
The Journal of Symbolic Logic

Volume 74, Number 3, Sept. 2009

EQUIVALENCE OF CONSEQUENCE RELATIONS: AN

ORDER-THEORETIC AND CATEGORICAL PERSPECTIVE

NIKOLAOS GALATOS AND CONSTANTINE TSINAKIS

Abstract. Equivalences and translations between consequence relations abound in logic. The notion

of equivalence can be defined syntactically, in terms of translations of formulas, and order-theoretically, in

terms of the associated lattices of theories. W. Blok and D. Pigozzi proved in [4] that the two definitions

coincide in the case of an algebraizable sentential deductive system. A refined treatment of this equivalence

was provided by W. Blok and B. Jónsson in [3]. Other authors have extended this result to the cases

of k-deductive systems and of consequence relations on associative, commutative, multiple conclusion

sequents. Ourmain result subsumes all existing results in the literature and reveals their common character.

The proofs are of order-theoretic and categorical nature.

§1. Introduction. The aim of the present paper is to propose an order-theoretic
and categorical framework for various constructions and concepts connected with
the study of logical consequence relations. Our approach places under a common
umbrella a number of existing results regarding the equivalence of consequence
relations and provides a road map for future research in this area.
A consequence relation is defined relative to an algebraic signature L . The set
Fm of L -formulas is the universe of the term algebra Fm of signature L over
a countably infinite set of variables. Throughout this paper, we identify the algebra
Eq of L -equations with the algebra Fm × Fm, and denote by Σ the monoid of
substitutions of Fm.
W. Blok and D. Pigozzi proved in [4] that a substitution invariant, finitary con-
sequence relation ⊢ on Fm is algebraizable if and only if there exists an algebraic
consequence relation |= on Eq such that the lattices Th⊢ and Th|= of the theories
corresponding to ⊢ and |= are isomorphic under a map that commutes with inverse
substitutions. A refined treatment of this equivalence was provided by W. Blok
and B. Jónsson in [3]. They observed that the definition of algebraizability of ⊢,
given in [4], can be rephrased as follows: there exist (i) an algebraic consequence
relation |= on Eq and (ii) finitary maps ô : Fm → P (Eq), and ñ : Eq → P (Fm)
(referred to as translators), which commute with substitutions, such that for all
Ψ ∪ {φ} ∈ P (Fm) and ε ∈ Eq,

1. Ψ ⊢ φ iff ô[Ψ] |= ô(φ), and
2. ε =||= ôñ(ε).
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In addition, they extended the previously mentioned result in [4] in the setting of
M -sets.
Our approach, which owes considerable intellectual debt to the cited work of
Blok and Jónsson, is more general and places the aforementioned considerations
on solid algebraic and categorical ground. Starting with the concrete situation
above, we note that there exists a natural action of Σ on Fm that extends to an
action of the corresponding power sets. The power set P (Σ) is a ringlike object
(to be precise a semiring with identity) – in which set-union plays the role of
addition and complex product serves as multiplication. On the other hand,P (Fm)
is a structure corresponding to an abelian group (to be precise a commutative
monoid), with set-union playing again the role of addition. The latter action
possesses the critical property of being residuated, which, in this particular instance,
means that it preserves arbitrary unions in each coordinate. Analogous comments
hold for the action of Σ on Eq.
This concrete situation leads naturally to the general concept of a (left) module.
The scalars of such a structure are the elements of a complete residuated lattice A.
The vectors form a complete lattice P. The scalar multiplication ⋆ : A × P → P

is a bi-residuated map (i.e., a residuated map in each coordinate) that satisfies the
usual properties of a monoid action. For a given complete residuated lattice A,
all A-modules constitute the objects of a category, AM , whose morphisms are
residuated maps that preserve scalar multiplication.
The category AM provides an ideal environment to abstract the aforementioned
concepts and identify their categorical properties. For example, the structural con-
sequence relations on an object P correspond bijectively to the epimorphic images
of P. Thus, such relations may be identified with objects of this category. Not
surprisingly then, we stipulate that two structural consequence relations are equiv-
alent if the A-modules corresponding to them are isomorphic. For the particular
case where P is the powerset of formulas and A the powerset of substitutions, the
module associated with a consequence relation is the lattice of theories enriched
by inverse substitutions; the isomorphism of the modules then captures exactly the
fact that the enriched (with inverse substitutions) lattices of theories are isomorphic.
On the other hand, we can define equivalence of structural consequence relations
by abstracting the second condition for algebraizability stated above, namely the
existence of syntactic translators with the appropriate properties.
The second definition always implies the first. The main result of this work
identifies categorically the modules for which the two definitions coincide: they are
precisely the projective objects of this category. For projective modules P and Q,
the result reads as follows. Let ⊢ã and ⊢ä be two structural consequence relations
on P and Q, respectively, and let ã and ä be the structural closure operators on P
and Q that correspond to ⊢ã and ⊢ä . Then, for every isomorphism f between the
modules of theories Pã = Th⊢ã andQä = Th⊢ä , there exist translators (i.e., module

morphisms) ô : P → Q and ñ : Q → P such that äô = fã and ãñ = f−1ä. This
result subsumes the cases considered in [3], as well as those involving the equivalence
of structural consequence relations on sequents.
More specifically, we prove that the P (Σ)-modules P (Fm) of formulas and
P (Eq) of equations are projective (Corollary 5.9). Each of these modules is cyclic,



782 NIKOLAOS GALATOS AND CONSTANTINE TSINAKIS

i.e., it is generated by a single element. An interesting additional result is Theo-
rem 5.7, which presents several characterizations of projective cyclic A-modules.
Let Seq be a set of sequents (single conclusion, multiple conclusion or non-
associative, multi-sequents or hypersequents; refer to [11], [7] or [1]). Unless all
elements inSeq have the same length, theP (Σ)-moduleP (Seq) is not cyclic (Propo-
sition 5.10), but we prove that it is projective (Theorem 5.13). This result is proved
by noting thatP (Seq) is a coproduct of cyclic projective modules.
J. Rebagliato and V. Verdú [15] have defined the notion of equivalence of two
consequence relations on (associative) sequents. The results in [3] do not cover the
case of sequents, but it follows from Corollary 6.17 that the isomorphism of the
modules of theories is equivalent to the definition of Rebagliato and Verdú [15] and
to the one of Raftery [14].
Lastly, Corollary 6.16 guarantees that under additional natural assumptions the
desired translators ô and ñ are finitary; i.e., they send compact elements to compact
elements. In the case of powersets, this means that they map finite sets to finite sets.
In Section 2, after we review the case of an algebraizable consequence relation
we give an equivalent formulation of the definition in terms of translators, which
extends to the situation of consequence relations over sequents. Then we charac-
terize the extensions of these maps to powersets and provide the necessary intuition
leading to the definition of a module in the more general setting of complete lattices
in Section 3. In Section 4 we review all the necessary background on residuation
theory, closure operators and consequence relations, and develop the elementary
theory of modules that will be necessary for the rest of the paper.
Section 5 makes use of the residuation setting to give characterizations of the
notions of similarity and equivalence of consequence relations introduced there,
while Section 6 puts things in a categorical setting by identifying the modules for
which equivalences (or structural representations) are induced by translators with
the projective modules in the appropriate category. At the same time, cyclic and
cyclic projective modules are characterized, while the consequence relations on the
set of formulas are shown to be particular cases of cyclic projective modules. The
case of sequents is handled by appealing to coproducts in the category. Finally, in
Section 7 it is shown that the assumption of finitarity can be safely added to the
preceding study. By working in the appropriate ‘finitary’ subcategory it is proved
that the inducing translators can be taken to be finitary if all the other objects
involved are assumed finitary. This involves the identification of the notion of
regular modules, which are shown to be projective now in the said subcategory.

§2. Consequence relations and translations.

2.1. Algebraizability. As usual, by a propositional (or algebraic) language we
mean a pair L = 〈L,α〉 consisting of a set L and a map α from L to the natural
numbers. The elements ofL are called (primitive) connectives (or operation symbols)
and the image of a connective under α is called the arity of the connective.
AnL -algebra is a pair A = 〈A,Op[L]〉, whereA is a set,Op is a map that assigns
an operation Op(f) = fA on A of arity α(f) to every operation symbol f of L;
often the map Op is considered understood for a given algebra A. If L is finite, we
usually list the elements of Op[L] in the expression 〈A,Op[L]〉.
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Wedenote byFmL the set of (propositional ) formulas (or terms) over the language
L and a countably infinite set Var of propositional variables. Also, FmL denotes
the associated L -algebra. We denote by ΣL the endomorphism monoid of FmL
and refer to its elements as substitutions.
An (asymmetric) consequence relation over the setFmL is a subset ⊢ ofP (FmL )×
FmL satisfying the following conditions, for all subsets Φ∪Ψ∪ {φ,ø, ÷} of FmL :

1. if φ ∈ Φ, then Φ ⊢ φ; and
2. if Φ ⊢ ø, for all ø ∈ Ψ, and Ψ ⊢ ÷, then Φ ⊢ ÷.

Usually, we write φ ⊢ ø for {φ} ⊢ ø. A consequence relation ⊢ over FmL is
called finitary, if for all subsets Φ∪{φ} of FmL , whenever Φ ⊢ φ, there exists a finite
subset Φ0 of Φ such that Φ0 ⊢ φ. It is called substitution invariant or structural, if
for every substitution ó ∈ ΣL , and for all subsets Φ ∪ {φ} of FmL , Φ ⊢ φ implies
ó[Φ] ⊢ ó(φ).
The deducibility (or provability) relation of a Hilbert system with finitely many
rule schemes (we consider axiom schemes as special cases of rule schemes) is a fini-
tary and substitution invariant consequence relation. For example, the deducibility
(or provability) relation ⊢CPL of Classical Propositional Logic (CPL) is a finitary
and substitution invariant consequence relation over FmL , whereL is the language
of CPL.
Associated with a consequence relation ⊢ on FmL is a closure operator ã⊢ on
FmL , defined by ã⊢(Φ) = {ø ∈ FmL | Φ ⊢ ø}. Conversely, a closure operator
FmL gives rise to a consequence relation. We discuss this connection in a more
general setting in Section 3.
By an equation over L we mean a pair of elements s, t ∈ FmL and we usually
denote it by the expression s ≈ t. We denote by EqL the L -algebra (FmL )

2 of
equations overL . A substitution invariant, finitary consequence relation overEqL
is defined by analogy to the previous case. If A is an L -algebra, h : FmL → A

is a homomorphism and (s ≈ t) ∈ Eq
L
, then we denote by h(s ≈ t) the pair

(h(s), h(t)) and we refer to it as an equality; we say that the equality is true if
h(s) = h(t).
If K is a class of L -algebras, and E ∪ {ε} is a subset of Eq

L
, E |=K ε means

that for all A ∈ K and all homomorphisms h : FmL → A, if h[E] is a set of true
equalities, then h(ε) is a true equality. It is clear that |=K is a substitution invariant
consequence relation over Eq

L
. It is well known , see e.g. [14], that |=K is finitary

iffK is closed under ultraproducts.
Our discussion in the remainder of this section draws heavily from [3]. According
to Blok and Pigozzi [4], a deductive system is a pair 〈L ,⊢〉, where L is a propo-
sitional language and ⊢ is a substitution invariant, finitary consequence relation
over FmL .
A deductive system 〈L ,⊢〉 is called algebraizable ([4]), if there exists a class of
L -algebras K , a finite set of equations ui ≈ vi , i ∈ I , on a single variable and
a finite set of binary definable connectives ∆j , j ∈ J , such that for every subset
Ψ ∪ {φ} of FmL and for every equation s ≈ t over FmL ,

1. Ψ ⊢ φ iff {ui(ø) ≈ vi(ø) | ø ∈ Ψ} |=K ui(φ) ≈ vi(φ), for all i ∈ I , and
2. s ≈ t=||=

K
{ui(s ∆j t) ≈ vi(s ∆j t) | i ∈ I, j ∈ J}.

