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Abstract. Residuated frames provide relational semantics for substructural

logics and are a natural generalization of Kripke frames in intuitionistic and
modal logic, and of phase spaces in linear logic. We explore the connection

between Gentzen systems and residuated frames and illustrate how frames

provide a uniform treatment for semantic proofs of cut-elimination, the finite
model property and the finite embeddability property. We use our results to

prove the decidability of the equational and/or universal theory of several vari-

eties of residuated lattice-ordered groupoids, including the variety of involutive
FL-algebras.

Substructural logics and their algebraic formulation as varieties of residuated
lattices and FL-algebras provide a general framework for a wide range of logical
and algebraic systems, such as

Classical propositional logic ↔ Boolean algebras
Intuitionistic logic ↔ Heyting algebras
 Lukasiewicz logic ↔ MV-algebras
Abelian logic ↔ abelian lattice-ordered groups
Basic fuzzy logic ↔ BL-algebras
Monoidal t-norm logic ↔ MTL-algebras
Intuitionistic linear logic ↔ ILL-algebras
Full Lambek calculus ↔ FL-algebras

as well as lattice-ordered groups, symmetric relation algebras and many other sys-
tems.

In this paper we introduce residuated frames and show that they provide rela-
tional semantics for substructural logics and representations for residuated struc-
tures. Our approach is driven by the applications of the theory. As is the case
with Kripke frames for modal logics, residuated frames provide a valuable tool for
solving both algebraic and logical problems. Moreover we show that there is a
direct link between Gentzen-style sequent calculi and our residuated frames, which
gives insight into the connection between a cut-free proof system and the finite
embeddability property for the corresponding variety of algebras.

We begin with an overview of residuated structures and certain types of closure
operators called nuclei. This leads to the definition of residuated frames (Section 3)
and Gentzen frames (Section 4), illustrated by several examples. We then prove a
general homomorphism theorem in the setting of Gentzen frames (Thm. 4.2) and
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apply it to the particular examples. Results that we obtain in Section 5 include
the cut-elimination property for several logical systems, the decidability of logics
and of varieties of residuated structures, the finite model property, and the finite
embeddability property. The homomorphism theorem generalizes and simplifies
ideas found in a variety of papers [2–4,16,18,22,24,25] that address the above types
of problems in otherwise seemingly unrelated ways. Thus the notion of residuated
frame provides a unifying framework for the analysis of various logical and algebraic
properties and for their proof in a general setting.

For example in a paper by Ono and Komori [18], and later by Okada and Terui
[16] cut-elimination and decidability for the full Lambek calculus (and other sys-
tems) are proved using monoid semantics and phase spaces. In [3, 4] Blok and
van Alten prove the finite embeddability property for several classes of residuated
structures using a combinatorial argument, and Belardinelli, Jipsen, Ono [2] and
Wille [24] give algebraic proofs of cut-elimination and decidability for FL-algebras
and involutive residuated lattices.

In the current paper we present a common generalization of these results, and
use it to prove several new results. In particular, we consider all subvarieties of
residuated lattice-ordered unital groupoids (r`u-groupoids) defined by an equation
using the symbols {∨, ·, 1} and prove cut elimination for sequent calculi associated
with these equational classes (Cor. 5.16). We apply this result to obtain the fi-
nite model property for many of these classes (essentially those where the defining
equation corresponds to a sequent rule whose premises are no more complex than
its conclusion, see Thm. 5.18). For integral r`u-groupoids we are able to prove
the stronger finite embeddability property for all subvarieties defined by {∨, ·, 1}-
equations (Thm. 5.21), which implies that the universal theory of each of these
classes is decidable.

In Sections 6 and 7 we adapt our techniques to involutive residuated structures,
and prove similar results about them, including the decidability of the equational
theory of involutive FL-algebras and its corresponding generalizations (Cor. 7.7,
7.9). Section 8 concludes with some further results about one-sided and perfect
involutive frames.

We note that similar generalized Kripke frames have been introduced and ap-
plied to residuated structures independently in [13] and in algebraic form in [7].
The correspondence of this approach to ours is discussed in more detail after the
definition of residuated frames in Section 3. Our somewhat more general perspec-
tive is required to establish the fundamental link between Gentzen sequent calculi
and residuated frames.

1. Residuated structures

In this section we define the residuated structures that will be used in the paper.
The definition of a residuated lattice is given in the general setting, following [6].
For more on the properties of residuated lattices and related structures the reader
is referred to [14] and [8].

A residuated lattice is of the form A = (A,∧,∨, ·, \, /, 1) where (A,∧,∨) is a
lattice, (A, ·, 1) is a monoid and the following residuation property holds for all
x, y, z ∈ A

(res) xy ≤ z iff x ≤ z/y iff y ≤ x\z.
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Here ≤ denotes the lattice order and xy stands for x · y. We refer to the operations
of A as meet, join, multiplication, left and right division, and multiplicative unit,
respectively. The residuation property (res) can be reformulated in equational form
[6], hence the class RL of residuated lattices forms a variety. We recall some basic
results that follow from the (res) property.

Lemma 1.1. Multiplication preserves all existing joins, and divisions preserve all
existing meets in the numerator and convert all existing joins in the denominator
to meets, i.e. if

∨
X and

∧
Y exist then

(
∨

X)y =
∨

x∈X

xy (
∨

X)\z =
∧

x∈X

x\z z/(
∨

X) =
∧

x∈X

z/x

y(
∨

X) =
∨

x∈X

yx x\(
∧

Y ) =
∧

y∈Y

x\y (
∧

Y )/x =
∧

y∈Y

y/x

Lattice-ordered groups (`-groups for short) are defined as lattices with an order-
preserving group operation and a unit element. They can be considered as resid-
uated lattices, where x\y = x−1y and y/x = yx−1. Relative to RL, they are
axiomatized by the equation x(x\1) = 1. We also mention another important ex-
ample. If M = (M, ·, 1) is a monoid, then the multiplication can be extended to
the powerset P(M), by X · Y = {xy : x ∈ X, y ∈ Y }, and divisions are defined by
X\Y = {z ∈ M : X · {z} ⊆ Y } and Y/X = {z ∈ M : {z} ·X ⊆ Y }. The structure
(P(M),∩,∪, ·, \, /, {1}) is a residuated lattice.

