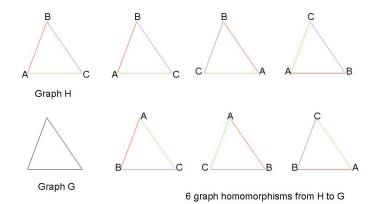
Critical phenomena in exponential random graphs

Mei Yin

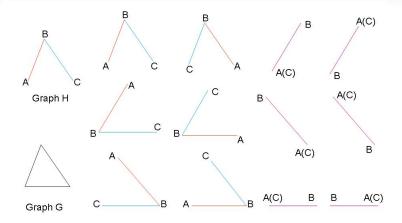
Department of Mathematics, University of Texas at Austin

April 8, 2013

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 | のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



12 graph homomorphisms from H to G

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Probability space: The set G_n of all simple graphs G_n on n vertices. Probability mass function:

$$\mathbb{P}_n^{\beta}(G_n) = \exp\left(n^2(\beta_1 t(H_1, G_n) + \cdots + \beta_k t(H_k, G_n) - \psi_n^{\beta})\right).$$

 H_1 is a single edge. Graph homomorphism density $t(H_i, G_n) = \frac{|\text{hom}(H_i, G_n)|}{|V(G_n)|^{|V(H_i)|}}$. Normalization constant (free energy) ψ_n^{β} :

$$\psi_n^{\beta} = \frac{1}{n^2} \log \sum_{G_n \in \mathcal{G}_n} \exp\left(n^2 \left(\beta_1 t(H_1, G_n) + \dots + \beta_k t(H_k, G_n)\right)\right).$$

Recent survey: Fienberg, Introduction to papers on the modeling and analysis of network data I & II. arXiv: 1010.3882 & 1011.1717.

k = 1:

$$\mathbb{P}_n^{\beta}(G_n) = \exp\left(n^2(\beta_1 t(H_1, G_n) - \psi_n^{\beta})\right)$$
$$= \exp\left(2\beta_1 E(G_n) - n^2 \psi_n^{\beta}\right).$$

Erdős-Rényi graph $G(n, \rho)$,

$$\mathbb{P}_n^{\rho}(G_n) = \rho^{E(G_n)}(1-\rho)^{\binom{n}{2}-E(G_n)}.$$

Include edges independently with parameter $ho=e^{2eta_1}/(1+e^{2eta_1}).$

$$\exp(n^2\psi_n^\beta) = \sum_{G_n \in \mathcal{G}_n} \exp\left(2\beta_1 E(G_n)\right) = \left(\frac{1}{1-\rho}\right)^{\binom{n}{2}}$$

.

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

Theory of graph limits: Graphon space \mathcal{W} is the space of all symmetric measurable functions from $[0,1]^2$ into [0,1]. A sequence of graphs $\{G_n\}_{n\geq 1}$ is said to converge to $h \in \mathcal{W}$ if for every finite simple graph H,

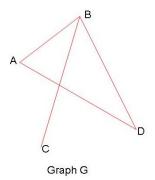
$$\lim t(H, G_n) = t(H, h)$$
$$= \int_{[0,1]^k} \prod_{(i,j)\in E(H)} h(x_i, x_j) dx_1 \dots dx_k.$$

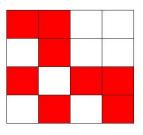
(Lovász and coauthors)

Intuition: The interval [0, 1] represents a 'continuum' of vertices, and h(x, y) denotes the probability of putting an edge between x and y.

Example: Erdős-Rényi graph $G(n, \rho)$, $h(x, y) = \rho$. Example: Any $G \in \mathcal{G}_n$,

 $f^{G}(x,y) = \begin{cases} 1, & \text{if } (\lceil nx, ny \rceil) \text{ is an edge in } G; \\ 0, & \text{otherwise.} \end{cases}$





Graphon fG

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Large deviation:

$$\psi_{\infty}^{\beta} = \sup_{h \in \mathcal{W}} \left(\beta_1 t(H_1, h) + \cdots + \beta_k t(H_k, h) - \frac{1}{2} \iint_{[0,1]^2} I(h) dx dy \right),$$

where $I:[0,1]
ightarrow \mathbb{R}$ is the function

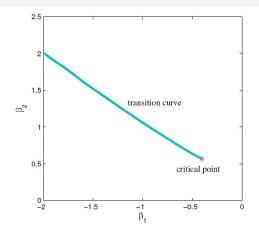
$$I(u) = \frac{1}{2}u \log u + \frac{1}{2}(1-u)\log(1-u).$$

 $k \ge 2, \beta_2, ..., \beta_k$ nonnegative ('attractive'): G_n behaves like the Erdős-Rényi graph $G(n, u^*)$ in the large n limit, where $u^* \in [0, 1]$ maximizes

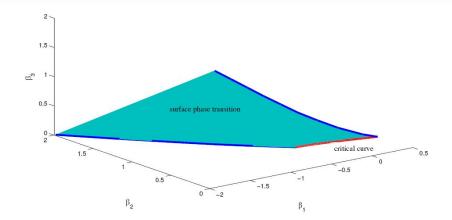
$$I(u) = \beta_1 u^{E(H_1)} + \dots + \beta_k u^{E(H_k)} - \frac{1}{2} u \log u - \frac{1}{2} (1-u) \log(1-u).$$

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

(Chatterjee and Diaconis, Estimating and understanding exponential random graph models. arXiv: 1102.2650.)