The classK is called an equivalent algebraic semantics for 〈L ,⊢〉.
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It can be shown that the combination of (1) and (2) above is equivalent to the
condition that for every set of equations E ∪ {s ≈ t} over FmL and for every
φ ∈ FmL ,

3. E |=K s ≈ t iff {u ∆j v | u ≈ v ∈ E, j ∈ J} ⊢ s ∆j t, for all j ∈ J .
4. φ ⊣⊢ {ui(φ) ∆j vi(φ) | i ∈ I, j ∈ J}.

If we define the maps ô : FmL → P (Eq
L
) and ñ : Eq

L
→ P (FmL ) by

ô(φ) = {ui(φ) ≈ vi(φ) | i ∈ I } and ñ(s ≈ t) = {s ∆j t | j ∈ J}, then conditions (1)
and (2) take the more elegant form

1. Ψ ⊢ φ iff ô[Ψ] |=K ô(φ), and
2. ε=||=

K
ôñ(ε).

Next, we identify conditions under which arbitrary maps ô : FmL → P (Eq
L
)

and ñ : Eq
L

→ P (FmL ) are of the form above. First of all, for all φ ∈ FmL
and all ε ∈ Eq

L
, both ô(φ) and ñ(ε) are finite sets; we will call maps that have

this property finitary. Also, if φ ∈ FmL , ε ∈ Eq
L
and ó ∈ ΣL is a substitution,

then ó[ô(φ)] = ô(ó(φ)) and ó[ñ(ε)] = ñ(ó(ε)); we will call such maps substitution
invariant. The following result is implicit in [3].

Lemma 2.1. For maps ô : FmL → P (Eq
L
) and ñ : Eq

L
→ P (FmL ), the

following conditions are equivalent.

1. ô, ñ are finitary and substitution invariant maps.
2. There exists a finite set of equations ui ≈ vi , i ∈ I , on a single variable, and
a finite set of binary definable connectives ∆j , j ∈ J , satisfying the relations
ô(φ) = {ui(φ) ≈ vi(φ) | i ∈ I } and ñ(s ≈ t) = {s ∆j t | j ∈ J}.

Proof. We will show that (1) implies (2). Let x, y be distinct variables in Var
and assume that ô(x) = {ui ≈ vi | i ∈ I } and ñ(x ≈ y) = {tj | j ∈ J}. Since ô and
ñ are finitary, it follows that I and J are finite.
If φ ∈ FmL , let κφ ∈ ΣL be the substitution that sends all variables to φ.
Since ô is substitution invariant, we have κx[ô(x)] = ô(κx(x)) = ô(x), for every
variablex. In other words, if we replace all variables in ô(x) by x, we get back ô(x);
i.e., all the equations ui ≈ vi contain single variable. Moreover, for all φ ∈ FmL ,
we have ô(φ) = ô(κφ(x)) = κφ[ô(x)] = {κφ(ui(x) ≈ vi(x)) | i ∈ I } =
{ui(φ) ≈ vi(φ) | i ∈ I }.
Let Var1 and Var2 be two sets that partition the set Var of all variables in a way
that x ∈ Var1 and y ∈ Var2. For all (s ≈ t) ∈ Eq

L
, let κs≈t ∈ ΣL be the

substitution that sends all variables in Var1 to s and all variables in Var2 to t. Since
ô is substitution invariant, we haveκx≈y [ñ(x ≈ y)] = ñ(κx≈y(x ≈ y)) = ñ(x ≈ y).
In other words, the terms tj are binary and depend only on the variables x and y;
we set tj = x∆jy. We have, for all (s ≈ t) ∈ EqL , ñ(s ≈ t) = ñ(κs≈t(x ≈ y)) =
κs≈t [ñ(x ≈ y)] = {κs≈t(x∆jy) | j ∈ J} = {s∆jt | i ∈ I }. ⊣

Corollary 2.2. A deductive system 〈L ,⊢〉 is algebraizable iff there exist finitary
and substitution invariant maps ô : FmL → P (Eq

L
) and ñ : Eq

L
→ P (FmL ), and

a class ofL -algebrasK such that, for every subset Φ ∪ {φ} of FmL and ε ∈ EqL ,

1. Ψ ⊢ φ iff ô[Ψ] |=K ô(φ), and
2. ε=||=

K
ôñ(ε).

Obviously, the maps ô and ñ extend to maps ô′ : P (FmL ) → P (Eq
L
) and

ñ′ : P (Eq
L
) → P (FmL ), defined by ô′(Φ) = ô[Φ] and ñ′(E) = ñ[E], for
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Φ ∈ P (FmL ) and E ∈ P (Eq
L
). Moreover, ô′(Φ) and ñ′(E) are finite, if Φ ∈

P (FmL ) and E ∈ P (Eq
L
) are finite; we will call such maps finitary. Also,

if Φ ∈ P (FmL ), E ∈ P (Eq
L
) and ó ∈ ΣL , then ó[ô′(Φ)] = ô′(ó[Φ]) and

ó[ñ′(E)] = ñ′(ó[E]); we will call such maps substitution invariant. Clearly, ô′ and
ñ′ stem from maps ô and ñ iff they preserve unions.

Example 2.3. Let ⊢BCK be the least substitution invariant consequence relation
on Fm{→} satisfying the following properties for all x, y, z ∈ Fm{→}.

(B) ⊢BCK (x → y)→ ((y → z)→ (x → z))
(C) ⊢BCK (x → (y → z))→ (y → (x → z))
(I) ⊢BCK x → x
(K) ⊢BCK x → (y → y)
(MP) {x, x → y} ⊢BCK y

Actually, (I) is redundant, but we include it for later reference. It is shown in [4]
that ⊢BCK is algebraizable and the {→}-subreducts of commutative integral resid-
uated lattices form an algebraic semantics for it. (Refer to [5] or [12] for a short
introduction to residuated lattices, and to [9] for a comprehensive treatment of these
structures.) The corresponding maps ô and ñ are given by ô(φ) = {φ ≈ (φ → φ)}
and ñ(u ≈ v) = {u → v, v → u}. An extension of this correspondence is obtained
by the algebraizability of substructural logics via residuated lattices; see [10]. ⊣

A theory of a consequence relation ⊢ over FmL is a subset T of FmL closed
under ⊢; i.e., for all φ ∈ FmL , T ⊢ φ implies φ ∈ T . The set of theories of ⊢
forms a lattice that we denote byTh⊢. Likewise we define the lattice of theories Th|=
of a consequence relation |= over Eq

L
. The notions of finitarity and substitution

invariance have analogues for closure operators and lattices of theories. We discuss
the connections between consequence relations, closure operators and lattices of
theories in a more general setting in Section 3.
The following characterization of algebraizability of a deductive system is proved
in [4].
Theorem 2.4. [4] A deductive system 〈L ,⊢〉 is algebraizable with equivalent al-
gebraic semantics a quasivarietyK iff there exists an isomorphism between Th⊢ and
Th|=K that commutes with inverse substitutions.

We will extend this result in a more general setting and provide a categorical
reason for its validity.

2.2. Consequence relations on sets of sequents. In this section, we consider one
more example of a consequence relation.
If m, n are non-negative integers (not both equal to zero), by a (multiple con-
clusion, associative) sequent over L of type (m, n), we understand a pair (Γ,∆)
of a sequence Γ = (φ1, φ2, . . . , φm) of L -formulas of length m and a sequence
∆ = (ø1, ø2, . . . , øn) ofL -formulas of length n. We usually write φ1, φ2, . . . , φm ⇒
ø1, ø2, . . . , øn for (Γ,∆). These sequents are used in the formulation of substruc-
tural logics over FL; see, for example, [9]. Variants of this notion of sequent have
been considered in the literature; refer to [11], [1], [7], and Section 5.
We usually consider sets of sequents closed under type, i.e., sets of sequents such
that, for all m, n, if they contain an (m, n)-sequent, then they contain all (m, n)-
sequents. If Seq is a set of sequents closed under type, then Tp(Seq) denotes the set
of all types of the sequents in Seq.



786 NIKOLAOS GALATOS AND CONSTANTINE TSINAKIS

The set of formulas can be identified with the set of all (0, 1)-sequents, and the
set of equations can be identified with the set of all (1, 1)-sequents.
If s = φ1, φ2, . . . , φm ⇒ ø1, ø2, . . . , øn is a sequent and ó ∈ ΣL is a substitution,
(ó(φ1), ó(φ2), . . . , ó(φm) ⇒ ó(ø1), ó(ø2), . . . , ó(øn)) is denoted by ó(s). If Seq
is a set of sequents closed under type, then a (finitary, substitution invariant)
consequence relation over Seq is defined as in the case of FmL and EqL .
The notion of algebraizability of a set Seq of sequents closed under type has been
defined by Rebagliato and Verdú [15]. If Seq1 and Seq2 are sets of sequents over
L closed under type, and ⊢1 and ⊢2 are two consequence relations over Seq1 and
Seq2, respectively, a translation between Seq1 and Seq2 is a set ô = {ô(m,n) | (m, n) ∈
Tp(Seq1)}, where ô(m,n) is a finite subset of Seq2 in (at most) m + n variables. If
s ∈ Seq1 is an (m, n)-sequent, ô(s) = ô(m,n)(s) denotes the result of replacing the
m + n formulas of s for the variables in ô(m,n).
Two consequence relations ⊢1 and ⊢2 over Seq1 and Seq2, respectively, are called
equivalent in the sense of Rebagliato and Verdú, if there are translations ô and ñ
between Seq1 and Seq2 such that for all subsets S1 ∪ {s1} of Seq1 and all subsets
S2 ∪ {s2} of Seq2,

1. S1 ⊢1 s1 iff ô[S1] ⊢2 ô(s1), and
2. s2 ⊣⊢2 ôñ(s2).

It follows that

3. S2 ⊢2 s2 iff ñ[S2] ⊢1 ñ(s2), and
4. s1 ⊣⊢1 ñô(s1).

Lemma 2.5. Consider maps ô :P (Seq1)→ P (Seq2) and ñ :P (Seq2)→ P (Seq1).
The following are equivalent.

1. The maps ô, ñ are finitary, substitution invariant and preserve unions.
2. There exist translations ô and ñ between Seq1 and Seq2 such that ô(s1) = ô(s1)
and ñ(s2) = ñ(s2) for all s1 ∈ Seq1 and s2 ∈ Seq2.

Proof. The proof is based on the ideas in the proof of Lemma 2.1. The lemma is
also a consequence ofmore general results thatwe prove later; see Theorem 5.13. ⊣

It will follow from our analysis that the analogue of Theorem 2.4 holds in the
case of sequents, as well. A. Pynko [13] proves the result for finitary consequence
relations and J. Raftery [14] for the general case of associative sequents.

Example 2.6. An single conclusion, associative, commutative sequent on a set A
is a pair (Γ, φ), where Γ ∪ {φ} is a multiset on A; traditionally, the sequent (Γ, φ)
is denoted by Γ ⇒ φ. We denote by SeqIac(A) the set of all single conclusion,
associative, commutative sequents on A. The deducibility relation ⊢FLei{→} of the

{→}-fragmentFLei
{→} of the systemFLei – see [11] for details – is the least structural

consequence relation on SeqIac(Fm{→}) that satisfies the following conditions for
all Γ,Π,Σ ∪ {α, â, ä} ⊆ Fm{→}.

α ⇒ α
(id)

Γ⇒ α Σ, α,Π⇒ ä

Σ,Γ,Π⇒ ä
(cut)

Γ,Σ⇒ ä

Γ, α,Σ⇒ ä
(i)

Γ⇒ α Π, â,Σ⇒ ä

Π,Γ, α → â,Σ⇒ ä
(→⇒)

α,Γ⇒ â

Γ⇒ α → â
(⇒→)
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Here we adopt the convention that the fraction notation Ss means S ⊢FLei{→} s ,

where S ∪ {s} is a subset of SeqIac(Fm{→}).
It is shown in [11] that ⊢FLei{→} is equivalent in the sense of Rebagliato and Verdú
to ⊢BCK; see Example 2.3. Moreover, the consequence relation ⊢FLe{→} , obtained

by removing Rule (i) from FLei
{→}, is equivalent in the sense of Rebagliato and

Verdú to the consequence relation ⊢BCI, which is obtained from ⊢BCK by removing
Axiom (K). Nevertheless, the relations ⊢FLe{→} and ⊢BCI are not algebraizable;
see [4]. ⊣

2.3. Consequence relations on powersets. So far we have defined consequence
relations on the sets P (FmL ), P (EqL ) and, more generally, on P (Seq), where
Seq is a set of sequents closed under type. Before we give the general definition
in the case of complete lattices, we give a preview in the case of powersets. Our
presentation is based on ideas developed in [3].
The definition of a (finitary) consequence relation for the three examples is a spe-
cial case of the following well known definition.
Let S be a set. An asymmetric consequence relation over S is a subset ⊢ of
P (S) × S such that, for all subsets X ∪ Y ∪ {x, y, z} of S,

1. if x ∈ X , then X ⊢ x, and
2. if X ⊢ y, for all y ∈ Y , and Y ⊢ z, then X ⊢ z.