An FL-algebra is an algebra A = (A,∧,∨, ·, \, /, 1, 0) such that (A,∧,∨, ·, \, /, 1)
is a residuated lattice and 0 is an arbitrary element of A. We denote the variety of
FL-algebras by FL.

Of special importance are residuated lattices (and FL-algebras) that satisfy the
equations xy = yx, x ≤ 1 and x ≤ x2. They are called commutative, integral and
contractive, respectively. Note that commutativity implies x\y = y/x, and in this
case x→ y is used for the common value.

The constant 0 allows for the definition of two negation operations ∼x = x\0
and −x = 0/x. An FL-algebra is called involutive (InFL-algebra) if it satisfies the
equations ∼−x = x = −∼x. In an InFL-algebra we can define operations dual to
multiplication and the divisions by

x + y = ∼[(−y) · (−x)], x−· · y = ∼[(−y)\(−x)] and y −· · x = −[(∼x)/(∼y)].
It then follows that x + y = −[(∼y) · (∼x)] = ∼x\y = x/∼y, x −· · y = x(∼y),
y −· · x = (∼y)x and that (A,∨,∧, +,−· ·,−· ·, 0, 1) is an FL-algebra, called the dual of
the original one (note the order of the operations). The variety of FL-algebras is
denoted by InFL. A cyclic FL-algebra is one that satisfies ∼x = −x. Note that
cyclicity is a consequence of commutativity.

Boolean algebras are term equivalent to InFL-algebras that satisfy x · y = x∧ y.
Also, `-groups are term equivalent to cyclic InFL-algebras that satisfy x+y = x ·y.
In this case we have ∼x = x−1 and 0 = 1. Finally, we mention that symmetric
relation algebras and MV-algebras are examples of cyclic involutive FL-algebras.

Many subsequent results apply to more general residuated structures that are
not assumed to be lattice-ordered, associative or have a unit element. Hence we
end this section with the following definitions.

A pogroupoid is a structure G = (G,≤, ·) where ≤ is a partial order on G and the
binary operation · is order preserving. A residuated pogroupoid, or rpo-groupoid, is
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a structure G = (G,≤, ·, \, /) where ≤ is a partial order on G and the residuation
property (res) holds. It follows that multiplication is order preserving. If ≤ is a
lattice order then (G,∧,∨, ·, \, /) is said to be a r`-groupoid, and if this algebra is
extended with a constant 1 that is a multiplicative unit, or with an arbitrary con-
stant 0 then it is said to be a r`u-groupoid or a r`z-groupoid respectively. Note that
a residuated lattice is an associative r`u-groupoid, and an FL-algebra is an asso-
ciative r`uz-groupoid. Involutive r`u-groupoids are defined like InFL-algebras, but
without assuming associativity. The varieties of r`u(z)-groupoids and involutive
r`u-groupoids are denoted by RLU(Z)G and InGL, respectively.

2. Nuclei

Galois connections. Given two posets P and Q, we say that the maps B : P →Q
and C : Q→ P form a Galois connection if for all p ∈ P and q ∈ Q,

q ≤ pB iff p ≤ qC.
Recall that a closure operator γ on a poset P is a map that is increasing, mono-

tone and idempotent, i.e., x ≤ γ(x), x ≤ y implies γ(x) ≤ γ(y), and γ(γ(x)) = γ(x),
for all x, y ∈ P . The image γ[P ] = {γ(p) : p ∈ P} of γ-closed elements is denoted
by Pγ , and Pγ denotes the associated poset.

The following results are folklore in the theory of Galois connections.

Lemma 2.1. Assume that the maps B : P → Q and C : Q → P form a Galois
connection between the posets P and Q. Then the following properties hold.

(i) The maps B and C are both order reversing. Moreover, they convert existing
joins into meets, i.e., if

∨
X exists in P for some X ⊆ P , then

∧
{xB : x ∈

X} exists in Q and (
∨

X)B =
∧
{xB : x ∈ X}, and likewise for C.

(ii) The maps BC : P → P and CB : Q→Q are both closure operators.
(iii) BCB = B and CBC = C

(iv) For all q ∈ Q, qC = max{p ∈ P : q ≤ pB} and for all p ∈ P , pB = max{q ∈
Q : p ≤ qC}.

Given a relation R ⊆ A× B between two sets A and B, for X ⊆ A and Y ⊆ B
we define

X R Y iff x R y for all x ∈ X, y ∈ Y

x R Y iff {x} R Y

X R y iff X R {y}
XR = {y ∈ B : X R y} xR = {x}R
RY = {x ∈ A : x R Y } Ry = R{y}

So, XR contains the elements of B that are related to all elements of X. Note that
XR =

⋂
x∈X xR and similarly for RY . We define the maps B : P(A) →P(B) and

C : P(B)→P(A), by XB =XR and Y C =RY .

Lemma 2.2. A pair of maps B : P(A)→P(B) and C : P(B)→P(A) form a Galois
connection iff XB =XR and Y C =RY , for some relation R ⊆ A×B. In this case
the relation is given by x R y iff x ∈ {y}C (iff y ∈ {x}B).

The pair (B, C) is called the Galois connection induced by R. We denote by γR

the closure operator γR : P(A) → P(A) associated with R, where γR(X) = XBC

(see Lemma 2.1(ii)).
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Given a closure operator γ on a complete lattice P, we say that a subset D of P
is a basis for γ, if the elements in γ[P ] are exactly the meets of elements of D. In
particular we have D ⊆ γ[P ]. Note that the interior operator in a topological space
is a closure operator under the dual order, hence this notion of basis is equivalent
to the usual one in topology.

Lemma 2.3. Let A and B be sets.
(i) If R is a relation between A and B, then γR is a closure operator on P(A).
(ii) If γ is a closure operator on P(A), then γ = γR for some relation R with

domain A.
(iii) If (B, C) is the Galois connection induced by R, then the collection of the

sets {b}C, where b ∈ B, forms a basis for γR.

