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The exponential random graph model has been a topic of continued research interest. The past
few years especially has witnessed (exponentially) growing attention in exponential models and
their variations. Emphasis has been made on the variational principle of the limiting normaliza-
tion constant (free energy density), concentration of the limiting probability distribution, phase
transitions, and asymptotic structures.
This presentation is based on joint work with several collaborators, including Sukhada Fadnavis
(Harvard University), Richard Kenyon (Brown University), Charles Radin (University of Texas at
Austin), and Alessandro Rinaldo (Carnegie Mellon University), and will focus on the phenomenon
of phase transitions in (generalized) exponential random graphs. Research supported under NSF
grant DMS-1308333.
What is an exponential random graph? Consider the set Gn of all simple graphs Gn on n ver-
tices (“simple” means undirected, with no loops or multiple edges). The k-parameter family of

exponential random graphs is defined by assigning a probability mass function Pβn(Gn) to every
simple graph Gn ∈ Gn:

Pβn(Gn) = exp
(
n2
(
β1t(H1, Gn) + · · · + βkt(Hk, Gn)− ψ

β
n

))
, (1)

where β = (β1, ..., βk) are k real parameters, H1, ..., Hk are pre-chosen finite simple graphs (and
we takeH1 to be a single edge), t(Hi, Gn) is the density of graph homomorphisms (the probability
that a random vertex map V (Hi) → V (Gn) is edge-preserving),

t(Hi, Gn) =
|hom(Hi, Gn)|
|V (Gn)||V (Hi)|

, (2)

and ψ
β
n is the normalization constant,

ψ
β
n =

1

n2
log

∑
Gn∈Gn

exp
(
n2 (β1t(H1, Gn) + · · · + βkt(Hk, Gn))

)
. (3)

Why are we interested? The popularity of exponential family of random graphs lies in the fact
that they capture a wide variety of common network tendencies by representing a complex global
structure through a set of tractable local features. They are particularly useful when one wants
to simulate observed networks as closely as possible, but without going into details of the specific
process underlying network formation.
What has been done? Exponential random graphs have been widely studied since the pioneering
work on the independent case by Erdős and Rényi. The theoretical foundations for these models
were originally laid by Besag, who applied methods of statistical analysis and demonstrated the
powerful Markov-Gibbs equivalence (Hammersley-Clifford theorem) in the context of spatial data.
Building on Besag’s work, further investigations quickly followed. Holland and Leinhardt derived
the exponential family of distributions for networks in the directed case. Frank and Strauss showed
that the random graph edges form a Markov random field when the local network features are
given by counts of various triangles and stars. Newer developments will be referenced later!
Complication: Graphs with different numbers of vertices belong to different probability spaces!
Solution: Theory of graph limits (graphons)! (Lovász and coauthors; earlier work of Aldous and
Hoover)
Graphon space W is the space of all symmetric measurable functions h(x, y) from [0, 1]2 into
[0, 1] (referred to as a “graph limit” or “graphon”). The interval [0, 1] represents a “continuum”
of vertices, and h(x, y) denotes the probability of putting an edge between x and y.

• Erdős-Rényi graph G(n, ρ), h(x, y) = ρ.

•Any Gn ∈ Gn,
h(x, y) =

{
1, if (dnxe, dnye) is an edge in Gn;
0, otherwise.

Two graphons f ∼ h if f (x, y) = hσ(x, y) := h(σx, σy) for some measure preserving bijection
σ of [0, 1], which in the context of finite graphs may be thought of as vertex relabeling. Reduced
graphon space W̃ is the resulting quotient space of W mod the equivalence relation ∼.
Large deviation: The limiting normalization constant

ψβ := lim
n→∞

ψ
β
n = max

h̃∈W̃

(
β1t(H1, h̃) + · · · + βkt(Hk, h̃)− 1

2

∫∫
[0,1]2

I(h̃)dxdy

)
, (4)

where I : [0, 1] → R is the function

I(u) = u log u + (1− u) log(1− u). (5)

Let H̃ be the subset of W̃ where ψβ is maximized. Gn lies close to H̃ with high probability for
large n. (Chatterjee and Varadhan; Chatterjee and Diaconis)