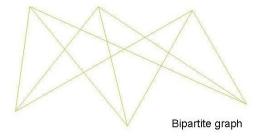
The phase transition curve in the (β_1, β_2) plane. H_1 is a single edge and H_2 has 3 edges. (Radin and Y, Phase transitions in exponential random graphs. arXiv: 1108.0649.) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日)



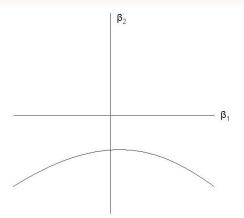
The phase transition surface in the $(\beta_1, \beta_2, \beta_3)$ space. H_1 is a single edge, H_2 has 3 edges, and H_3 has 5 edges. (Y, Critical phenomena in exponential random graphs. arXiv: 1208.2992.) Conjecture: The parameter space of the 'attractive' model consists of a single phase with first order phase transition(s) across one (or more) hypersurfaces and second order phase transition(s) along their boundaries.

Universality: All hypersurfaces asymptotically approach a common hyperplane $\sum_{i=1}^{k} \beta_i = 0$.

k = 2, β_2 large negative ('repulsive'): G_n looks like a complete $(\chi(H_2) - 1)$ -equipartite graph.

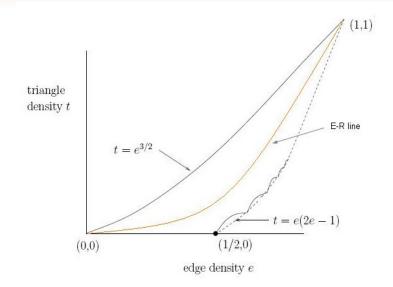


(Chatterjee and Diaconis, Estimating and understanding exponential random graph models. arXiv: 1102.2650.)



(Aristoff and Radin, Emergent structures in large networks. arXiv: 1110.1912. Y, http://www.ma.utexas.edu/users/myin/Talk.pdf.)

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

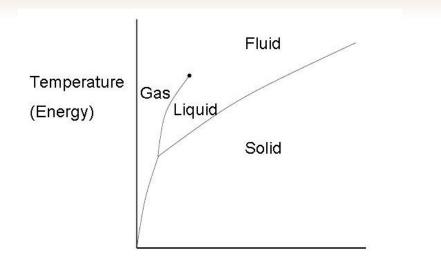


< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ − の < ⊙

Question: In the large n limit, is every combination of edge density and triangle density obtainable?

- Above E-R line?
- Fix β_1 . What happens when $\beta_2 \rightarrow -\infty$?
- Fix α . Let $\beta_1 = \alpha \beta_2$. What happens when $\beta_2 \to -\infty$?
- Scallops? Or more generally?

Euler-Lagrange: $\beta_1 + 3\beta_2 \int_0^1 h(x,z)h(y,z)dz = I'(h(x,y)).$



Pressure (Density)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

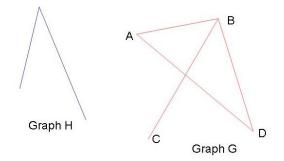
Alternating star model: H_i is an *i*-star, and $\beta_i = (-1)^{i-1}\beta^{-i}$ with $\beta > 0$ a constant.

Exhibit the desired transitivity and clumping properties in simulations.

(Snijders, Pattison, Robins, and Handcock, New specifications for exponential random graph models.

http://www.csss.washington.edu/Papers/wp42.pdf.)

Lattice gas representation: $t(H, G_n) = \sum d(H, X)\sigma_X$. Exact graph homomorphism density $d(H, X) = 2/4^3$ for X an edge or a 2-star.



Suppose $H \in \mathcal{G}_m$, then $t_{ij}(H, G_n)$, the sum of the exact homomorphism densities d(H, X) with $(i, j) \in X$, has an upper bound $\frac{m(m-1)}{n^2}$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

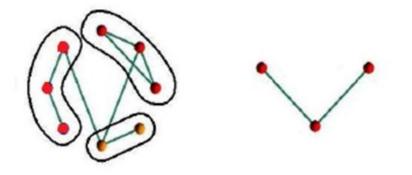
Any exponential random graph model may be viewed as a lattice gas model with a finite Banach space norm.

 $\sum_{i=1}^{k} |\beta_i|$ small: Convergent power series expansion

(high-temperature expansion) for the limiting free energy. No phase transition.

(Y, A cluster expansion approach to exponential random graph models. arXiv: 1202.5587.)

Renormalization (graph perspective):



(Song, Havlin, and Makse, Self-similarity of complex networks. arXiv: cond-mat/0503078.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Renormalization (lattice gas perspective):

$$\exp(-\bar{H}(\bar{\sigma})) = \sum_{\sigma} T(\sigma, \bar{\sigma}) \exp(-H(\sigma)).$$

original random graph $\stackrel{(I)}{\rightarrow}$ renormalized random graph $\downarrow_{(II)}$ $\downarrow_{(IV)}$ original lattice gas $\stackrel{(III)}{\rightarrow}$ renormalized lattice gas

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Renormalization (lattice gas perspective):

$$\exp(-\bar{H}(\bar{\sigma})) = \sum_{\sigma} T(\sigma, \bar{\sigma}) \exp(-H(\sigma)).$$

original random graph $\stackrel{(I)}{\rightarrow}$ renormalized random graph $\downarrow_{(II)}$ $\downarrow_{(IV)}$ original lattice gas $\stackrel{(III)}{\rightarrow}$ renormalized lattice gas

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