Proof. Statement (i) follows from Lemma 2.2 and Lemma 2.1(ii).
For (ii), let B = γ[P(A)] and define R ⊆ A×B with a R C iff a ∈ C. Then for

X ⊆ A and Y ⊆ B, we have XB = {C ∈ B : X ⊆ C} and Y C =
⋂

Y . Therefore,
γR(X) =

⋂
{C ∈ B : X ⊆ C} = γ(X), for all X ⊆ A.

For (iii) note that γ-closed elements are of the form Y C, where Y ⊆ B, and that
Y C =RY =

⋂
y∈Y Ry =

⋂
y∈Y {y}C. �

Part (iii) of the above result will be used repeatedly in the following form.

Corollary 2.4. For a closed set X ⊆ A and a ∈ A we have

a ∈ X iff ∀b ∈ B [X ⊆ {b}C ⇒ a ∈ {b}C].

Nuclei. A nucleus on a pogroupoid G is a closure operator γ on (the poset reduct
of) G such that γ(a)γ(b) ≤ γ(ab) for all a, b ∈ G. The concept of a nucleus was
originally defined in the context of Brouwerian algebras (e.g. [20]) and quantales
(e.g. [19]).

Lemma 2.5. [11] If γ is a closure operator on a pogroupoid G, then the following
statements are equivalent:

(i) γ is a nucleus.
(ii) γ(γ(x)γ(y)) = γ(xy) for all x, y ∈ G.

If G is residuated, then the above conditions are also equivalent to:
(iii) x/y, y\x ∈ Gγ for all x ∈ Gγ , y ∈ G.

Let G = (G,≤, ·) be a residuated groupoid, let γ be a nucleus on G, and for all
x, y ∈ G define x ◦γ y = γ(x ◦ y). The structure Gγ = (Gγ ,≤, ◦γ), is called the
γ-image of G. If G has a unit, is lattice ordered and/or is residuated, then the
γ-retraction is defined to have the operations γ(1), ∧, ∨γ (where x∨γ y = γ(x∨y)),
and \, /, respectively. So for example if G = (G,∧,∨, ·, \, /, 1) is a residuated
lattice and γ is a nucleus on G, then the γ-retraction of G is the algebra Gγ =
(Gγ ,∧,∨γ , ◦γ , \, /, γ(1)), where x ◦γ y = γ(x · y) and x ∨γ y = γ(x ∨ y).

Lemma 2.6. [8, 10]
(i) The nucleus retraction Gγ of a pogroupoid G is a pogroupoid and the prop-

erties of lattice-ordering, being residuated and having a unit are preserved.
(ii) In the above cases, the nucleus γ is a {·,∨, 1}-homomorphism from G to Gγ

(if ∨ and 1 exist). In particular, if t is a {·,∨, 1}-formula, then γ(tG(x̄)) =
tGγ (γ(x̄)), for all sequences x̄ of elements in G.
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(iii) All equations and inequations involving {·,∨, 1} are preserved. For example,
if G is associative, commutative, integral or contracting, then so is Gγ .

(iv) In particular, if G is a residuated lattice and γ is a nucleus on it, then the
γ-retraction Gγ of G is a residuated lattice.

Nuclei on powersets. A ternary relational structure is a pair W = (W, ◦), where
W is a set and ◦ ⊆ W 3. On the powerset P(W ) of W we define the operation
X ◦ Y = {z ∈ W : (x, y, z) ∈ ◦ for some x ∈ X, y ∈ Y } and we write x ◦ y
for the set {x} ◦ {y} and x ◦ Y for {x} ◦ Y . Also, we define the sets X/Y =
{z | {z} ◦ Y ⊆ X} and Y \X = {z | Y ◦ {z} ⊆ X}. It is easy to see that the algebra
P(W) = (P(W ),∩,∪, ·, \, /) is a residuated groupoid.

A ternary relation structure W = (W, ◦) is said to be associative if it satisfies
(x ◦ y) ◦ z = x ◦ (y ◦ z), i.e., if it satisfies the following equivalence

∃u[(x, y, u) ∈ ◦ and (u, z, w) ∈ ◦] iff ∃v[(x, v, w) ∈ ◦ and (y, z, v) ∈ ◦].
It is said to have a unit E ⊆ W if x ◦ E = {x} = E ◦ x, i.e., if

∃e ∈ E[(x, e, y) ∈ ◦] iff x = y iff ∃e ∈ E[(e, x, y) ∈ ◦]

Lemma 2.7. If γ is a closure operator over a ternary relation structure (W, ◦) and
D is a basis for γ, then the following statements are equivalent:

(i) γ is a nucleus on P(W).
(ii) C/{w}, {w}\C ∈ P(W )γ , for all C ∈ D and w ∈ W .

Proof. We will use the equivalent condition for a nucleus given in Lemma 2.5 (iii).
Obviously, this condition implies (ii). For the converse, assume (ii) holds, let
L = P(W), and consider X ∈ Lγ and Y ∈ L. Since D is a basis for γ, there
exists X ⊆ D such that X =

⋂
X . By Lemma 1.1 X/Y = (

⋂
X )/(

⋃
y∈Y {y}) =⋂

C∈X
⋂

y∈Y C/{y}. By assumption, C/{y} is a γ-closed element, hence X/Y is γ-
closed since the intersection of closed elements of a closure operator on a complete
lattice is also closed. �

3. Frames

After giving the definition of a residuated frame, we discuss a range of examples,
most of which will play a role in the subsequent applications.

As noted earlier, if (W, ◦) is a ternary relational structure, then P(W, ◦) is a
residuated groupoid, and if (W, ◦) is associative or has a unit, the same holds for
P(W, ◦). Also, we have seen that if R ⊆ W ×W ′, then γR is a closure operator on
P(W ). We would like to know for which relations R ⊆ W ×W ′, γR is a nucleus on
P(W, ◦). The following condition characterizes the relations that give rise to nuclei.

A relation N ⊆ W ×W ′ is called nuclear on (W, ◦) if for every u, v ∈ W,w ∈ W ′,
there exist subsets uw and w�v of W ′ such that

u ◦ v N w iff v N uw iff u N w�v .
Note that the statement above makes use of our notation x N Y for {x} N Y and
X N y for X N {y}, where X N Y if x N y, for all x ∈ X and y ∈ Y .

