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In this talk, we study the asymptotics for undirected sparse
exponential random graph models where the parameters may
depend on the number of vertices of the graph. We obtain exact
estimates for the mean and variance of the limiting probability
distribution and the limiting normalization constant of the
edge-(single)-star model. They are in sharp contrast to the
corresponding asymptotics in dense exponential random graph
models. Similar analysis is done for directed sparse exponential
random graph models parametrized by edges and multiple outward
stars.



The hierarchy

grand canonical ensemble exponential random graph
↓ ↓

canonical ensemble constrained exponential random graph
↓ ↓

microcanonical ensemble constrained graph



What is an exponential random graph model?
Probability space: The set Gn of all simple graphs Gn on n vertices.
Probability mass function:

Pβn (Gn) = exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn)− ψβn )

)
.

• β1, ..., βk are real parameters and H1, ...,Hk are pre-chosen
finite simple graphs. Each Hi has vertex set
V (Hi ) = {1, ..., ki} and edge set E (Hi ). By convention, we
take H1 to be a single edge.

• Graph homomorphism hom(Hi ,Gn) is a random vertex map
V (Hi )→ V (Gn) that is edge-preserving. Homomorphism

density t(Hi ,Gn) = |hom(Hi ,Gn)|
|V (Gn)||V (Hi )|

.

• Normalization constant:

ψβn =
1

n2
log

∑
Gn∈Gn

exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn))

)
.
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βi = 0 for i ≥ 2:

Pβn (Gn) = exp
(
n2(β1t(H1,Gn)− ψβn )

)
= exp

(
2β1|E (Gn)| − n2ψβn

)
.

Erdős-Rényi graph G (n, ρ),

Pρn(Gn) = ρ|E(Gn)|(1− ρ)

(n
2

)
−|E(Gn)|.

Include edges independently with parameter ρ = e2β1/(1 + e2β1).

exp(n2ψβn ) =
∑

Gn∈Gn

exp (2β1|E (Gn)|) =

(
1

1− ρ

)(n
2

)
.



What happens with general βi?
Problem: Graphs with different numbers of vertices belong to
different probability spaces!
Solution: Theory of graph limits (graphons)! (Borgs, Chayes,
Kahn, Lovász, Sós, Szegedy, Simonovits, Vesztergombi, Khare,
Rajaratnam,...; earlier work of Aldous and Hoover)
Graphon space W is the space of all symmetric measurable
functions h(x , y) from [0, 1]2 into [0, 1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x , y) denotes the
probability of putting an edge between x and y .
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Example: Erdős-Rényi graph G (n, ρ), h(x , y) = ρ.
Example: Any Gn ∈ Gn,

h(x , y) =

{
1, if (dnxe, dnye) is an edge in Gn;
0, otherwise.



Why are we interested in exponential random graph models?
Dependence between the random edges is defined through certain
finite subgraphs Hi , in imitation of the use of potential energy to
provide dependence between particle states in a grand canonical
ensemble of statistical physics. By varying the activity parameters
βi , one could analyze the extent to which specific values of the
subgraph densities interfere with one another.
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The hierarchy

grand canonical ensemble normalization constant
↓ ↓

canonical ensemble conditional normalization constant
↓ ↓

microcanonical ensemble entropy



The normalization constant encodes useful information about the
structure of the measure. By differentiating the normalization
constant with respect to appropriate parameters, averages of
various quantities of interest may be derived. Computation of the
normalization constant is also essential in statistics because it is
crucial for carrying out maximum likelihood estimates and
Bayesian inference of unknown parameters.



Important contributors:
Pioneers: Holland and Leinhardt (statistics); Frank and Strauss
(statistics); Häggström and Jonasson (probability)
Physics: Park and Newman; Zuev, Eisenberg, and Krioukov;
Anand and Bianconi
Probability, Statistical Physics: Chatterjee and Diaconis; Bhamidi,
Bresler, and Sly; Chatterjee and Dembo; Borgs, Chayes, Cohn, and
Zhao; Kenyon, Radin, Ren, and Sadun; Lubetzky and Peres;
Lubetzky and Zhao; Aristoff and Zhu
Statistics, Psychology, Sociology: Wasserman and Faust; Snijders,
Pattison, Robins, and Handcock; Rinaldo, Fienberg, and Zhou;
Hunter, Handcock, Butts, Goodreau, and Morris
...