An asymmetric consequence relation over S is called finitary, if for all subsets
X ∪ {x} of S, if X ⊢ x, then there is a finite subset X0 of X such that X0 ⊢ x.
A symmetric consequence relation over S is a binary relation ⊢ on P (S) that
satisfies, for all X,Y,Z ∈ P (S),

1. if Y ⊆ X , then X ⊢ Y ,
2. if X ⊢ Y and Y ⊢ Z, then X ⊢ Z,
3. X ⊢

⋃
X⊢Y Y .

Note that⊢ satisfies the first two conditions iff it is a pre-order onP (S) that contains
the relation ⊇. A symmetric consequence relation over S is called finitary, if for all
X,Y ∈ P (S), if X ⊢ Y and Y is finite, then there is a finite subset X0 of X such
that X0 ⊢ Y .
Given an asymmetric consequence relation⊢, we define its symmetric counterpart

⊢s , by X ⊢s Y , for X,Y ∈ P (S), to mean X ⊢ y, for all y ∈ Y . Conversely, given
a symmetric consequence relation ⊢, we define its asymmetric counterpart ⊢a , by
X ⊢a x iff X ⊢ {x}, for X ∈ P (S) and x ∈ S. It is well known that asymmetric
consequence relations are equivalent to symmetric ones and the notions of finitarity
and invariance that we will define, correspond. We will work with symmetric
consequence relations, as they are amenable to generalization to arbitrary lattices.
The generalization of the notion of substitution invariance to arbitrary powersets
requires a new notion of substitution. Note that the monoid of substitutions ΣL
acts on both FmL andEqL – more generally on a set Seq of sequents overL closed
under type – in the sense that for all ó1, ó2 ∈ ΣL , and s in either FmL , EqL or Seq,

1. (ó1ó2)(s) = ó1(ó2(s)),
2. IdΣL (s) = s .

We say that a monoid Σ = 〈Σ, ·, e〉 acts on a set S, if there exists a map
⋆ : Σ× S → S such that for all ó1, ó2 ∈ Σ, and s ∈ S,
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1. (ó1 · ó2) ⋆ s = ó1 ⋆ (ó2 ⋆ s),
2. e ⋆ s = s .

A consequence relation ⊢ on P (S) is called Σ-invariant, if for all X ∪ {y} ⊆ S
and ó ∈ Σ, X ⊢ y implies {ó ⋆ x | x ∈ X} ⊢ ó ⋆ y.
Actually, if Σ acts on S, then P (Σ) acts onP (S), as well, i.e., there exists a map
⋆ : P (Σ)×P (S)→ P (S) such that for all A1, A2 ∈ P (Σ) and X ∈ P (S),

1. (A1 · A2) ⋆ X = A1 ⋆ (A2 ⋆ X ),
2. {e} ⋆ X = X ,

whereA1⋆X = {a⋆x |a ∈ A1, x ∈ X} andA1 ·A2 = {a1 ·a2 |a1 ∈ A1, a2 ∈ A2}. In
this case, ⊢ onP (S) is calledP (Σ)-invariant, if for allX,Y ∈ P (S) andA ∈ P (Σ),
X ⊢ Y implies A ⋆ X ⊢ A ⋆ Y .
Moreover, for all A ∈ P (Σ) and X,Y ∈ P (S) we have

A ⋆ X ⊆ Y iff A ⊆ Y/⋆ X iff X ⊆ A \⋆ Y ,

where

Y/⋆ X = {a ∈ Σ | {a} ⋆ X ⊆ Y} and A \⋆ Y = {x ∈ S |A ⋆ {x} ⊆ Y};

equivalently ⋆ preserves arbitrary unions. If all of the above conditions are satisfied,
we say thatP (S) is aP (Σ)-module. For exampleP (FmL ),P (EqL ) andP (SeqL ),
where Seq is a set of sequents closed under type, are all P (ΣL )-modules.
A map ô : P (S1) → P (S2) is called P (Σ)-invariant or structural, if for all
A ∈ P (Σ) and X ∈ P (S), we have A ⋆ ô(X ) = ô(A ⋆ X ).
Assume that S1 and S2 are sets, and that ⊢1 and ⊢2 are consequence relations on
P (S1) andP (S2), respectively. Further, assume that there exist maps ô : P (S1)→
P (S2) and ñ : P (S2) → P (S1) that preserve unions such that for every subset
X ∪ {x} of S1 and y ∈ S2,

1. X ⊢1 x iff ô(X ) ⊢2 ô(x),
2. y ⊣⊢2 ôñ(y).

Then we say that ⊢1 and ⊢2 are similar via ô and ñ. We will show in Lemma 4.5 that,
in this case, ⊢2 and ⊢1 are similar via ñ and ô, as well.
Assume further that Σ is amonoid and thatP (S1) andP (S2) areP (Σ)-modules.
If ⊢1 and ⊢2 are similar via ô and ñ, and both ô and ñ areP (Σ)-invariant, then we
say that ⊢1 and ⊢2 are equivalent via ô and ñ.
It is easy to see that a consequence relation ⊢ on P (Seq), where Seq is a set of
L -sequents closed under type, is algebraizable in the sense of Rebagliato and Verdú
(or in the sense of Blok and Pigozzi in the case when Seq = FmL ) iff there exists
a class K of L -algebras such that ⊢ and |=K are equivalent via finitary, P (ΣL )-
invariant maps ô : P (Seq) → P (Eq

L
) and ñ : P (Eq

L
) → P (Seq) that preserve

unions.

§3. Consequence relations, theories and closure operators on modules. In this sec-
tion we introduce the notion of a consequence relation on an arbitrary complete
lattice, and show that consequence relations on a given lattice are in bijective cor-
respondence with closure operators on it. Next we discuss the appropriate notion
of substitution invariance for both consequence relations and for closure operators
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in the setting where the lattice is endowed with the additional structure of a mod-
ule. This will provide the required background for formulating the definition of
equivalence of two consequence relations and to prove our main theorem.

3.1. Consequence relations. Symmetric consequence relations are binary rela-
tions on the powerset of a set. We generalize their definition to complete lattices.
We note that the definitions and results of this section extend easily to arbitrary
posets.
Let P be a complete lattice. A (symmetric) consequence relation on P is a binary
relation ⊢ on P that satisfies the following conditions, for all x, y, z ∈ P.

1. if y ≤ x, then x ⊢ y,
2. if x ⊢ y and y ⊢ z, then x ⊢ z,
3. x ⊢

∨
x⊢y y, for all x ∈ P.

Note that ⊢ satisfies the first two conditions iff it is a pre-order on P that contains
the relation ≥.

3.2. Residuated maps on complete lattices. Let S1, S2 be arbitrary sets, and let ⊢1,
⊢2 be consequence relations on P (S1) and P (S2), respectively. We have seen that
the maps ô : P (S1)→ P (S2) and ñ : P (S2)→ P (S1) involved in the definition of
similarity of ⊢1 and ⊢2 were assumed to preserve unions. We have noted that this is
a necessary and sufficient condition for these maps to extend maps from the sets S1
and S2 to the powersets P (S1) and P (S2) respectively. The generalization of this
notion in the setting of complete lattices is that of a map that preserves arbitrary
joins. We will find it convenient, however, to work with the equivalent concept of
a residuated map.
Let P and Q be complete lattices. A map ô : P → Q is called residuated, if there
exists a map ô∗ : Q → P, called the residual of ô, such that for all x ∈ P and y ∈ Q,

ô(x) ≤ y ⇔ x ≤ ô∗(y).

Note that a binary map is residuated, in the sense of the previous subsection, if
and only if all its unary translates (sections) are residuated in the preceding sense.
We will often write ô : P → Q for ô : P → Q, to indicate the dependency of the
residuation property on the order structure of P andQ. It is clear that the residual
of a residuated map is uniquely defined by

ô∗(y) = max{x ∈ P | ô(x) ≤ y}.

We will always denote it by ô∗. The following lemma states well known facts from
residuation theory; for example, see [6], [2].

Lemma 3.1. Assume that ô : P→ Q and ñ : Q→ R are residuated maps.

1. ô preserves all arbitrary joins in P and ô∗ preserves all arbitrary meets in Q.
2. ôô∗ ≤ IQ and ô∗ô ≥ IP .
3. The composition ñô is residuated, as well, with residual (ñô)∗ = ô∗ñ∗.

We note again that for complete lattices P and Q, ô : P → Q is residuated iff it
preserves arbitrary joins.

Example 3.2. LetA andB be sets and letR ⊆ A×B be a binary relation fromA
to B. The map ôR : P (A)→ P (B), defined by ôR(X ) = R[X ] = {y ∈ B |R(x, y),
for some x ∈ X}, is residuated and its residual is given by (ôR)∗(Y ) = R−1[Y ] =
{x ∈ A |R(x, y), for some y ∈ Y}. ⊣
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Note that if ô : A → P (B) is defined by ô(x) = {y | (x, y) ∈ R}, then
ôR : P (A)→ P (B) is what we called ô′ in Section 2.1.

3.3. Closure operators. Recall that a closure operator ã on a complete lattice P
is an expanding (x ≤ ã(x)), monotone (x ≤ y ⇒ ã(x) ≤ ã(y)) and idempotent
(ã(ã(x)) = ã(x))map onP; an interior operator ã onP is an contracting (ã(x) ≤ x),
monotone and idempotent map on P. If ã : P → P is a map, we denote by Pã the
image ã[P] of P under ã and by Pã the subposet of P with carrier Pã . The elements
of Pã are known as the fixed points of ã or the ã-closed elements of P.
A subset Q of P is said to be completely meet-closed, if whenever X ⊆ Q, then

∧PX ∈ Q. We define ãQ(x) =
∧P(↑x ∩Q).

The following is in the folklore of the area and can be found in [6], [2].

Lemma 3.3. Let P be a complete lattice, ã be a closure operator on P and Q
a completely meet-closed subset of P. Then the following hold.

1. Pã is a completely meet-closed subset of P.
2. ãQ is a closure operator on P.
3. ãPã = ã and PãQ = Q.
4. Pã is a complete lattice, and a complete meet-subsemilattice of P, with join∨Pã ã[X ] = ã(

∨P
ã[X ]) = ã(

∨P
X ) and meet

∧Pã ã[X ] =
∧P
ã[X ].

It is easy to see that ã : P → P is a closure operator on P iff the map ã ′ : P → Pã ,
defined by ã ′(x) = ã(x), for all x ∈ P, is residuated and the inclusion map
InPã : Pã → P is its residual. We will often identify ã and ã

′, with the understanding
that only ã ′ is residuated and only ã is a closure operator.
Note that, in view of Lemma 3.3, ã : P → Pã preserves arbitrary joins. Also,
closure operators are determined by their fixed points.

Lemma 3.4. Assume that ô : P → Q is a residuated map between the complete
lattices P andQ.

1. ô∗ô is a closure operator on P and ôô∗ is an interior operator onQ.
2. ôô∗ô = ô and ô∗ôô∗ = ô∗.
3. Pô∗ô is isomorphic toQôô∗ .

If f and g are both maps from P to Q, we write f ≤ g, if f(x) ≤ g(x) for all
x ∈ P. It is obvious that if h is a map from Q to a complete lattice R and k is
a monotone map from a poset T to P, then f ≤ g implies fh ≤ gh and kf ≤ kg.
Note that if ã is a closure operator on P and ä is an interior operator on P, then
ä ≤ IP ≤ ã, where IP is the identity map on P.
Given a consequence relation ⊢ on a complete lattice P, we define the map
ã⊢ : P → P, by ã⊢(x) =

∨
x⊢y y. Also given a closure operator ã : P → P, we

define the binary relation ⊢ã on P, by x ⊢ã y iff y ≤ ã(x).

Lemma 3.5. Consequence relations on a complete lattice P are in bijective corre-
spondence with closure operators on P via the maps ⊢ 7→ ã⊢ and ã 7→ ⊢ã .