Lemma 3.1. If (W, ◦) is a ternary relation structure and N ⊆ W ×W ′, then γN

is a nucleus on P(W, ◦) iff N is a nuclear relation.

Proof. By Lemma 2.3(iii), the collection D = {{w}C : w ∈ W ′} forms a basis
for γR. So, by Lemma 2.5(iv) γN is a nucleus iff {w}C/{u} and {u}\{w}C are
γ-closed, for all u ∈ W and w ∈ W ′ (here \ and / are calculated in P(W, ◦)).
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Since D is a basis, {u}\{w}C is closed iff {u}\{w}C =
⋂
X , for some X ⊆ D iff

{u}\{w}C =
⋂

c∈uw{c}C, for some uw ⊆ W ′. This is equivalent to the statement
that for all v ∈ W ,

v ∈ {u}\{w}C iff v ∈
⋂

c∈uw{c}C.

Transforming this statement further we obtain for all v ∈ W ,

u ◦ v ⊆ {w}C iff v ∈ {c}C for all c ∈ uw.

or, equivalently, u ◦ v N w iff v N c for all c ∈ uw. So, {u}\{w}C is closed iff
there exists uw ⊆ W ′ such that u ◦ v N w iff v N uw. Likewise, we obtain the
second equivalence of a nuclear relation. �

A residuated frame (or r-frame for short) is a structure of the form W =
(W,W ′, N, ◦,,�), where (W, ◦) is a ternary relational structure and N ⊆ W ×W ′

is a nuclear relation on (W, ◦) with respect to ,�. Concretely, this means
• W and W ′ are sets,
• N is a binary relation from W to W ′, called the Galois relation,
• ◦ ⊆ W 3,  ⊆ W ×W ′ ×W , � ⊆ W ′ ×W ×W , and
• for all u, v ∈ W and w ∈ W ′

(u ◦ v) N w iff v N (uw) iff u N (w�v)

where x ? y = {z : (x, y, z) ∈ ?} for ? ∈ {◦,,�}.
It follows from Lemma 2.6 and Lemma 3.1 that P(W, ◦)γN

is a r`-groupoid, called
the Galois algebra of W, and denoted by W+. In detail,

W+ = (γN [P(W )],∩,∪γN
, ◦γN

, \, /), where

X ∪γN
Y = γN (X ∪ Y )

X ◦γN
Y = γN ({z ∈ W : (x, y, z) ∈ ◦})

X\Y = {z : X ◦ z ⊆ Y }
Y/X = {z : z ◦X ⊆ Y }.

A unital r-frame (or ru-frame) W = (W,W ′, N, ◦,,�, E) is an r-frame with a
set E ⊆ W such that γN (E) is a unit, and a ruz-frame W = (W,W ′, N, ◦,,�, E, D)
is a ru-frame with a distinguished subset D ⊆ W . In either case W+ has a unit
1 = γN (E), and in the latter case also has γN (D) as interpretation for the constant
0. In particular the Galois algebra of an associative ru-frame is a residuated lattice,
and the Galois algebra of an associative ruz-algebra is an FL-algebra. Actually the
weaker conditions

• [(x ◦ y) ◦ z]B = [x ◦ (y ◦ z)]B (weak associativity)
• (x ◦ E)B = xB = (E ◦ x)B, for all x ∈ W (weak unit)

suffice to show that the Galois algebra is an FL-algebra and would allow for a
slightly more general definition of an associative ru-frame.

The residuated frames we consider extend the formal contexts of formal concept
analysis [12]. These structures consist of triples (W,W ′, N), where N ⊆ W×W ′, so
they capture the lattice operations, but not the multiplication, residuals and unit
element.
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Furthermore, residuated frames are related to, but more general than, the re-
duced separated frames (or RS frames) of [13]. The latter assume that the map
w 7→ {w}BC is a bijection (i.e., the frame is separated) and that the copy of W
in W+ consists of completely join irreducible elements (i.e., the frame is reduced).
These conditions make the relation N behave like a partial order – the restriction
of the order of W+ on the copy, in W+, of the union W ∪W ′, and set up a duality
between perfect lattices and RS frames. The analogue of the ternary relation ◦ on
W in the context of RS-frames is given by a ternary relation R ⊆ W × W × W ′

that satisfies a compatibility condition. For RS frames, the relations ◦ and R are
interdefinable by means of the nuclear relation N . The particular, the residuated
frames that are needed for applications in this paper are rarely RS-frames.

To illustrate the generality of residuated frames, we now consider a series of
examples.

The Dedekind-MacNeille completion. Given a poset P = (P,≤), we can de-
fine the residuated frame WP = (P, P,≤, ◦,,�), where ◦,,� are the empty set.
The nuclear property for ≤ is vacuously true.

The poset P(P )γ≤ (the poset reduct of W+
P) of closed sets is called the Dedekind-

MacNeille completion of P. The maps on P(L) of the Galois connection involved
in the Dedekind-MacNeille completion are usually denoted by u and l, where AB =
Au = {x ∈ L | x ≤ a for all a ∈ A} and AC = Al = {x ∈ L | x ≥ a for all a ∈ A},
for all A ⊆ L.

It is well known that the map x 7→ {x}C is an embedding of P into W+
P.

Residuated pogroupoids. Let G = (G,≤, ·, \, /) be a residuated pogroupoid and
define x ◦ y = {xy}, xy = {x\y} and x�y = {x/y}. Then WG = (G, G,≤, ·,,�)
is a residuated frame since the nuclear property for≤ is just the residuation property
for G. If G is associative or has a unit, then W+

G has the same properties. In
particular, if G is a residuated lattice, then W+

G is a complete residuated lattice,
and the map x 7→ {x}C is an embedding of G into W+

G (Corollary 4.5). Hence
W+

G is called the Dedekind-MacNeille completion of G.