Large deviation and Concentration of measure:

ψβn � max
h∈W

(
β1t(H1, h) + ...+ βkt(Hk , h)−

∫
[0,1]2

I (h)dxdy

)
,

where:

t(Hi , h) =

∫
[0,1]ki

∏
(i ,j)∈E(Hi )

h(xi , xj)dx1...dxki ,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).

Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
probability for large n. When the parameters βi are non-negative,
the graph behaves like an Erdős-Rényi random graph in the large n
limit, where the edge formation probability ρ depends on all
parameters. Nevertheless, not much is known when some of the
parameters are negative. (Chatterjee and Varadhan; Chatterjee
and Diaconis)



The standard model is centered on dense graphs (number of edges
comparable to the square of number of vertices), but most
networks data are sparse in the real world. What would be a
typical random graph drawn from a sparse exponential model?



Let β
(n)
i = βiαn where αn →∞ as n→∞. For βi negative this

ensures that β
(n)
i → −∞ and translates to sparse graphs.

(sparse) Probability mass function:

Pβn (Gn) = exp
(
n2(αnβ1t(H1,Gn) + ...+ αnβkt(Hk ,Gn)− ψβn )

)
.

(sparse) Normalization constant:

ψβn =
1

n2
log

∑
Gn∈Gn

exp
(
n2(αnβ1t(H1,Gn) + ...+ αnβkt(Hk ,Gn))

)
.



Let Xij = 1 when there is an edge between vertex i and vertex j
and Xij = 0 otherwise. Assume that β1, ..., βk are all negative. If
limn→∞ n2e2αnβ1 = 0 and limn→∞

αn
n = 0, then

lim
n→∞

Pβn (X1i = 1)

e2αnβ1
= 1.

lim
n→∞

Pβn (X1i = 1,X1j = 1)

e4αnβ1
= 1, i 6= j .

This indicates that when the rate of divergence of αn is between
the order of log n and n, the graph displays Erdős-Rényi behavior
in the large n limit, where the edge formation probability
ρ = e2αnβ1 . It only depends on β1 and n and decays to 0 as
n→∞. This is in sharp contrast to the standard exponential
model where the parameters β1, . . . , βk are not scaled by αn and
are instead held fixed. (Y and Zhu)



Sketch of Proof.

Pβn (X1i = 1) =
2(n2)E[X1ie

αnn2
∑k

p=1 βpt(Hp ,Gn)]

2(n2)E[eαnn2
∑k

p=1 βpt(Hp ,Gn)]
.

Pβn (X1i = 1,X1j = 1) =
2(n2)E

[
X1iX1je

αnn2
∑k

p=1 βpt(Hp ,Gn)
]

2(n2)E[eαnn2
∑k

p=1 βpt(Hp ,Gn)]
.

Denominator:

2(n2)E[eαnn2
∑k

p=1 βpt(Hp ,Gn)] ≥ 2(n2)
1

2(n2)
= 1.

2(n2)E[eαnn2
∑k

p=1 βpt(Hp ,Gn)] ≤ 2(n2)E[eαnn2β1t(H1,Gn)]

=
(

1 + e2αnβ1
)(n2) → 1.



Sketch of Proof Continued.
Numerator of the mean:

2(n2)E
[
X1ie

αnn2
∑k

p=1 βpt(Hp ,Gn)
]

≥ 2(n2)E
[
eαnn2

∑k
p=1 βpt(Hp ,Gn)

∣∣∣∣X1i = 1,Xi ′j ′ = 0, (i ′, j ′) 6= (1, i)

]
·P
(
X1i = 1,Xi ′j ′ = 0, (i ′, j ′) 6= (1, i)

)
= e2αnβ1+αnn2

∑k
p=2 βpcpn

−|V (Hp)| � e2αnβ1 .

2(n2)E[X1ie
αnn2

∑k
p=1 βpt(Hp ,Gn)] ≤ 2(n2)E[X1ie

αnn2β1t(H1,Gn)]

= e2αnβ1
(

1 + e2αnβ1
)(n2)−1

� e2αnβ1 .