3.4. Theories. As we have seen closure operators and consequence relations are
interdefinable. Also, the properties of being structural and finitary (to be defined
later) are preserved under this correspondence. Here we discuss yet another way of
looking at the same properties.
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Let ⊢ be a consequence relation on a complete lattice P. An element t of P is
called a theory of ⊢ if t ⊢ x implies x ≤ t. Note that if t is a theory, then x ≤ t and
x ⊢ y imply y ≤ t. We denote the set of theories of ⊢ by Th⊢.

Lemma 3.6. If ⊢ is a consequence relation on the complete lattice P, then
Th⊢ = Pã⊢ .

Proof. Let t ∈ Th⊢ and set ã = ã⊢. We will show that t ∈ Pã , i.e., that ã(t) = t.
We have ã(t) ≤ ã(t), so t ⊢ ã(t). Since t is a theory, ã(t) ≤ t. The other inequality
holds because ã is extensive.
Conversely, assume that ã(t) = t, and let x ∈ P such that t ⊢ x. Then x ≤
ã(t) = t. ⊣

Wedefine the lattice of theoriesTh⊢ of⊢ to be the complete latticePã⊢ . Lemma 3.3
shows that the lattices of theories can be characterized abstractly and from it we
can recover the corresponding consequence relation or closure operator.

3.5. Modules over complete lattices and invariance under the action. To define
substitution invariance of a consequence relation on a complete lattice, we need
to assume that the latter is endowed with a module structure. Therefore we define
modules in the case of arbitrary complete lattices.
Let A, B and C be complete lattices. A map ⋆ : A × B → C (viewed as
a binary map) is called residuated provided there exist maps \⋆ : A × C → B and
/⋆ : C ×B → A, called the residuals of ⋆, such that for all x ∈ A, y ∈ B and z ∈ C,

x ⋆ y ≤ z ⇔ x ≤ z/⋆ y ⇔ y ≤ x \⋆ z.

A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that 〈A,∧,∨〉 is
a lattice, 〈A, ·, 1〉 is a monoid, and the operation · is residuated with residuals \
and /.
Let A be a complete residuated lattice, P a complete lattice and ⋆ : A × P → P
a map. We say that 〈P, ⋆〉 is a (left) A-module, or a (left) module over A, if for all
x ∈ P and a, b ∈ A,

(M1) 1 ⋆ x = x,
(M2) a ⋆ (b ⋆ x) = ab ⋆ x, and
(M3) ⋆ is residuated (we denote the residuals by \⋆ and /⋆ ).

In what follows we will often suppress ⋆ in 〈P, ⋆〉, and simply write P instead.
Clearly, A is itself an A-module. We assume that ⋆ has priority over the division
operations \⋆ and /⋆ ; so a ⋆ x/⋆ y is short for (a ⋆ x)/⋆ y. In the expressions y \⋆ x
and x/⋆ y, x is called the numerator and y the denominator
Note that if P = P (S), then we obtain the notion of a module for powersets.
LetP,Q beA-modules. Amap ô : P → Q is called structural if a⋆ô(x) = ô(a⋆x),
for all x ∈ P and a ∈ A. Obviously, structural maps on theP (ΣL )-modules of the
previous sections are exactly the substitution invariant maps.
A module morphism ô : P → Q from P to Q is a structural residuated map.
We will often use the term translator for such a morphism. For a fixed complete
residuated latticeA, wewill denote by AM the category of allA-modules andmodule
morphisms (translators).

Lemma 3.7. The following properties hold for every A-module 〈P, ⋆〉, a ∈ A and
x, y ∈ P.
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1. The operation ⋆ preserves arbitrary joins in both coordinates. In particular, it is
order-preserving in both coordinates.

2. The operations \⋆ and /⋆ preserve arbitrary meets in the numerator; moreover,
they convert arbitrary joins in the denominator into meets. In particular, they are
both order-preserving in the numerator and order reversing in the denominator.

3. (x/⋆ y) ⋆ y ≤ x.
4. a ⋆ (a \⋆ x) ≤ x.
5. x ≤ a \⋆ (a ⋆ x) and a ≤ (a ⋆ x)/⋆ x.
6. (a \⋆ x)/⋆ y = a \(x/⋆ y).
7. [(x/⋆ y) ⋆ y]/⋆ y = x/⋆ y.
8. 1 ≤ x/⋆ x.
9. (x/⋆ x) ⋆ x = x.

The proof of the lemma is a straightforward application of the definitions and is
therefore omitted. Note that some of the above (in)equalities are in P, like the first
in item (5), and some are in A, like the second of item (5). We use the same symbol
≤ for inequality in both A and in P and rely on the context telling them apart.
A consequence relation ⊢ on the Amodule P is called structural, if x ⊢ y implies
a ⋆ x ⊢ a ⋆ y, for all x, y ∈ P and a ∈ A.
Note that in the case where P = P (S) the notions of structurality and of
substitution invariance of a consequence relation coincide.
A closure operator on an A-module P is called structural, if the corresponding
consequence relation is structural; i.e., a ⋆ ã(x) ≤ ã(a ⋆x), for all x ∈ P and a ∈ A.
Note that Lemma 3.9 below reconciles the two notions of structurality for a closure
operator ã : P → P that is viewed as a residuated map ã : P → Pã .
We give fourmore characterizations of a structural closure operator on amodule.

Lemma 3.8. Let P be an A-module and let ã be a closure operator on P. The
following are equivalent

1. ã is structural.
2. ã(a ⋆ ã(x)) = ã(a ⋆ x), for all a ∈ A and x ∈ P.
3. ã(x)/⋆ y = ã(x)/⋆ ã(y), for all x, y ∈ P.
4. ã(a \⋆ x) ≤ a \⋆ ã(x), for all a ∈ A and x ∈ P.
5. a\⋆ã(x) ∈ Pã , for all a ∈ A and x ∈ P.

Proof. It is clear that (1) is equivalent to (2). To show that (1) implies (3), let
x, y ∈ P. The inequality ã(x)/⋆ ã(y) ≤ ã(x)/⋆ y follows from the fact thaty ≤ ã(y).
For the reverse inequality, by the structurality of ã, we have

[ã(x)/⋆ y] ⋆ ã(y) ≤ ã([ã(x)/⋆ y] ⋆ y) ≤ ã(ã(x)) = ã(x);

we used Lemma 3.7(3) and the monotonicity of ã. So ã(x)/⋆ y ≤ ã(x)/⋆ ã(y).
For the converse implication, let a ∈ A and x ∈ P. Since a ⋆ x ≤ ã(a ⋆ x), we
have a ≤ ã(a ⋆ x)/⋆ x = ã(a ⋆ x)/⋆ ã(x). Thus, a ⋆ ã(x) ≤ ã(a ⋆ x).
For the equivalence of (1) and (4), let a ∈ A and x ∈ P. We have a ⋆ ã(a \⋆ x) ≤
ã(a⋆ (a \⋆ x)) ≤ ã(x), by Lemma 3.7(4). Conversely, a⋆ ã(x) ≤ a ⋆ ã(a \⋆ a⋆x) ≤
a ⋆ [a \⋆ ã(a ⋆ x)] ≤ ã(a ⋆ x), by Lemma 3.7(5,4).
To show that (1) implies (5), let a ∈ A and x ∈ P. It suffices to show that
ã(a \⋆ ã(x)) ≤ a \⋆ ã(x); i.e., a ⋆ ã(a \⋆ ã(x)) ≤ ã(x). Indeed,

a ⋆ ã(a \⋆ ã(x)) ≤ ã(a ⋆ (a \⋆ ã(x))) ≤ ã(ã(x)) ≤ ã(x).
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For the converse implication, let a ∈ A and x ∈ P. Since a ⋆ x ≤ ã(a ⋆ x), we
have x ≤ a \⋆ã(a ⋆x). By the hypothesis, it follows that ã(x) ≤ a \⋆ã(a ⋆x), hence
a ⋆ ã(x) ≤ ã(a ⋆ x). ⊣

Lemma 3.9. Let P be an A-module and let ã be a structural closure operator on P.
Then 〈Pã , ⋆ã〉 is an A-module, where ⋆ã : A × Pã → Pã is the map defined by
a ⋆ã x = ã(a ⋆ x). As usual, we write Pã for 〈Pã , ⋆ã〉. Moreover, ã : P → Pã is
a module morphism.

Proof. It is clear that the first two conditions in the definition of a module are
satisfied. To show that ⋆ã is residuated, note that for all a ∈ A and x, y ∈ Pã , we
have

a ⋆ã x ≤ y ⇔ ã(a ⋆ x) ≤ y ⇔ a ⋆ x ≤ y ⇔ x ≤ a \⋆ y.

By Lemma 3.8(5), a \⋆ y ∈ Pã , so ⋆ã is left residuated with left division \ã the

restriction of \⋆ to Pã .
Furthermore, we have

a ⋆ã x ≤ y ⇔ ã(a ⋆ x) ≤ y ⇔ a ⋆ x ≤ y ⇔ a ≤ y/⋆ x.

Thus, ⋆ã is right residuated and /ã is the restriction of /⋆ to Pã .
The fact that ã : P→ Pã is a module morphism follows from the definition of ⋆ã
and the fact that ã is residuated. ⊣

Remark 3.10. Condition (5) of Lemma 3.8, in the special case of P (ΣL )-
modules, states that the lattice of theories is closed under inverse substitutions.
Indeed, if P = P (S), where S is the set of formulas, equations or sequents, then Pã
is the lattice of theories of ⊢ã . Note that condition (5), for a a set of substitutions, is
equivalent to its restriction, where a ranges only over singletons, by Theorem 3.7(2).
So, condition (5) is equivalent to the statement that {ó} \⋆ T = ó−1[T ] is a theory,
for every substitution ó and theoryT , namely that the set of theories is closed under
inverse substitutions.
It follows from the proof of Lemma 3.9 that, for all a ∈ A, the map x 7→ a ⋆ã x
on Pã is residuated and x 7→ a \⋆ x is its residual. As a map and its residual
determine each other uniquely, one can enrich the lattice Pã of theories with either
type of maps. We opted for adding the first type of maps (namely adding a module
structure). This is the opposite but equivalent to the choice made in [4], where the
lattice of theories is enriched with inverse substitutions, which correspond to adding
the residual maps, as discussed above. ⊣

§4. Similarity and equivalence of two consequence relations. In this section we
define the notions of representation, similarity and equivalence between two clo-
sure operators or two consequence relations. Our development generalizes the
corresponding notions in [3].

4.1. Representation. Let ã and ä be closure operators on the complete lattices
P and Q, respectively. A representation of ã in ä is a residuated order embedding
f : Pã → Qä ; i.e., a residuated map satisfying x ≤ y iff f(x) ≤ f(y), for all
x, y ∈ Pã . (Equivalently, a representation can be defined as a residuated and one-
to-one mapping, as such a mapping is automatically an order-embedding.) Clearly,
if R and S are completely meet-closed subsets of the complete lattices P and Q,
respectively, we define a representation ofR in S to be a residuated order embedding
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f : R → S. A representation f : Pã → Qä of ã in ä is said to be induced by the
residuated map ô : P→ Q, if fã = äô.

P
ô //

ã
����

Q

ä
����

Pã
f // Qä

In view of the correspondence between consequence relations and closure operators,
we will denote an arbitrary consequence relation on a poset P by ⊢ã with the
understanding that ã is the associated closure operator.
We say that a consequence relation ⊢ã is represented in the consequence relation

⊢ä if the associated closure operator ã is represented in ä; the representation of
⊢ã in ⊢ä is induced by a residuated map ô : P → Q, if the representation of the
corresponding closure operators is induced by ô. Corollary 4.4 shows that ⊢ã is
represented in ⊢ä via ô if and only if for all x, y ∈ P,

x ⊢ã y iff ô(x) ⊢ä ô(y).

Lemma 4.1. Let P andQ be complete lattices, ô : P→ Q be a residuated map and
ä a closure operator onQ.

1. The map äô = ô∗äô : P → P is a closure operator on P.
2. If P andQ are A-modules, and ô and ä are structural then so is äô .

Proof. Note that ä : Q→ Qä is residuated with residual the inclusion map InQä ,
so äô : P→ Qä is residuated, aswell, with residual ô∗InQä = ô∗|Qä , by Lemma 3.1(3).

