directed sparse exponential
random graph models parametrized by edges and multiple outward
stars.

Probability space: The set X, of all simple digraphs X, on n
vertices. Let Xj; = 1 when there is a directed edge from vertex i to
vertex j and Xj; = 0 otherwise.

Outward directed p-star homomorphism density of X,:

p

i=1

1<iji,ejp<n j=1



Let ﬁf") = Bja, where a, — 00 as n — oo. For §; negative this

ensures that ﬁf") — —oo and translates to sparse graphs.
(sparse) Probability mass function:

P2(X,) = exp (n2(ozn[3151(Xn) + oo+ anfBisi(Xn) — ¢5)> :

(sparse) Normalization constant:

=L T e (Planhis(X) + e+ anbisi(Xn).
Xn€Xn



Assume that By, ..., Bk are all negative. If lim,_,oc ne® =0 and
lim, 00 2 = 0, then

Po(Xy; =1
jim TnW =1)
n—o0 eo‘"ﬁl
’ Ph (X1 = L,Xy;=1) 1 it
e 2P =L i#J

This indicates that when the rate of divergence of «, is between
the order of log n and n, the graph displays Erd6s-Rényi behavior
in the large n limit, where the edge formation probability

p = eIt only depends on 31 and n and decays to 0 as

n— oo. (Y and Zhu)



Consider an Erdés-Rényi random graph on n vertices with edge
formation probability p. The distribution of the degree of any
vertex i is Binomial with parameters n and p. A known fact is that
for n large, p small and np a constant, Binomial distribution with
these parameters tends to a Poisson distribution with parameter
np. Correspondingly, if ne® approaches a constant A € (0, c0)
as n — oo, i.e., when the divergence rate of «, is of the order of
log n, will the graph display Poisson behavior?



Assume that (1, ..., Bk are all negative. If
limp 00 ne®P = X € (0,00), then

lim w -1

n—o00 An—1 )
. P’ﬁ(Xu:l,le:l) o
i S L i)

Moreover, the degree of any vertex is asymptotically Poisson with
parameter A,

n
ZXl,- — Poisson(\).
i=1
(Y and Zhu)



Thank You!:)