Sketch of Proof Continued.
Numerator of the variance:

2(n2)E
[
X1iX1je

αnn2
∑k

p=1 βpt(Hp ,Gn)
]

≥ 2(n2)E
[
eαnn2

∑k
p=1 βpt(Hp ,Gn)

∣∣∣∣X1i = X1j = 1,Xi ′j ′ = 0,

(i ′, j ′) 6= (1, i) and (i ′, j ′) 6= (1, j)

]
·P
(
X1i = X1j = 1,Xi ′j ′ = 0, (i ′, j ′) 6= (1, i) and (i ′, j ′) 6= (1, j)

)
= e4αnβ1+αnn2

∑k
p=2 βpcpn

−|V (Hp)| � e4αnβ1 .

2(n2)E[X1iX1je
αnn2

∑k
p=1 βpt(Hp ,Gn)] ≤ 2(n2)E[X1iX1je

αnn2β1t(H1,Gn)]

= e4αnβ1
(

1 + e2αnβ1
)(n2)−2

� e4αnβ1 .



Region of sparsity in the edge-p-star model:
Under suitable assumptions,

ψβn �
1

2
e2αnβ1 , β1 < 0 and β1 + β2 ≤ 0,

coincides with the limiting normalization constant of an
Erdős-Rényi random graph with edge formation probability
ρ = e2αnβ1 .

ψβn �
1− p

2p
γne

γn , β1 = 0 and β2 < 0,

where 2αnβ2e
(p−1)γnp = γn. (Y and Zhu)



Similar analysis may be done for directed sparse exponential
random graph models parametrized by edges and multiple outward
stars.
Probability space: The set Xn of all simple digraphs Xn on n
vertices. Let Xij = 1 when there is a directed edge from vertex i to
vertex j and Xij = 0 otherwise.
Outward directed p-star homomorphism density of Xn:

sp(Xn) = n−p−1
∑

1≤i ,j1,...,jp≤n
Xij1 · · ·Xijp = n−p−1

n∑
i=1

 n∑
j=1

Xij

p

.



Similar analysis may be done for directed sparse exponential
random graph models parametrized by edges and multiple outward
stars.
Probability space: The set Xn of all simple digraphs Xn on n
vertices. Let Xij = 1 when there is a directed edge from vertex i to
vertex j and Xij = 0 otherwise.
Outward directed p-star homomorphism density of Xn:

sp(Xn) = n−p−1
∑

1≤i ,j1,...,jp≤n
Xij1 · · ·Xijp = n−p−1

n∑
i=1

 n∑
j=1

Xij

p

.



Let β
(n)
i = βiαn where αn →∞ as n→∞. For βi negative this

ensures that β
(n)
i → −∞ and translates to sparse graphs.

(sparse) Probability mass function:
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(
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)
.
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1

n2

∑
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exp
(
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Assume that β1, ..., βk are all negative. If limn→∞ neαnβ1 = 0 and
limn→∞

αn
n = 0, then

lim
n→∞

Pβn (X1i = 1)

eαnβ1
= 1.

lim
n→∞

Pβn (X1i = 1,X1j = 1)
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Consider an Erdős-Rényi random graph on n vertices with edge
formation probability ρ. The distribution of the degree of any
vertex i is Binomial with parameters n and ρ. A known fact is that
for n large, ρ small and nρ a constant, Binomial distribution with
these parameters tends to a Poisson distribution with parameter
nρ. Correspondingly, if neαnβ1 approaches a constant λ ∈ (0,∞)
as n→∞, i.e., when the divergence rate of αn is of the order of
log n, will the graph display Poisson behavior?



Assume that β1, ..., βk are all negative. If
limn→∞ neαnβ1 = λ ∈ (0,∞), then

lim
n→∞

Pβn (X1i = 1)

λn−1
= 1.

lim
n→∞

Pβn (X1i = 1,X1j = 1)

λ2n−2
= 1, i 6= j .

Moreover, the degree of any vertex is asymptotically Poisson with
parameter λ,

n∑
i=1

X1i → Poisson(λ).

(Y and Zhu)



Thank You!:)