Partial subalgebras. Let A be a residuated lattice and B a partial subalgebra
of A, i.e., B is any subset of A, and each operation fA on A induces a partial
operation fB on B by fB(b1, . . . , bn) = fA(b1, . . . , bn) if this latter value is in B,
and undefined otherwise. Define (W, ◦, 1) to be the submonoid of A generated by B.
A unary linear polynomial of (W, ◦, 1) is a map u on W of the form u(x) = v ◦x◦w,
where v, w are elements of W . Such polynomials are also known as sections and we
denote the set of all sections by SW . Let W ′ = SW × B, and define x N (u, b) by
u(x) ≤A b. Given x, y ∈ W and u ∈ SW , one can define sections u′(x) = u(x ◦ y)
and u′′(y) = u(x ◦ y). We will also use the notation u′ = u( ◦ y) and u′′ = u(x ◦ ).
Now define x(u, b) = (u(x ◦ ), b) and (u, b)�y = (u( ◦ y), b). Then it is easy to
see that WA,B = (W,W ′, N, ◦,,�) is a residuated frame. The same holds for the
case where A is a rpo-groupoid.

Corollary 5.19 below shows that the map x 7→ {x}C is an embedding of the
partial subalgebra B of A into the r`u-groupoid W+

A,B.

Phase spaces. An (intuitionistic) phase space is a pair (M, D), where M =
(M, ·, 1) is a monoid and D is an intersection closed family of subsets of M with
the property that for all sets X, Y
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X, Y ⊆ M and Y ∈ D implies X\Y, Y/X ∈ D.
Since intersection-closed families and closure operators are interdefinable on pow-
ersets, in view of Lemma 2.5 a phase space can be defined as a pair (M, γ), where
M is a commutative monoid and γ is a nucleus on P(M). Let Nγ be the binary
relation on M defined by x Nγ y iff x ∈ γ({y}); also let xz = {x}\γ({z}) and
z�y = γ({z})/{y}. It is easy to verify that (M,M,Nγ , ·,,�, {1}) is a residu-
ated frame. Indeed, x · y Nγ z iff x · y ∈ γ({z}) iff y ∈ {x}\γ({z}), and likewise
x ∈ γ({z})/{y}.

Perfect (residuated) lattices. According to [7] a lattice L is called perfect if
every element of L is a join of completely join-irreducible elements of L and a meet
of completely meet-irreducible elements of L. This example generalizes the Kripke
frame (also called atom structure) of an atomic Boolean algebra with operators,
since a Boolean algebra is perfect if and only if it is atomic. The set of all completely
join-irreducible (meet-irreducible) elements is denoted by J∞(L) (M∞(L)).

Let L be a r`-groupoid with a perfect lattice reduct, and for x, y ∈ J∞(L),
w ∈ M∞(L) define

x ◦ y = {z ∈ J∞(L) : z ≤ xy}
xw = {v ∈ M∞(L) : x\w ≤ v}
w�y = {v ∈ M∞(L) : w/y ≤ v}.

Since L is perfect, we have xy =
∨

(x ◦ y), x\w =
∧

(xw), and w/y =
∧

(w�y),
hence the nucleus property for ≤ follows from the residuation property. Therefore
W∞

L = (J∞(L),M∞(L),≤, ◦,,�) is a residuated frame.
It is shown in [7] that the perfect lattice reduct of L is embedded in the lattice

reduct of (W∞
L )+. Since every element of L is a join of elements of J∞(L) and

multiplication distributes over existing joins, it follows that the map a 7→ ↓(a) ∩
J∞(L) is an embedding of L into (W∞

L )+. If L is complete (e.g. in the finite case)
then this map is an isomorphism.

The system GL. Let L = {∧,∨, ·, \, /, 1, 0} be the language of FL-algebras.
Terms in this language correspond to propositional formulas in substructural logic,
hence the set of all terms (over some fixed countable set of variables) is denoted by
Fm. Let ◦ be a binary symbol, ε a constant symbol, and define (W, ◦, ε) to be the
free groupoid with unit ε generated by the set Fm. As in the partial subalgebra
example, SW denotes the set of unary linear polynomials of (W, ◦, ε). (However we
do not assume associativity of ◦, hence u(x) cannot in general be written in the
form v ◦ x ◦ w.) A (single-conclusion) sequent is a pair (x, b) ∈ W × Fm, which is
traditionally written x ⇒ b, and the symbol ⇒ is called the sequent separator. A
sequent rule is a pair ({s1, . . . , sn}, s0) where s0, . . . , sn are sequents. Such rules
are usually presented in the form

s1 s2 . . . sn

s0
or

s0

with rules of the latter form referred to as axioms. Finally, a Gentzen system is a
set of sequent rules.

Consider the Gentzen system GL for the non-associative full Lambek calculus,
given by the rules in Figure 1 and all their uniform substitution instances (i.e.,
a, b, c range over Fm, x, y range over W and u ranges over SW ). The system is
essentially obtained from Gentzen’s system LJ for intuitionitic logic, by removing
all the implicit structural rules.
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x⇒ a u(a)⇒ c

u(x)⇒ c
(CUT)

a⇒ a (Id)

x⇒ a u(b)⇒ c

u(x ◦ (a\b))⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a u(b)⇒ c

u((b/a) ◦ x)⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

u(a ◦ b)⇒ c

u(a · b)⇒ c
(·L)

x⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)

u(a)⇒ c

u(a ∧ b)⇒ c
(∧L`)

u(b)⇒ c

u(a ∧ b)⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

u(a)⇒ c u(b)⇒ c

u(a ∨ b)⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨R`) x⇒ b

x⇒ a ∨ b
(∨Rr)

u(ε)⇒ a

u(1)⇒ a
(1L)

ε⇒ 1 (1R)

Figure 1. The system GL.

A proof in GL is defined inductively in the usual way as a labeled rooted tree
(where the order of the branches does not matter). Formally, every sequent (S, s) is
considered as a proof with assumption S and conclusion s. Moreover, if P1, . . . ,Pn

are proofs with sets of assumptions S1, . . . , Sn and conclusions s1, . . . , sn, respec-
tively, and if ({s1, . . . sn}, s0) is an instance of a rule in GL, then the tree (denoted
by)

P1 . . . Pn
s0

is a proof with set of assumptions S1∪· · ·∪Sn and conclusion s0. If there is a proof
of a sequent s in GL from assumptions S, then we write S `GL s and say that s
is provable in GL from S. If S is empty we simply write `GL s and say that s is
provable in GL. For more on GL, see [10].