Since the limiting normalization constant is the generating function for the limiting expectations of
other random variables on the graph space such as expectations and correlations of homomorphism
densities, a phase transition occurs when ψβ is non-analytic or when H̃ is not a singleton set.
The edge-triangle model is a 2-parameter exponential random graph model obtained by taking
H1 to be a single edge and H2 to be a triangle. For each fixed edge density e in between 0 and 1,
there is an upper bound and a lower bound for the triangle density t (up to insignificant errors
o(1)), and every value of t between the upper bound and the lower bound is (asymptotically)

feasible. The best possible upper bound t ≤ e3/2+o(1) can be easily derived by applying Hölder’s

inequality, and is a sharp bound, attainable at a complete subgraph on (e1/2 + o(1))n vertices.
The lower bound is trickier. The trivial lower bound t ≥ 0 is attainable when e ≤ 1/2− o(1) at
a complete bipartite graph with 1− 2e fraction of edges randomly deleted, and is a sharp bound
by Túran’s theorem. For e ≥ 1/2, the optimal bound was obtained much later by Razborov, who
established that, using the flag algebra calculus, for 1− 1/k ≤ e ≤ 1− 1/(k + 1) with k ≥ 2,

t ≥
(k − 1)

(
k − 2

√
k(k − e(k + 1))

)(
k +

√
k(k − e(k + 1))

)2

k2(k + 1)2
− o(1). (6)

All the curve segments describing the lower boundary are strictly convex, and the boundary

points of those segments are precisely the Turán graphons with k classes vk =
(

k
k+1,

k(k−1)
(k+1)2

)
for

k = 1, 2, .... The normal lines of the convex hull of these curves will be essential later!

Chatterjee and Diaconis demonstrated that, as n → ∞ and β2 → −∞, the exponential model
will begin to exhibit a peculiar extremal behavior, in the sense that a typical random graph from
such a distribution will be close to a random subgraph of a complete bipartite graph. We extend
this result by letting the size of the network n grow unbounded and the natural parameters
(β1, β2) diverge along generic straight lines. We elucidate the relationship between all possible
directions along which the natural parameters can diverge and the way the model tends to place
most of its mass on graph configurations that resemble complete multipartite graphs for large
enough n.
Double asymptotic framework: Take β1 = aβ2 + b. Fix a and b.

• Let n→∞ and then let β2 → −∞.

• Let β2 → −∞ and then let n→∞.

Conclusion: Gn exhibits quantized behavior, jumping from one complete multipartite structure
to another, and the jumps happen precisely at the normal lines of a polyhedral set with infinitely
many facets. (Y, Rinaldo, and Fadnavis; related work in Handcock; Rinaldo et al.)
The exponential family of random graphs discussed above assumes no prior knowledge of the
graph before sampling. But in many situations partial information of the graph is already known
beforehand. For example, practitioners might be told that the edge density of the graph is close
to 1/2 or the triangle density is close to 1/4 or the adjacency matrix of the graph obeys a certain
form. A natural question to ask then is what would be a typical random graph drawn from an
exponential model subject to these constraints? Or perhaps more importantly will there be a
similar phase transition phenomenon as in the unconstrained exponential model?
Without loss of generality, we assume that the edge density of the graph is approximately known.
Let e : 0 ≤ e ≤ 1 be a real parameter that signifies an “ideal” edge density. Take α > 0. The

conditional normalization constant ψ
e,β
n,α is analogously defined as the normalization constant for

the unconstrained exponential random graph model,

ψ
e,β
n,α =

1

n2
log

∑
Gn∈Gn:|e(Gn)−e|<α

exp
(
n2 (β1t(H1, Gn) + · · · + βkt(Hk, Gn))

)
, (7)

the difference being that we are only taking into account graphs Gn whose edge density e(Gn)
is within an α neighborhood of e. Correspondingly, the associated conditional probability mass

function Pe,βn,α(Gn) is given by

Pe,βn,α(Gn) = exp(−n2ψ
e,β
n,α) exp

(
n2 (β1t(H1, Gn) + · · · + βkt(Hk, Gn))

)
1|e(Gn)−e|<α. (8)

We perform two limit operations on ψ
e,β
n,α. First we take n to infinity, then we shrink the interval

around e by letting α go to zero:

ψe,β = lim
α→0

lim
n→∞

ψ
e,β
n,α. (9)

These two operations ensure that we are examining the asymptotics of exponentially weighted
large graphs with edge density sufficiently close to e.
Large deviation: The limiting conditional normalization constant

ψe,β := lim
n→∞

ψ
e,β
n,α = max

h̃∈W̃ :e(h̃)=e

(
β1t(H1, h̃) + · · · + βkt(Hk, h̃)− 1

2

∫∫
[0,1]2

I(h̃)dxdy

)
,

(10)
where I : [0, 1] → R is the function

I(u) = u log u + (1− u) log(1− u). (11)

Let H̃ be the subset of {W̃ : e(·) = e} where ψe,β is maximized. Gn lies close to H̃ with high
conditional probability for large n. As in the unconstrained model, a phase transition occurs when
ψe,β is non-analytic or when H̃ is not a singleton set. (Kenyon and Y)
We focus on the constrained edge-triangle model. Let e and β1 be arbitrary but fixed. We are
particularly interested in the asymptotics of ψe,β when β2 is negative, the so-called “repulsive”
region. Naturally, varying β2 allows one to adjust the influence of the triangle density of the graph
on the probability distribution. The more negative the β2, the more unlikely that graphs with
a large number of triangles will be observed. When β2 approaches negative infinity, the most
probable graph would likely be triangle free. At the other extreme, when β2 is zero, the edge-
triangle model reduces to the well-studied Erdős-Rényi model, where edges between different
vertex pairs are independently included. The structure of triangle free graphs and disordered
Erdős-Rényi graphs are apparently quite different, and thus a phase transition is expected as β2
decays from 0 to −∞. In fact, it is believed that, quite generally, “repulsive” models exhibit a
transition qualitatively like the solid/fluid transition, in that a region of parameter space depicting
emergent multipartite structure, which is in imitation of the structure of solids, is separated by a
phase transition from a region of disordered graphs, which resemble fluids.
The special strip e = 1/2: Let β1 be arbitrary but fixed. As β2 decreases from 0 to −∞, a
typical graph Gn drawn from the constrained “repulsive” edge-triangle model jumps from being
Erdős-Rényi to almost complete bipartite, skipping a large portion of the e = 1

2 line. (Kenyon
and Y)

Despite their flexibility, conventionally used exponential random graphs cannot directly model
weighted networks as the underlying probability space consists of simple graphs only. An alterna-
tive interpretation for simple graphs is such that the edge weights are iid and satisfy a Bernoulli
distribution. Generalizations?
Consider the set Gn of all edge-weighted undirected labeled graphs on n vertices, where the edge
weights xij between vertex i and vertex j are iid real random variables uniformly distributed on
(0, 1). The common distribution for the edge weights yields probability measure Pn on Gn. Give
the set of such graphs the probability

Pβn(Gn) = exp
(
n2
(
β1t(H1, Gn) + · · · + βkt(Hk, Gn)− ψ

β
n

))
Pn(Gn). (12)

Large deviation: The limiting normalization constant

ψβ := lim
n→∞

ψ
β
n = max

h̃∈W̃

(
β1t(H1, h̃) + · · · + βkt(Hk, h̃)− 1

2

∫∫
[0,1]2

I(h̃)dxdy

)
, (13)

where I , which does not admit closed-form expression, is the Cramér function associated with µ:

I(u) = sup
θ∈R

(
θu− log

eθ − 1

θ

)
. (14)

Let H̃ be the subset of W̃ where ψβ is maximized. Gn lies close to H̃ with high probability for
large n. As for simple graphs, a phase transition occurs when ψβ is non-analytic or when H̃ is
not a singleton set. (Chatterjee and Varadhan; Y)
The edge-2-star model is a 2-parameter exponential random graph model obtained by taking H1
to be a single edge and H2 to be a 2-star. We concentrate on the asymptotics of ψβ1,β2 when β2
is positive, the so-called “attractive” region. The parameter space consists of a single phase with
a first order phase transition across the indicated curve and a second order phase transition at
the critical point, similar to the transition between liquid and gas in equilibrium materials.