P
ô //
Q

ä
����

ô∗
oo

Qä

ô∗|Qä

__????????
?�

OO

Therefore, äô = ô∗äô = ô∗|Qä äô : P → P is a closure operator on P.

For all a ∈ A and x ∈ P, by using Lemma 3.1(2), we have

ô(a ⋆ äô(x)) = a ⋆ ôäô(x) = a ⋆ ôô∗äô(x) ≤ a ⋆ äô(x) ≤ ä(a ⋆ ô(x)) = äô(a ⋆ x),

so a ⋆ äô(x) ≤ ô∗äô(a ⋆ x) = ä
ô(a ⋆ x). ⊣

We will call äô the ô-transform of ä. Similarly, we can define the ô-transform of
a consequence relation ⊢ on Q to be the relation ⊢ô on P defined by x ⊢ô y iff
ô(x) ⊢ ô(y), for all x, y ∈ P. Also, we define the ô-transform of a completely meet-
closed subset R of Q to be the subposet ô−1[R] of P. The following lemma shows
that the ô-transform of a consequence relation (completely meet-closed subset)
is a consequence relation (completely meet-closed subset, respectively) and the
associated closure operator is the ô-transform of the original relation (meet-closed
subset, respectively).

Lemma 4.2. Let P andQ be complete lattices, ô : P→ Q a residuated map and ã,
ä closure operators on P andQ, respectively. The following statements are equivalent

1. ã = äô ,
2. for all x, y ∈ P, x ⊢ã y iff ô(x) ⊢ä ô(y).
3. Pã = ô∗[Qä].
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Proof. Assume (1) holds; then for all x, y ∈ P, we have x ⊢äô y iff y ≤ ô∗äô(x)
iff ô(y) ≤ äô(x) iff ô(x) ⊢ä ô(x). Conversely, for all x, y ∈ P, we have y ≤ ã(x) iff
x ⊢ã y iff ô(x) ⊢ä ô(y) iff ô(y) ≤ äô(x) iff y ≤ ô∗äô(x). Consequently, ã = äô .
For the equivalence of (1) and (3), first note that x ∈ ô∗[Qä] iff x = ô∗(ä(z)), for
some z ∈ Q. We claim that this is further equivalent to äô(x) = x. Indeed, the
backward direction follows by choosing z = ô(x). For the forward direction, we
have äô(x) = äô(ô∗(ä(z))) = ô∗äôô∗ä(z) ≤ ô∗ää(z) = ô∗ä(z) = x. We have shown
that ô∗[Qä ] = Päô . Therefore, (3) claims that Pã = Päô , namely that ã and ä

ô have
the same fixed elements. By Lemma 3.3, this is equivalent to ã = äô . ⊣

Lemma 4.3. Let P and Q be complete lattices, ô : P→ Q a residuated map, and ä
a closure operator onQ.

1. The map f = äô|Päô : Pä
ô → Qä is residuated with residual f∗ = ô∗|Qä =

äôô∗|Qä
: Qä → Päô .

2. f is a representation of äô in ä induced by ô.
3. äô is the only closure operator onP that is represented in ä under a representation
induced by ô.

4. If P andQ areA-modules, ô : P→ Q is a module morphism and ä is a structural
closure operator onQ, then f is structural.

Proof. (1) We first show that ô∗|Qä = ä
ôô∗|Qä

. Indeed, IP ≤ äô , since äô is

a closure operator onP, so ô∗|Qä ≤ ä
ôô∗|Qä . Conversely, ôô∗ ≤ IQ, by Lemma 3.1(2),

so ôô∗InQä ≤ IQInQä , that is ôô∗|Qä ≤ InQä . By the monotonicity of ô∗ä, we have

ô∗äôô∗|Qä ≤ ô∗äInQä ; i.e., ä
ôô∗|Qä ≤ ô∗|Qä .

P
ô //

äô

����

Q

ä
����

ô∗
oo

Päô
f //?�

OO

Qä
?�

OO

f∗

oo

Recall that äô : P → Qä is residuated with residual ô∗|Qä . For all x ∈ Päô and

y ∈ Qä , we have

f(x) ≤ y ⇔ äô(x) ≤ y ⇔ x ≤ ô∗|Qä (y) = ä
ôô∗|Qä (y).

Since the range of äôô∗|Qä is in Pä
ô , it follows that f is residuated and its residual is

f∗ = ä
ôô∗|Qä .

(2) Since f is residuated with residual f∗, both f and f∗ preserve order. To
show that f is a representation it suffices to show that it reflects the order. Note
that

f∗f = ô∗|Qä äô|Päô = ô∗IQääôIPäô = ô∗äôIPäô = ä
ôIPäô = IPäô .

Now, for all x, y ∈ Päô , if f(x) ≤ f(y), then f∗f(x) ≤ f∗f(y), so x ≤ y.
Moreover fäô = äô|Päô ä

ô = äôInPäô ä
ô = äôäô = äô. The last equality holds

because äô ≤ äôäô (since äô is a closure operator) and äôäô = äôô∗äô ≤ ääô = äô
(since ôô∗ is an interior operator). Consequently, f is induced by ô.
(3) Let ã be a closure operator on P that is represented in ä by a representation
f induced by ô. We will show that ã = äô .
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P
ô //

ã
����

Q

ä
����

Pã
f // Qä

Since ã is a closure operator on P, we have ã∗ = InPã , so ã∗ã = ã; for the same
reason, we have ä∗ä = ä. Consequently, by Lemma 3.1(3),

äô = ô∗äô = ô∗ä∗äô = (äô)∗äô = (fã)∗fã = ã∗ã = ã.

The equation (fã)∗fã = ã∗ã follows directly from the fact thatf is order reflecting,
since x ≤ (fã)∗fã(y) iff fã(x) ≤ fã(y) iff ã(x) ≤ ã(y) iff x ≤ ã∗ã(y), for all
x, y ∈ P.
(4) For all a ∈ A and x ∈ Päô , we have f(a ⋆Päô x) = fä

ô(a ⋆P x) = äô(a ⋆P x) =
ä(a ⋆Q ô(x)) = ä(a ⋆Q äô(x)) = a ⋆Qä äô(x) = a ⋆Qä f(x). ⊣

Corollary 4.4. LetP andQ be complete lattices, and let ⊢ã and⊢ä be consequence
relations on P andQ, respectively. Then, ⊢ã is represented in ⊢ä via a residuated map
ô : P→ Q if and only if for all x, y ∈ P, we have x ⊢ã y iff ô(x) ⊢ä ô(y).

Proof. The corollary is a direct consequence of Lemma 4.2 and Lemma 4.3(3).
⊣

It is easy to see that ⊢ã is represented in ⊢ä by f : Th⊢ã → Th⊢ä means that f is
residuated and for all x, y ∈ P,

x ⊢ã y iff fã(x) ⊢ä fã(y).

Indeed, if⊢ã is represented in⊢ä byf, thenx ⊢ã y iffy ≤ ã(x) ifff(y) ≤ f(ã(x))
(since f preserves and reflects order) iff f(y) ≤ äf(ã(x)) iff fã(x) ⊢ä fã(y).
Conversely, to show that f reflects order, let fã(y) ≤ fã(x). Then fã(y) ≤
äfã(x), that is, fã(x) ⊢ä fã(y); so x ⊢ã y that is ã(y) ≤ ã(x).

4.2. Similarity. Let ã and ä be closure operators on the complete latticesPandQ,
respectively. A similarity between ã and ä is an isomorphism f : Pã → Qä . If there
exists a similarity between ã and ä, then ã and ä are called similar. A similarity
f between ã and ä is said to be induced by the residuated maps ô : P → Q and
ñ : Q → P, if fã = äô and f−1ä = ãñ. In this case we will say that ã and ä are
similar via ô and ñ.

P
ô //

ã
����

Q

ä
����

ñ
oo

Pã
// f // //

Qäoo
f−1

oooo

It is clear that f is a similarity between ã and ä iff f is a representation of ã in ä,
f is a bijection and f−1 is a representation of ä in ã.
A consequence relation ⊢ã is called similar to the consequence relation ⊢ä (via
a residuated map ô) if ã is similar to ä (via ô).
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Lemma 4.5. Let ã and ä be closure operators on the complete lattices P and Q,
respectively, and let ô : P → Q and ñ : Q → P be residuated maps. The following
statements are equivalent.

1. ã and ä are similar via (a similarity induced by) ô and ñ.
2. ã = äô and äôñ = ä.
3. ä = ãñ and ãñô = ã.

Proof. We will show the equivalence of the first two statements; the equivalence
of the first to the third will follow by symmetry. The forward direction follows from
Lemma 4.3(3) and the definition of similarity (äôñ = fãñ = ff−1ä = ä). For the
converse, assume that ã = äô and äôñ = ä. Let f be the representation of ã = äô in
ä given in Lemma 4.3(1). We have fã = äô, by Lemma 4.3(2).

P
ô //

ã
����

Q

ä
����

ñ
oo

Pã
f //
Qä

f−1

oo_ _ _

To show that f is onto, let y ∈ Qä and set x = ãñ(y) ∈ Pã . We have f(x) =
fãñ(y) = äôñ(y) = ä(y) = y. Consequently, f is an order-isomorphism and ã
and ä are similar. To show that the similarity f is induced by ô and ñ, we need only
prove that f−1ä = ãñ, or equivalently that ä = fãñ. This is true, because ä = äôñ
and fã = äô. ⊣

Corollary 4.6. LetP andQ be complete lattices and let ⊢ã and ⊢ä be consequence
relations on P and Q, respectively. Then, ⊢ã is similar to ⊢ä via the residuated maps
ô : P→ Q and ñ : Q→ P if and only if the following conditions hold :

1. for all x, y ∈ P, x ⊢ã y iff ô(x) ⊢ä ô(y); and
2. for all z ∈ Q, z ⊣⊢ä ôñ(z).

Proof. It is easy to see that äôñ = ä iff for all z ∈ Q, z ⊣⊢ä ôñ(z). Now, the
corollary follows from of Lemma 4.5(2) and Corollary 4.4. ⊣

4.3. Equivalence. LetP andQ beA-modules and let ã and ä be structural closure
operators on P and Q, respectively. An equivalence between ã and ä is a module
isomorphism f : Pã → Qä . Note that an equivalence is just a structural similarity.
Moreover, f−1 is also structural. If such an isomorphism exists then ã and ä are
called equivalent. If the equivalence is induced by module morphisms ô : P → Q
and ñ : Q→ P, then ã and ä are called equivalent via ô and ñ.

Theorem 4.7. Let P and Q be A-modules and let ã and ä be structural closure
operators on P and Q, respectively. If ã and ä are similar via the translators (i.e.,
module morphisms) ô and ñ, then they are equivalent via ô and ñ.

Proof. It suffices to show that the similarity f of ã in ä is structural. Indeed, for
all a ∈ A and x ∈ Pã , we have

f(a ⋆ã x) = fã(a ⋆ x) = äô(a ⋆ x) = ä(a ⋆ ô(x))
= ä(a ⋆ äô(x)) = a ⋆ä äô(x) = a ⋆ä fã(x)
= a ⋆ä f(x),

since ã(x) = x. ⊣
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§5. Equivalences induced by translators. Theorem 4.7 shows that every similarity
between structural closure operators induced by translators is structural. A natural
question to ask is whether every equivalence of consequence relations is induced
by translators. Example 5.8 shows that this is not always true. Nevertheless, we
will show that this is the case for all standard situations including the powersets of
formulas, equations and sequents.
Having developed the fundamentals of the theory ofA-modules and reformulated
the isomorphism of the enriched lattices of theories into the setting of A-modules,
we are ready to prove a result that provides the key categorical insight. We will
show that the modules in the category AM for which equivalences are induced by
translators coincide with the projective modules in this category. More specifically,
we will prove that anA-module P is projective iff for anyA-moduleQ and structural
closure operators ã and ä on P and Q respectively, every structural representation
f : Pã → Qä of ã in ä is induced by a translator.

5.1. Projective objects. Recall that by AM we denote the category of A-modules
and translators (module morphisms). Every structural closure operator ã on the
A-module P is a translator from P to Pã . Assume that P and Q are A-modules,
ã and ä are structural closure operators on P andQ respectively, and f : Pã → Qä
is a structural representation of ã in ä. We want to find a translator ô : P→ Q that
induces f; i.e., äô = fã. In other words we want a morphism ô in the category AM
that completes the square.