We take W ′ = SW ×Fm, where SW is the set of all unary linear polynomials in
W and define the relation N by

x N (u, a) iff `GL (u(x) ⇒ a).
Then

x ◦ y N (u, a) iff `GL u(x ◦ y) ⇒ a iff x N (u( ◦ y), a) iff y N (u(x ◦ ), a).
Hence N is a nuclear relation where the appropriate subsets of W ′ are given by

(u, a)�x = {(u( ◦ x), a)} and x(u, a) = {(u(x ◦ ), a)}.
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We denote the resulting residuated frame by WGL.
Let Fm be the countably generated absolutely free algebra over the language

of FL-algebras. Unlike some of the previous examples we cannot expect the map
x 7→ {x}C to be an embedding of Fm into W+

GL. However in Section 4 we show
that this map has some weak properties of a homomorphism, referred to as a quasi-
homomorphism in [2].

We will use this quasi-homomorphism to prove the cut-elimination property for
GL, namely that the system obtained from GL by removing (all instances of) the
cut rule has exactly the same provable sequents as GL.

We say that an r`u-groupoid G satisfies the sequent x ⇒ a (also that the sequent
holds or is valid in G) if for every homomorphism f : Fm→G, f(xFm) ≤ f(a).
Here xFm denotes the formula obtained from x by replacing ◦ with ·. The following
theorem states that GL is sound with respect to the variety of r`u-groupoids. The
proof proceeds by induction on the rules (and axioms) of GL.

Lemma 3.2. (Soundness) [10] Every sequent that is provable in GL is valid in all
r`u-groupoids.

We will show in Section 4 that the converse is also true, i.e., r`u-groupoids
provide a complete semantics.

The system GLa is defined to be GL augmented by the structural rule of asso-
ciativity

u((x ◦ y) ◦ z) ⇒ c

u(x ◦ (y ◦ z)) ⇒ c
(a)

The double line means that we assume two rules, the one stated (read downwards)
and its inverse (read upward). Other structural rules can be added to obtain fur-
ther basic substructural logic systems, exchange, contraction, left weakening (or
integrality) and right weakening

u(x ◦ y) ⇒ c

u(y ◦ x) ⇒ c
(e)

u(x ◦ x) ⇒ c

u(x) ⇒ c
(c)

u(ε) ⇒ c

u(x) ⇒ c
(i) x ⇒ ε

x ⇒ a (o)

The (o) rule only applies to an extension GL0 of GL with the rules
x ⇒ ε
x ⇒ 0 (0R) 0 ⇒ ε

(0L)

Note that a residuated frame for the system GL0 uses W ′ = SW × (Fm ∪ {ε}). It
is easy to see that the sequent x ⇒ ε is provable in GL0 iff the sequent x ⇒ 0 is
provable. Also, the systems GL and GL0 prove the same sequents with non-empty
right-hand side. In that sense the two systems are essentially equivalent, but GL0

supports the addition of further structural rules, like (o). We extend the subscript
notation, so for example GLae is GL plus associativity and exchange. Furthermore
we abbreviate the combination of (i) and (o) to weakening (w). The system GL0

aecw

is equivalent to Gentzen’s original system LJ for intuitionistic logic.

The system FL. The Gentzen system FL is an associative version of GL0. The
only difference is that now W (containing the left-hand sides of sequents) is defined
as the free monoid over the set Fm of formulas. Consequently, x, y, z range over
sequences of formulas. Note that FL has the same rules as GL, but different rule
instances. Traditionally sequents like u(a) ⇒ d are denoted by Γ, A, ∆ ⇒ δ. The
system FL was introduced by H. Ono in [17] and is called full Lambek calculus. In
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a ≤ b u(b) ≤ c

u(a) ≤ c
(cut)

a ≤ a
(id)

a ≤ b c ≤ d

ac ≤ bd
(·r)

a ≤ b u(c) ≤ d

u(a(b\c)) ≤ d
(\l) ab ≤ c

b ≤ a\c
(\r)

a ≤ b u(c) ≤ d

u((c/b)a) ≤ d
(/l)

ab ≤ c

a ≤ c/b
(/r)

u(a) ≤ c

u(a ∧ b) ≤ c
(∧l`)

u(b) ≤ c

u(a ∧ b) ≤ c
(∧lr) a ≤ b a ≤ c

a ≤ b ∧ c
(∧r)

u(a) ≤ c u(b) ≤ c

u(a ∨ b) ≤ c
(∨l) a ≤ b

a ≤ b ∨ c
(∨r`)

a ≤ c

a ≤ b ∨ c
(∨rr)

|u| ≤ a

u(1) ≤ a
(1l) a ≤ b 1 ≤ c

a ≤ bc
(1r`)

1 ≤ b a ≤ c

a ≤ bc
(1rr)

Figure 2. The system PL.

contrast, Lambek calculus is a system without connectives and rules for ∧, ∨, 1 and
0.

Since ◦ is an associative operation, we omit any parentheses. In fact ◦ is tradi-
tionally denoted by comma, and the elements of W are concretely realized as finite
sequences of formulas. On the other hand the operation · on Fm is not associa-
tive. Note that if a, b, c, d are formulas from the sequent a ◦ b ◦ c ⇒ d by using two
applications of (·L) we can prove the distinct sequents (a·b)·c ⇒ d and a·(b·c) ⇒ d.

Note that FL is equivalent to the system GLa. Likewise, FLe is equivalent
to GLae. As shown by the next result, the naming similarity between FL and
FL-algebras is not a coincidence.

Lemma 3.3. [9] Every sequent that is provable in FL is valid in all FL-algebras.

It turns out that FL is an equivalent algebraic semantics for FL. For more on
FL, see for example [8]. The corresponding residuated frame WFL is associative.

The systems PL and PL′a. The algebraic Gentzen system PL is given in Figure 2.
Apart from the superficial replacement of the separator ⇒ by the symbol ≤, in PL
a sequent is identified with a pair of formulas (or terms) from Fm. Therefore a, b, c
range over formulas and u ranges over unary linear polynomials of the groupoid
(Fm, ·), where · is the operation corresponding to the connective of Fm. The
phrase “algebraic Gentzen system” refers to the fact that sequents can be considered
inequations, since both sides are algebraic terms. In (1l) |u| denotes the formula
resulting from u(1) by reducing the formula as if this occurrence of 1 were an
identity for “·”.
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We define W = Fm, and ◦ on W by a ◦ b = a · b, if neither of a, b is 1, and by
a◦1 = a = 1◦a. Clearly (W, ◦, 1) is a groupoid with unit. We define W ′ = SW×Fm
and the relation N by

x N (v, a) iff `PL v(x) ⇒ a.
Note that v is different than the u used in the definition of PL, as it involves ◦
(which in turn is evaluated as · most of the times). The relation N is nuclear for
the same reasons as in GL. We denote the associated residuated frame by WPL.

The subscript notation referring to the basic structural rules (e), (c), (i) and (o)
is defined also for PL. So PLa is obtained by adding the associativity rule (a) to
PL.

Lemma 3.4. Every sequent that is provable in PLa is valid in all FL-algebras.
The same holds for PL and r`u-groupoids.

In [14] another associative version PL′a of PLa is defined that is more of an
algebraic rendering of FL than of GLa. Unlike in the system PLa, where the two
sides of the sequents (i.e., elements of W ) are formulas, in PL′a they are equivalence
classes of formulas. Let ≡m be the congruence on the algebra Fm that makes the
identifications 1 · a ≡m a ≡m a · 1 and (a · b) · c ≡m a · (b · c), for all a, b, c ∈ Fm.
The relation ≡m is the least congruence such that the quotient (Fm/≡m, ·, 1) is a
monoid. We define (W, ◦, 1) to be this monoid and sequents to be pairs (a, b) of
elements of W (but use the notation a ≤ b). Apart from this modification, the
system PLa is defined by the same set of rules as PL. In other words, the two
systems have the same rules, but they have different rule instances, very much like
in the case of GL and FL.

Similar considerations allow the definition of systems like PL′ae. Also, frames
like WPLa and WPL′a are defined in the obvious way.

Lemma 3.5. [14] Every sequent that is provable in PL′a is valid in all FL-algebras.

The system ML. The algebraic Gentzen system ML given in Figure 3 was defined
in [15], and is based on the same sequents as PL.

One can observe that the rules do not mention unary linear polynomials, but
instead the rules (\res) and (/res) are bidirectional (their inverses are also assumed
in the system). We mention that the use of the context in the form of sections u was
necessary in PL in order to be able to access deep inside a formula and apply the
left rules. The same effect is accomplished in ML by the use of the two bidirectional
rules: we use the rules downward to isolate in the left-hand side of ≤ the part we
want to access, apply the desired left-hand side rule and use the bidirectional rules
applied upward to move back the shifted context. This is also seen in the proof of
the fact that N is nuclear, which holds for different reasons than in PL.

Lemma 3.6. [15] Every sequent that is provable in ML is valid in all r`u-groupoids.

We take W = W ′ = Fm, ◦ is defined as in WPL and N is defined by
x N y iff `ML x ≤ y.

We have
x ◦ y N z iff `ML (x ◦ y ≤ z) iff `ML (x ≤ z/y) iff x N z/y iff y N x\z.

So, y�x = {y/x} and xy = {x\y}. The resulting residuated frame is denoted by
WML.
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a ≤ b b ≤ c
a ≤ c

(tr)
a ≤ a

(id)
a ≤ b c ≤ d

ac ≤ bd
(·)

a ≤ b c ≤ d

b\c ≤ a\d
(\o)

ab ≤ c

b ≤ a\c
(\res)

a ≤ b c ≤ d

c/b ≤ d/a
(/o)

ab ≤ c

a ≤ c/b
(/res)

a ≤ c

a ∧ b ≤ c
(∧lt`)

b ≤ c

a ∧ b ≤ c
(∧ltr)

a ≤ b a ≤ c

a ≤ b ∧ c
(∧rt)

a ≤ c b ≤ c

a ∨ b ≤ c
(∨lt)

a ≤ b

a ≤ b ∨ c
(∨rt`)

a ≤ c

a ≤ b ∨ c
(∨rtr)

a ≤ c b ≤ 1
ab ≤ c

(1r`)
a ≤ 1 b ≤ c

ab ≤ c
(1rr)

a ≤ b 1 ≤ c

a ≤ bc
(1r`)

1 ≤ b a ≤ c

a ≤ bc
(1rr)

Figure 3. The system ML.

4. Gentzen frames

After a short discussion of the similarities of the previous examples, we define
a common abstraction called a Gentzen frame. This allows us to prove a quasi-
homomorphism result that yields simultaneously the three embeddings claimed in
the last section and will be instrumental in obtaining the new results in the paper.

Note that in WGL, if a N (u, c) and b N (u, c), then `GL u(a) ⇒ c and
`GL u(b) ⇒ c. In view of the rule (∨L), we obtain `GL u(a ∨ b) ⇒ c, namely
a ∨ b N (u, c). Therefore, in WGL we have the implication

if a N z and b N z, then a ∨ b N z.
The same argument works for WPL, WPLa , WPL′a and WFL. Note that the
implication also holds in WML for similar, but slightly different reasons, since we
do not have a context u.

Interestingly enough, the same implication holds for WG, where G is a GL-
algebra. Indeed, if a N c and b N c, then a ≤ c and b ≤ c, so a ∨ b ≤ c and
a ∨ b N c. Furthermore, if A is a r`u-groupoid, B a partial subalgebra of A and
a, b, a∨ b ∈ B, then a N c and b N c, namely a ≤ c and b ≤ c implies a∨ b ≤ c and
a ∨ b N c.

In other words, the above implication, which we also write in the form

a N z b N z
a ∨ b N z

(∨L)

holds in the residuated frames WGL, WFL, WPL, WML, WPL′a , WG, WA,B, for
all z ∈ W ′ and all a, b that are elements of Fm for the first four frames, elements of
Fm/≡m for WPL′a , elements of G for WG, and elements of B for WA,B. Note that
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the sets Fm, Fm/≡m, G and B are subsets of W , in the corresponding frames, and
they actually generate it as a groupoid under the operation ◦. Moreover, they are
all (partial) L-algebras. Furthermore, these sets can be identified with a subset of
W ′ and their elements are exactly the right-hand sides of the sequents in each case.
In the case of WGL, WFL, WPL, WPL′a , every b ∈ Fm can be identified with the
element (id, b) of W ′, where id is the identity polynomial. The same identification
works for elements of B for WA,B. Finally, in the case of WML and WG the
corresponding set Fm or G is the set W ′ itself.