P
ô //___

ã
����

Q

ä
����

Pã //
f // Qä

(S)

It turns out that the objects P of the category AM for which such square can
be completed are precisely the projective objects of AM . An object P of AM is
called projective (relative to onto maps), if whenever there are modules Q and R
and module morphisms g : Q → R and k : P → R, with g onto, then there exists
a morphism h : P→ Q, such that k = gh.

P
h //___

k ��?
??

??
??

?
Q

g
����
R

(T)

Theorem 5.1. The objects P of the category AM for which all squares of type (S)
can be completed are exactly the projective objects of AM .

Proof. Obviously, if P is projective, then the square (S) can be completed, since
we can chose R = Qä , k = fã and g = ä in the triangle (T).
Conversely, assume that P is such that every square (S) can be completed and
consider the triangle (T), where h is to be determined.
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P
h=ô //________

k∗k

����

k

!!C
CC

CC
CC

CC
Q

g∗g

����

g

}}}}{{
{{

{{
{{

{

R

Pk∗k

==

k′
=={{{{{{{{

// f // Qg∗g
aa

g′
aaaaCCCCCCCC

We know by Lemma 3.4 that k∗k is a closure operator on P and that Pk∗k is
isomorphic to k[P] via the map k′ = k|Pk∗k . Therefore, the map k factors as

k = k′(k∗k). Likewise, we have g = g ′(g∗g), where g ′ = g|Qg∗g . Moreover,

k′ is an embedding and g ′ is an isomorphism, so the map f = (g ′)−1k′ is an
embedding. Since the outer square can be completed, we have fk∗k = g∗gh,
so g ′fk∗k = g ′g∗gh, hence k′k∗k = gh; thus k = gh and the upper triangle
commutes. ⊣

5.2. Cyclic modules. We will show that the P (ΣL )-modules discussed in Sec-
tions 2.2 and 2.3 are projective. Consequently, in view of the preceding theorem,
all equivalences on these modules are induced by translators. More generally, we
will identify a set of intrinsic conditions that describe cyclic projective modules.
The P (ΣL )-modules of formulas and of equations are cyclic and projective. The
P (ΣL )-module of sequents is not cyclic, but we prove that it is a coproduct of cyclic
projective modules, and hence it is projective.
Let A be a complete residuated lattice. An A-module P is called cyclic, if there
exists an element v ∈ P, called a generatorofP, such thatP = A⋆v = {a⋆v |a ∈ A}.

Lemma 5.2. An A-module P is cyclic with generator v iff (x/⋆ v) ⋆ v = x, for all
x ∈ P.

Proof. If v is a generator, then for all x ∈ P, there exists an a ∈ A such that
x = a ⋆ v; so a ≤ (x/⋆ v). We have x = a ⋆ v ≤ (x/⋆ v) ⋆ v ≤ x, by Lemma 3.7.
So, (x/⋆ v) ⋆ v = x. The converse, is obvious. ⊣

Recall the construction of the module Pã , where P is a module and ã a structural
closure operator on P, from Lemma 3.9. Also recall that A itself is an A-module.
From now on we will make use of this structure, which relies on the residuation
of A.

Lemma 5.3. If A is a complete residuated lattice and ã : A → A is a structural
closure operator, then the A-module 〈Aã , ·ã〉 is cyclic with generator ã(1).

Proof. Obviously, ã(1) ∈ Aã . Also, for all ã(a) ∈ Aã , a ·ã ã(1) = ã(a · 1) =
ã(a). ⊣

Lemma 5.4. Let 〈P, ⋆〉 be an A-module, v ∈ P and A ⋆ v = {a ⋆ v | a ∈ A}.

1. Then A ⋆ v = 〈A ⋆ v, ⋆〉 is an A-module in which joins coincide with those in P.
The residual of the operation ⋆ in A ⋆ v is given by a\A⋆vq = [(a \⋆ q)/⋆ v] ⋆ v.

2. Themap ãv : A→ A, defined by ãv(a) = a⋆v/⋆ v is a structural closure operator.
3. A ⋆ v is isomorphic to Aãv .
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Consequently, an A-module is cyclic if and only if it is isomorphic to a module Aã , for
a structural closure operator ã : A→ A.

Proof. (1) First note that if a ∈ A and q ∈ A⋆v, then q = b⋆ v, for some b ∈ A,
so a ⋆ (b ⋆ v) = ab ⋆ v ∈ A ⋆ v. Moreover, if r = c ⋆ v ∈ A ⋆ v, where c ∈ A, then
a ⋆ r ≤ q iff a ⋆ (c ⋆ v) ≤ q iff c ≤ (a \⋆ q)/⋆ v iff c ⋆ v ≤ [(a \⋆ q)/⋆ v] ⋆ v. The last
equivalence follows from Lemma 3.7(7).

Clearly,
∨P
i∈I (ai ⋆v) = (

∨A
i∈I ai)⋆v ∈ A⋆v. Therefore, A⋆v is closed under

∨P,
and is therefore a complete lattice.
(2) We have a ≤ ãv(a); if a ≤ b, then ãv(a) ≤ ãv(b) and ãv(ãv(a)) = ãv(a),
by Lemma 3.7(7). Also, aãv(b) ⋆ v = a[(b ⋆ v)/⋆ v] ⋆ v ≤ a ⋆ (b ⋆ v) = ab ⋆ v, by
Lemma 3.7(3), so aãv(b) ≤ ãv(ab). Thus, ãv is structural.
(3) Let f(a) = a ⋆ v and g(x) = x/⋆ v. Note that f : Aãv → A ⋆ v and
g : A ⋆ v → Aãv , since f(a) = a ⋆ v ∈ A ⋆ v and g(a ⋆ v) = (a ⋆ v)/⋆ v ∈ Aãv .
For all x ∈ A ⋆ v, we have f(g(x)) = (x/⋆ v) ⋆ v = x, because of cyclicity. Also,
for all a ∈ Aãv , g(f(a)) = ãv(a) = a. So, f

−1 = g. Moreover, both f and g are
order-preserving, so they are order reflecting as well. ⊣

Corollary 5.5. IfA is a complete residuated lattice and u ∈ A, thenAu = 〈Au, ·〉
is a cyclic A-module isomorphic to Aãu .

Lemma 5.6. Let A be a complete residuated lattice, ã : A→ A a structural closure
operator and u ∈ A. The following are equivalent.

1. ã(u) = ã(1), and ã(a)u = au, for all a ∈ A.
2. ã = ãu and u = u2.

Proof. The fact that (2) implies (1) is easy to check. Conversely, from ã(a)u =
au, we obtain ã(a) ≤ au/u = ãu(a), for all a ∈ A. Also, from ã(u) = ã(1), we
obtain for all b ∈ A, ã(bu) = b ⋆ã ã(u) = b ⋆ã ã(1) = ã(b1) = ã(b). We have the
following implications.

ãu(a)u ≤ au ⇒ ã(ãu(a)u) ≤ ã(au) ⇒ ã(ãu(a)) ≤ ã(a) ⇒ ãu(a) ≤ ã(a).

Moreover, since ã = ãu , we have ãu(u) = ãu(1), so uu/u = u/u, hence (u
2/u)u =

(u/u)u. From this we obtain u2 = u, because (u/u)u = u, by Lemma 3.7(9), and
u2 = uu ≤ (u2/u)u ≤ u2, by Lemma 3.7(5,3). ⊣

Theorem 5.7. For an A-module 〈P, ⋆〉, the following conditions are equivalent.

1. u ⋆ v = v, [(a ⋆ v)/⋆ v]u = au, for all a ∈ A, and P = A ⋆ v, for some v ∈ P
and u ∈ A.

2. ãv(a)u = au, for all a ∈ A, ãv(u) = ãv(1), and P = A ⋆ v, for some v ∈ P and
u ∈ A.

3. ãv = ãu , u2 = u and P = A ⋆ v, for some v ∈ P and u ∈ A.
4. P is isomorphic to Au and u2 = u, for some u ∈ A.
5. P is cyclic and projective.

Moreover, the elements u and v can be taken to be the same in all statements in which
they appear.

Proof. The equivalence (1) ⇔ (2) follows from the fact that ãv(u) = ãv(1) iff
u ⋆ v/⋆ v = v/⋆ v iff u ⋆ v = v, by using Lemma 3.7. The implication (2) ⇒ (3)
follows from the preceding lemma. The implication (3)⇒ (4) follows from the facts



EQUIVALENCE OF CONSEQUENCE RELATIONS 801

A ⋆ v ∼= Aãv (Lemma 5.4), Au ∼= Aãu (Corollary 5.5), and ãu = ãv . Further-
more,(4) ⇒ (1) follows from the fact that if u2 = u, then Au satisfies (1) with
v = u.
For the equivalence of (4) and (5), note first that every cyclic module is of the
form Aã for some structural closure operator ã : A → A, by Lemma 5.4. Suppose
Aã is projective. We will verify condition (4). Since Aã is projective, there exists
a module morphism f that completes the diagram below.

Aã
f //___

Id   @
@@

@@
@@

A

ã
����
Aã

Let u = f(ã(1)). For all a ∈ A, we have ã(a) = ã(a1) = ã(aã(1)) = a ·ã ã(1),
so f(ã(a)) = a · f(ã(1)) = au. Consequently, f[Aã ] = Au. Moreover, f is
injective, by the diagram, so Aã ∼= Au. We will show that u2 = u. Indeed,
u2 = f(ã(1))f(ã(1)) = f(f(ã(1)) ·ã ã(1)) = f(ã(f(ã(1)))) = f(ã(1)) = u,
because ãf = Id . We have established condition (4). To show that a module
satisfying condition (4), obviously cyclic, is projective, consider the diagram

Au
h //___

k   A
AA

AA
AA

A
Q

g
����
R

and let q ∈ Q be such that g(q) = k(u). Then the it is straightforward to show that
the unique morphism determined by h(u) = q completes the diagram. ⊣

Example 5.8. Let A be the residuated lattice on the set A = {⊥, a, 1,⊤}, where
⊥ < a < 1 < ⊤, ⊥ is an absorbing element, 1 is the neutral element, a2 = ⊥,
a⊤ = ⊤a = a and ⊤2 = ⊤; A is denoted by T1 in [8]. Consider the cyclic module
P = A · a, where P = {⊥, a}, and note that a is the only x ∈ A such that A · x is
isomorphic to P; indeed, A · ⊤ = {⊥, a,⊤}, A · 1 = A and A · ⊥ = {⊥}. As a is
not idempotent, P is a cyclic module that is not projective, by Theorem 5.7. ⊣

Corollary 5.9. P (FmL ) andP (EqL ) are projective cyclic P (ΣL )-modules.

Proof. Wewill make use of Theorem 5.7. In the case of themoduleP (FmL ), we
let v = {x}, where x is a variable, and u = {κx}. Recall that κx is the substitution
thatmaps all variables to x. We have u⋆v = {κx(x)} = {x} = v. Also, for a set a of
substitutions, we have a⋆v = {ó(x) : ó ∈ a} and ô ∈ (a⋆v)/⋆ v iff ô(x) = ó(x), for
some ó ∈ a. For such ô and for every variable z, we have ôκx(z) = ó(x) = óκx(z),
for some ó ∈ a, therefore [(a ⋆ v)/⋆ v]u = au.
For the module P (EqL ), we can take v = {x ≈ y} and u = {κx≈y}, where
x, y are distinct variables. Here we assume that we have partitioned the set of all
variables in two disjoint sets Vx , Vy with x ∈ Vx and y ∈ Vy , and that κx≈y is
the substitution that sends all of Vx to x and all of Vy to y. The verification of
property (1) of Theorem 5.7 is straightforward. ⊣
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5.3. Coproducts. The preceding results do not cover the case of the P (ΣL )-
module of sequents, as we show in the following proposition. Even though this
module is not cyclic, we prove that it is a coproduct of cyclic projective modules,
and hence it is projective.

Proposition 5.10. TheP (ΣL )-moduleP (Seq) of sequents is not cyclic, for every
set of sequents with more than one type.

Proof. By way of contradiction assume that a set v of sequents is a generator of
P (Seq). As the application of a substitution to a sequent does not change its type,
it is easy to see that for every set a of substitutions, v contains a sequent of a given
type iff a ⋆ v contains a sequent of the same type. Now, if v omits a given type,
then a ⋆ v will omit the same type, for all a, a contradiction as v was assumed to
be a generator of P (Seq). Likewise, if v contains sequents from all types, then so
does a ⋆ v, for all a, also a contradiction since there are sets in P (Seq) that omit
certain sequent types. ⊣

We start by defining coproducts in the category of A-modules. Let (Pi | i ∈ I ) be
a family of A-modules. The coproduct of this family is an A-module P, denoted by∐
i∈I Pi , together with a family of injective morphisms (ói : Pi → P | i ∈ I ) such
that for every A-module Q and every family of morphisms (ôi : Pi → Q | i ∈ I ),
there exists a unique morphism ô : P→ Q such that ôói = ôi .
We remark that if the coproduct of a family (Pi | i ∈ I ) of A-modules exists, then
the associated module morphisms ói are injective, and

⋃
i∈I ó i(Pi ) generates P as

an A-module.
It is clear thatwhenever the coproduct of a family ofA-modules exists, it is unique
up to isomorphism. The next result guarantees that it always exists.

Lemma 5.11. Let (Pi | i ∈ I ) be a family of A-modules. The A-module
∐
i∈I Pi

in the definition of coproduct is the direct product
∏
i∈I Pi (with scalar multiplication

defined component-wise). The associated injective module morphisms ói : Pi →∏
i∈I Pi are defined, for each i ∈ I , by ói(p) = (xj)j∈I , where xi = p and xj = ⊥,
if j 6= i .

Proof. Note that the maps ói : Pi →
∏
i∈I Pi are module morphisms. If

ôi : Pi → Q are module morphisms, then the map ô :
∏
i∈I Pi → Q, defined by

ô((xi )i∈I ) =
∨
ôi(xi), is residuated and its residual is ô∗(y) = ((ôi )∗(y))i∈I . It also

preserves scalar multiplication, and hence it is a module morphism. ⊣

The following standard categorical result shows why we are interested in coprod-
ucts.

Lemma 5.12. The coproduct of a family of projective A-modules is a projective
A-module.

Proof. Assume that (Pi | i ∈ I ) is a family of projective A-modules, let Q,R be
A-modules, and let g : Q → R, k :

∐
i∈I Pi → R be module morphisms such that

g is onto. Let ói : Pi →
∐
i∈I Pi be the injective module morphisms associated

with the coproduct. Set ki = kói . Since each Pi is projective, there exists a module
morphisms ôi : Pi → Q such that ki = gôi . It follows that there exists a module
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morphism ô :
∐
i∈I Pi → Q such that ôi = ôIi .

Q

g

����

∐
i∈I Pi

ô

66mmmmmm
mm

k
((QQQQQQQQQQQQQQQ

Pioooo

ôi

??�
�

�
�

ki

��?
??

??
??

?

R

Consequently, kói = ki = gôi = gôói for all i ∈ I . Since for each i ∈ I both of
these morphisms are from Pi to R, by the definition of the coproduct, there exists
a uniquemorphism from

∐
i∈I Pi toR such that thesemorphisms factor throughPi .

Since both k and gô serve this purpose, they are equal. ⊣

One can define different kinds of sequents. We saw single conclusion, associative
commutative sequents in Example 2.6 and we discussed multiple conclusion, asso-
ciative sequents. For non-associative sequents see [11], hypersequents see [1], and
multi-sequents see [7]. The powersets of all these will be shown to be coproducts of
cyclic projective modules.
Inspired by Pynko [13], given an algebraic language L and a set P of pred-
icate symbols, we consider atomic formulas in the language L ∪ P and we call
them LP -sequents. As an example, we mention that to represent associative
(multiple conclusion) sequents, for every pair (m, n) of not simultaneously zero
natural numbers, we introduce a (m + n)-ary predicate symbol P(m,n). Then,
P(m,n)(α1, . . . , αm, â1, . . . , ân) is defined as the sequent α1, . . . , αm ⇒ â1, . . . , ân,
where α1, . . . , αm, â1, . . . , ân areL -terms.
For every predicate symbol P in P of arity n, and a substitution ó on the terms
algebra over L , we define ó(P(x1, . . . , xn)) = P(ó(x1), . . . , ó(xn)). If SeqLP
denotes the set of the above general sequents, then clearly, P (SeqLP ) is a P (ΣL )-
module.

Theorem 5.13. The P (ΣL )-moduleP (SeqLP ) is a coproduct of cyclic projective
modules. Consequently it is projective.

Proof. As in the proof of Corollary 5.9, for every such atomic formula
P(x1, . . . , xn), we chose a partitionVx1 , . . . , Vxn of the set of variables, withxi ∈ Vxi ,
and let κ(x1,...,xn) be the substitution that sends all ofVxi to xi , for all i . The elements
uP are the singletons containing the substitutions κ(x1,...,xn).
It is easy to see that each vP generates a cyclic P (ΣL )-module P (PP) that is
also projective, by verifying property (1) of Theorem 5.7. Moreover, the powerset
of all the sequents P (SeqLP ) becomes the coproduct of these modules. This is
simply because SeqLP =

⋃
P∈P PP , hence P (SeqLP ) = P (

⋃
P∈P PP), which is

isomorphic to
∏
P∈P P (PP). In light of Lemma 5.11, the latter – together with the

associated injections – is the coproduct of the family (P (PP) : P ∈ P ). ⊣

§6. Finitary translators. In the last section of the paper, we identify conditions
under which an equivalence of finitary consequence relations is induced by finitary
translators. We start with the definitions of the pertinent notions.
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Recall that, given a complete lattice P, a subsetX of P is called (upward ) directed
in P, if for all x, y ∈ X , there exists a z ∈ X such that x, y ≤ z. An element x of
a complete lattice P is called compact, if, for all directed Y ⊆ P, x ≤

∨
Y implies

x ≤ y, for some y ∈ Y . Equivalently, x is compact if for all Z ⊆ P if x ≤
∨
Z,

then there is a finite subset Z0 of Z such that x ≤
∨
Z0. For every subset Q of P,

we denote by KP(Q) the set of compact elements of P that are contained in Q. We
write KP forKP(P). By a finitary lattice we understand a complete lattice in which
every element is a join of compact elements; in particular, x =

∨
KP(↓ x), for all

x ∈ P. Note that KP and KP(↓ x) are directed sets, as the finite join of compact
elements is compact.
A consequence relation on a finitary lattice P is called finitary, if for all x, y ∈ P,
if x ⊢ y and y is compact, then there exists a compact element x0 ∈ P such that
x0 ≤ x and x0 ⊢ y. As the compact elements of the powersetP (S) are exactly the
finite subsets of S, the notion of a finitary consequence relation generalizes the one
defined for powersets. A closure operator ã on a finitary lattice P is called finitary,
if the corresponding consequence relation ⊢ã , given in Lemma 3.5, is finitary. In
other words, ã is finitary if for all x, y ∈ P, whenever y ≤ ã(x) and y is compact,
there exists a compact element x0 ≤ x such that y ≤ ã(x0).
It should be noted that our choice of the terms “finitary closure operator” and
“finitary lattice” is dictated by other uses of “algebraic” in this area. The most
commonly used terms for these concepts in universal algebra are algebraic closure
operator and algebraic lattice, respectively.

Lemma 6.1. Let ã be a closure operator on a finitary lattice P. For every compact
element y of Pã , there exists a compact element x of P such that y = ã(x). Therefore,
KPã ⊆ ã[KP].

Proof. Let y be a compact element of Pã . Then y = ã(z) for some z ∈ P

and ã(z) = ã(
∨P
KP(↓ z)) =

∨Pã ã[KP(↓ z)]. Since y is compact in Pã and

y ≤
∨Pã ã[KP(↓ z)], we have y ≤ ã(x), for some x ∈ KP(↓ z). Thus, y ≤ ã(x) ≤

∨Pã ã[KP(↓ z)] = y, and y = ã(x). ⊣

Lemma 6.2. Let P be a finitary lattice and ã a closure operator on P. The following
statements are equivalent.

1. ã is finitary.

2. ã preserves directed joins. That is, for every directed X ⊆ P, ã(
∨P X ) =

∨P
ã[X ].

3. Arbitrary directed joins in Pã coincide with the corresponding joins in P. That

is,
∨Pã Y =

∨P
Y , for every directed Y ⊆ Pã .

4. ã(x) =
∨P ã[KP(↓ x)], for all x ∈ P.

5. For every compact element x of P, ã(x) is compact in Pã .
6. KPã = ã[KP].

If the above conditions hold, then Pã is finitary.

Proof. To show that (1) ⇒ (2), let X be a directed subset of P. Since ã is

finitary, for every compact element y with y ≤ ã(
∨P
X ), there exists a compact

element x0 ≤
∨P X , such that y ≤ ã(x0). Since x0 ≤

∨P X , X is directed and x0 is

compact, there exists x ∈ X such that x0 ≤ x. So, y ≤ ã(x0) ≤ ã(x) ≤
∨P
ã[X ].
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Therefore, y ≤
∨P ã[X ], for all compact elements y ≤ ã(

∨P X ). As P is finitary,

we have ã(
∨P
X ) ≤

∨P
ã[X ].

(2) ⇒ (3) is obvious.

For (3) ⇒ (4), we have x =
∨P
KP(↓ x), as P is finitary, so ã(x) =

ã(
∨P
KP(↓ x)) =

∨Pã ã[KP(↓ x))] =
∨P
ã[KP(↓ x))], by the formula for

∨Pã

given in Lemma 3.3 and the assumption (3).
For (4) ⇒ (1), let y be compact with y ≤ ã(x), for some x ∈ P. Then,

y ≤
∨P
ã[KP(↓ x)], so y ≤ ã(x0), for some x0 ∈ KP(↓ x), i.e., for some compact

x0 with x0 ≤ x.
For (3) ⇒ (5), assume that x is a compact element of P and let ã(x) ≤

∨Pã Y ,

for some directed subset Y of Pã . We have x ≤ ã(x) ≤
∨Pã Y =

∨PY , by (3).
Since x is compact, there is a y ∈ Y , such that x ≤ ã(y); hence, ã(x) ≤ ã(y).
Consequently, ã(x) is compact in Pã .
For (5) ⇒ (1), let y be a compact element ofP and y ≤ ã(x) for somex ∈ P. We

have ã(y) ≤ ã(x) = ã(
∨PKP(↓ x)) =

∨Pã ã[KP(↓ x)], by the fact that ã : P→ Pã
preserves joins. Sincey is compact inP, ã(y) is compact inKPã , soy ≤ ã(y) ≤ ã(x0)
for some x0 ∈ KP with x0 ≤ x.
The equivalence of (5) and (6) holds because of Lemma 6.1. ⊣

We will make free use of the above equivalent statements for a given closure
operator, without explicit reference to the lemma.
It is easy to see that the condition thatPã is finitary is not enough to guarantee that
ã is finitary. For example, letN∞ be the poset of natural numbers, under the natural
ordering, with an extra top element∞. Then the closure operator ã onP (N∞) that
sends a set X to the downset ↓ (

∨
X ) has imageP (N∞)ã , consisting exactly of the

empty set and the principal downsets ofN∞, which is a finitary lattice. However, ã is
not finitary as it sends the compact element {∞} to the non-compact element ↓∞.
Let P and Q be finitary lattices. A residuated map ô : P → Q is called finitary,
if the image of every compact element is compact. The following corollary, which
restates the equivalence of (1) and (5) of the preceding lemma, shows that the
two definitions of finitarity coincide for a map viewed as a closure operator or as
a residuated map.

Corollary 6.3. Let ã be a closure operator on a finitary lattice P. Then ã : P→ P
is finitary as a closure operator iff ã : P→ Pã is finitary as a residuated map.

Lemma 6.4. If k : P → Q is a finitary residuated map between finitary lattices,
then k∗k is a finitary closure operator on P.

Proof. Given a directed subset Y of Pk∗k , we will show that
∨Pk∗k Y ≤

∨PY .
As P is finitary, it is enough to show that every compact element of P less or equal

to
∨Pk∗k Y is also less or equal to

∨P
Y . Let x ∈ KP with x ≤

∨Pk∗k Y . Then

k(x) ≤ k(
∨Pk∗k Y ) = k(k∗k(

∨PY )) = k(
∨P Y ) =

∨Q k[Y ]. As k is finitary and
x is compact inP, k(x) is compact inQ. Hence, since k[Y ] is directed, k(x) ≤ k(y),

for some y ∈ Y . Consequently, x ≤ k∗k(x) ≤ k∗k(y) = y ≤
∨Pk∗k Y . ⊣

Lemma 6.5. Let P andQ be finitary lattices, ô : P→ Q a finitary residuated map,
and ä a finitary closure operator onQ.

1. The closure operator äô = ô∗äô : P → P is finitary.
2. The map f = äô|Päô : Pä

ô → Qä is finitary.
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Proof. (1) If y ≤ äô(x), for some compact element y, then y ≤ ô∗äô(x), so
ô(y) ≤ äô(x). Since ô is finitary and y is compact, ô(y) is compact. Furthermore,
since ä is finitary, there is a compact element x′ ≤ ô(x) such that ô(y) ≤ ä(x′).
Since P is finitary, x =

∨
KP(↓ x), so ô(x) =

∨
ô[KP(↓ x)], by Lemma 3.1(1).

Since x′ ≤ ô(x), there exists a compact element x0 ≤ x such that x′ ≤ ô(x0).
Consequently, ô(y) ≤ äô(x0), hence y ≤ ô∗äô(x0) = ä

ô(x0), for some compact
element x0 ≤ x. Thus, äô is finitary.
(2) Let x be a compact element of Päô ; we will show that f(x) is compact in Qä .
By Lemma 6.1, there exists a compact element y of P such that x = äô(y). By the
finitarity of ô and ä, we have thatf(x) = f(äô(y)) = ä(ô(y) is compact, in view of
Lemma 6.2. ⊣

A finitary residuated lattice is a finitary lattice in which the identity is a compact
element, and the product of any two compact elements is compact.
A finitary module is an A-module P such that (i) A is a finitary residuated lat-
tice; (ii) P is a finitary lattice; and (iii) if a, v are compact elements of A and P,
respectively, then a ⋆ v is a compact element of P.
For a fixed finitary residuated lattice A, we will denote by AFM the category of
finitary A-modules and finitary module morphisms (finitary translators). Recall
that such a morphism maps compact elements to compact elements.
Note that the notion of projectivity depends on the category AM or AFM . Recall
the definitions of the triangle (S) and the square (T) preceding Theorem 5.1. In
view Corollary 6.3 finitary structural closure operators on finitary modules can be
identified with morphisms in the category AFM , so the square (T) makes sense.
We verify the analogue of the Theorem 5.1 where (S) and (T) (projectivity) are
considered in AFM .

Theorem 6.6. The objects P of the category AFM for which all squares of type (S)
can be completed are exactly the projective objects of AFM .

Proof. Wewill show that the proof of Theorem 5.1 extends to the current setting.
In particular, we assume that all objects and morphisms are finitary and show that
the derived objects and morphisms are also finitary. In particular, k∗k is finitary, as
a closure operator on P, by Lemma 6.4, and as a module morphism k∗k : P→ Pk∗k
by Lemma 6.2. Pk∗k is finitary by Lemma 6.3. To see that k

′ is finitary, note that
for x ∈ KPk∗k , k

′(x) = k′(k∗k(x)) = k(k∗k(x)) = k(x), which is compact in R.
Likewise, we show that g∗g, g ′ and Qg∗g are finitary. Finally, f is finitary, being
the composition of two finitary maps. ⊣

Corollary 6.7. SupposeP is an object in AFM , and ã a finitary structural operator
on P. Then Pã is finitary as an A-module.

Proof. By Lemma 6.2, Pã is finitary as a lattice. To show that it is a finitary
module, we need to verify that scalar multiplication preserves compactness. Let
a ∈ KA and ã(x) ∈ KPã . By Lemma 6.1, x ∈ P can be taken to be compact. As
P is finitary a ⋆ x is compact in P. Also, since ã is finitary, ã(a ⋆ x) = a ⋆ã ã(x) is
compact in Pã . ⊣

Recall that by Theorem 5.7 the cyclic projective in AM modules are up to iso-
morphism exactly the ones of the form Au, where u is idempotent. If further u is
compact in A, we will refer to such a module as regular. Note that since the joins
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in Au coincide with the joins in A by Lemma 5.4, if u is compact in A, then it is
compact in Au.

Lemma 6.8. TheP (ΣL )-modulesP (FmL ) andP (EqL ) are regular.

Proof. It was noted in the proof of Corollary 5.9 that u = {κx} for P (FmL )
and u = {κx≈y} forP (EqL ), both of which are finite, hence compact. ⊣

Lemma 6.9. If u is compact in A, then the compact elements of Au are exactly of
the form au, where a is compact in A; in symbolsKAu = KAu.

Proof. Clearly, if a is compact in A, then au is also compact in A, and hence
also compact in Au. Conversely, let au be compact in Au. Since A is finitary,

a =
∨A
C , where C is the set of compact elements of A below a. Thus, au =

∨A
{cu : c ∈ C} =

∨Au
{cu : c ∈ C}. Note that {cu : c ∈ C} is a directed set of

compact elements of Au, as u is compact in Au. Since au is compact in Au, there
exists c ∈ C such that au = cu. ⊣

Note that for the inclusion KAu ⊆ KAu it suffices to assume that u is compact
in Au.

Corollary 6.10. Every regular module is finitary.

Proof. Every regularmodule is isomorphic toAu, for u idempotent and compact
in A. An arbitrary element of Au is of the form au, where a ∈ A. So, au =
(
∨
KA(↓ a))u = (

∨
KA(↓ a)u). Since KA(↓ a) = KA∩ ↓ a, by Lemma 6.9

KA(↓ a)u are compact elements in Au. So every element of Au is a join of compact
elements of Au. ⊣

The following lemma shows that for cyclic objects Au in AM such that u is
compact in A, projectivity in AM implies projectivity in AFM .

Lemma 6.11. Regular A-modules are projective in the category AFM .

Proof. We will show that if the A-modules P,Q,R, the module morphism k :
P → R, and the surjective module morphism g : Q → R are all finitary and if,
further, P is regular, then there exists a finitary module morphism h : P→ Q such
that gh = k.

P
h //___

k ��?
??

??
??

?
Q

g
����
R

In view of Theorem 5.7 and the definition of a regular module, we may assume
that P = Au, where u is an idempotent element of A that is compact in A, and
hence in Au. Consider the element y = k(u) of R. It is clear that y is a compact
element of R. We claim that there exists compact w in Q such that y = g(w).

Indeed there exists x in Q such that y = g(x). Now, x =
∨Q
X , for some set X

of compact elements of Q, and so g(x) =
∨R
g[X ]. By the compactness of y in

R, there exists a finite subset Y of X such that g(x) =
∨R
g[Y ]. But then, if w

denotes the compact element
∨Q
Y inQ, we get y = g(w), as was to be shown. Let

z = u ⋆Qw. Then z is a compact element ofQ. We claim that the map ôz : P → Q,
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defined by au 7→ a ⋆Q z, is a finitary module morphism from P to Q such that
gôz = k.
We first note that ôz is a well-defined map. Indeed, suppose that au = bu, for
a, b ∈ A. Then a ⋆Q z = a ⋆Q (u ⋆Q w) = (au ⋆Q w) = (bu ⋆Q w) = · · · = b ⋆Q z.
We next show that ôz is residuated. We have for all a ∈ A and q ∈ Q, ôz(au) ≤
q ⇒ a ⋆Q z ≤ q ⇒ a ≤ q/

Q
z ⇒ au ≤ (q/

Q
z)u ⇒ (au) ⋆Q z ≤ ((q/

Q
z)u) ⋆Q

z ⇒ a ⋆Q z ≤ (q/
Q
z) ⋆Q z ⇒ a ⋆Q z ≤ q. We have shown that ôz(au) ≤ q iff

au ≤ (q/
Q
z)u. Thus, ôz is residuated and its residual is the map (ôz)∗ : Q → P,

defined by (ôz)∗(q) = (q/Qz)u. To prove that ôz is a module morphism, consider
a, b ∈ A. We have, aôz(bu) = a ⋆Q (b ⋆Q z) = (ab) ⋆Q z = ôz(a(bu)).
It remains to verify that ôz is finitary. In view of Lemma 6.9, for every compact
element cu of Au we can take c to be compact in A. Then ôz(cu) = c ⋆Q z, which
is a compact element of Q, since Q is finitary, c is a compact element of A and z is
a compact element of Q. ⊣

In view of Remark 3.10, the following corollary implies Theorem 2.4.

Corollary 6.12. Every finitary representation (hence also every isomorphism) be-
tween finitary consequence relations on the sets P (FmL ) and P (EqL ) is induced by
a finitary translator.

Wewill not need the following result, but we state it since it is interesting and rele-
vant to our discussion, as it provides an insight to the nature of module morphisms.
Moreover, it builds on notions developed in [3]. Its proof follows ideas similar to
the ones in the proof of the Lemma 6.11. Let Q be an A-module and a ∈ A. An
element y of Q is called a-invariant, if a ⋆ y = y.

Theorem 6.13. Assume that the A-module P is cyclic projective with respect to the
elements v and u, and that Q is also an A-module. Then, there is a bijection between
module morphisms ô from P toQ and u-invariant elements y ofQ, given by ô 7→ ô(v)
and y 7→ ôy , where ôy(x) = (x/⋆ v) ⋆ y.

Lemma 6.14. Let Pi be finitary lattices, for all i ∈ I . An element of
∏
i∈I Pi

is compact iff it has finitely many non-zero coordinates and those are occupied by
compact elements of the corresponding factors.

Proof. Let xi be a compact element of Pi , for some i ∈ I , and let x̄i be the
element of P with i-th coordinate equal to xi and all other coordinates equal to ⊥.
Clearly, x̄i is compact in P, as any directed join exceeding it contains elements with
all but the i-th coordinate equal to⊥. The directed join in Pi of the elements in the
i-th coordinate exceed xi , so one of them exceeds xi . The corresponding element
of P exceeds x̄i . Since the finite join of compact elements is also compact, we have
one direction of the lemma.
Conversely, assume that x = (xi)i∈I is a compact element of P. Clearly, x =∨
i∈I x̄i , so there is a finite subset I0 of I such that x =

∨
i∈I0
x̄i . ⊣

We are now ready to prove the main result of this section.

Theorem 6.15. The coproduct in AM of a family of regularA-modules is projective
in AFM .

Proof. We will show that if P is the coproduct of a family of regular A-modules,
Q an A-module, ã a structural closure operator on P, ä a finitary structural closure
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operator on Q and f a finitary representation of ã in ä, then f is induced by
a finitary module morphism ô : P→ Q.
For each i ∈ I , let ói : Pi → P be the injective module morphism associated with
the coproduct.

Pi��

ói

��

ôi

  B
B

B
B

P
ô //___

ã
����

Q

ä
����

Pã //
f // Qä

Note that the map fãói is a finitary module morphism, and hence Lemma 6.11
implies that there exists a finitary module morphism ôi : Pi → Q such that fãói =
äôi . Now by the universal property of the coproduct, there exists ô : P → Q such
that ôói = ôi , for all i ∈ I .
To show that ô is finitary, let x = (xi)i∈I be a compact element of P. By
Lemma 6.14, there is a finite subset I0 of I such that xj = ⊥ for all j 6∈ I0, and
xi is compact in Pi , for all i ∈ I0. Since ôi is finitary, ôi(xi) is compact in Q, for
i ∈ I0. Also, ôj(xj) = ôj(⊥) = ⊥, for j 6∈ I0. Therefore, by Lemma 5.11 we have,
ô((xi )i∈I ) =

∨
i∈I ôi(xi) =

∨
i∈I0
ôi(xi), which is compact, being a finite join of

compact elements. ⊣

Corollary 6.16. Let P, Q be each a coproduct in AM of regular A-modules, and
let ã, ä be finitary structural closure operators on P and Q, respectively. Then every
equivalence between ã and ä is induced by finitary module morphism.

In view of Theorem 5.13, Corollary 6.8 and Corollary 6.16, we have the following
result.

Corollary 6.17. Every finitary representation (hence also every isomorphism) be-
tween consequence relations on the P (ΣL )-modules P (SeqLP1) and P (SeqLP2) is
induced by a finitary translator, where L is any algebraic language and P1 and P2
are any predicate-only languages.
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