The above considerations lead to the following definition about a pair of a resid-
uated frame and a special partial L-algebra.

Definition and quasi-homomorphism. A Gentzen ru-frame is a pair (W,B)
where

(i) W = (W,W ′, N, ◦,,�, {ε}) is a ru-frame with ◦ a binary operation,
(ii) B is a partial L-algebra,
(iii) (W, ◦, ε) is a groupoid with unit generated by B ⊆ W ,
(iv) there is an injection of B into W ′ (under which we will identify B with a

subset of W ′) and
(v) N satisfies the rules of GN (Figure 4) for all a, b ∈ B, x, y ∈ W and z ∈ W ′.

A rule is understood to hold only in case all the expressions in it make sense.
For example, (∧L`) is read as, if a, b, a ∧ b ∈ B, z ∈ W ′ and a N z, then a ∧ b N z.

x N a a N z
x N z

(CUT)
a N a

(Id)

x N a b N z
x ◦ (a\b) N z

(\L) a ◦ x N b
x N a\b

(\R)

x N a b N z
(b/a) ◦ x N z

(/L) x ◦ a N b
x N b/a

(/R)

a ◦ b N z
a · b N z

(·L)
x N a y N b

x ◦ y N a · b (·R)

a N z
a ∧ b N z

(∧L`) b N z
a ∧ b N z

(∧Lr) x N a x N b
x N a ∧ b

(∧R)

a N z b N z
a ∨ b N z

(∨L) x N a
x N a ∨ b

(∨R`) x N b
x N a ∨ b

(∨Rr)

ε N z
1 N z

(1L)
ε N 1

(1R)

Figure 4. The system GN.

A Gentzen ruz-frame is a Gentzen ru-frame extended with the set {ε}C, and
(iv),(v) are modified as follows:
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(iv’) there is an injection of B∪{ε} into W ′ (under which we will identify B∪{ε}
with a subset of W ′) and

(v’) N satisfies the rules of GN (Figure 4) for all a, b ∈ B, x, y ∈ W and z ∈ W ′

as well as
x N ε
x N 0

(0R)
0 N ε

(0L)

A cut-free Gentzen frame is defined in the same way, but it is not stipulated to
satisfy the (CUT) rule. A sequent in the (possibly cut-free) Gentzen frame (W,B)
is an element of W ×B. We use the notation x ⇒ a, or x ≤ a for such a pair.

Lemma 4.1. Keeping the notation of the previous section, (WG,G), (WA,B,B),
(WGL,Fm), (WFL,Fm), (WPL,Fm), (WPL′a ,Fm/≡m) and (WML,Fm) are
Gentzen frames.

Proof. To check that WPL satisfies GN, we focus on the rules for product and 1,
as the other are immediate. The rule (·L) of GN reads as

v(a ◦ b) ≤ c

v(a · b) ≤ c

for WPL. If neither of a, b are 1, then the two inequalities in the rule are identical.
If one of them is 1, then the rule is a consequence of the rule (1l) of PL. Likewise,
the rule

a ≤ b c ≤ d

a ◦ c ≤ bd
(·R)

follows from (·r), (1r`) and (1rr) of PL. The rule (1L) of GN is immediate and
(1R) are follows from (id), as εW = 1.

The argument for WML is similar. For (·R), we now use the rules

a ≤ c
a1 ≤ c

b ≤ c

1b ≤ c

which follow from (1r`) and (1rr). This also shows that the last two rules of ML
can be simplified slightly.

The verification for the remaining frames is straight forward. �

We will see more Gentzen frames later. The following theorem will yield a
common generalization of the promised embeddings of the previous section.

Theorem 4.2. Let (W,B) be a cut-free Gentzen ru-frame. For all a, b ∈ B,
X, Y ∈ W+ and for every connective •, if a •B b is defined, then

(i) 1B ∈ γN (ε) ⊆ {1B}C.
(ii) If a ∈ X ⊆ {a}C and b ∈ Y ⊆ {b}C, then a •B b ∈ X •W+

Y ⊆ {a •B b}C.
(iii) In particular, a •B b ∈ {a}C •W+ {b}C ⊆ {a •B b}C.
(iv) If, additionally, N satisfies (CUT) then {a}C •W+ {b}C = {a •B b}C.

Furthermore, if (W,B) is a cut-free ruz-frame we have
(v) 0B ∈ {ε}C ⊆ {0B}C.

Proof. (i) Here • = 1, so by assumption 1B is defined. By (1R), we have ε ∈ {1B}C,
so γN (ε) ⊆ {1B}C.

On the other hand, if γN (ε) ⊆ {z}C, then ε ∈ {z}C and ε N z. Therefore
1B N z by (1L), and hence 1B ∈ {z}C. Thus, 1B ∈ γN (ε).
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(ii) We will give the proof for the connectives ∨, · and \. The proof for the
remaining two connectives follows the same ideas.

Let • = ∨. If x ∈ X, then x ∈ {a}C, or equivalently x N a. By (∨R`),
x N a ∨ b, hence x ∈ {a ∨ b}C. Consequently X ⊆ {a ∨ b}C, and similarly,
we obtain Y ⊆ {a ∨ b}C using (∨Rr). Therefore X ∪ Y ⊆ {a ∨ b}C and hence
X ∨ Y = γN (X ∪ Y ) ⊆ {a ∨ b}C.

On the other hand, let z ∈ W ′ and assume X ∨ Y ⊆ {z}C. Then a ∈ X ⊆
X∨Y ⊆ {z}C, so a N z. Similarly, b N z, so a∨b N z by (∨L), hence a∨b ∈ {z}C.
Thus, a ∨ b ∈ X ∨ Y , by Corollary 2.4.

Let • = ·. If x ∈ X and y ∈ Y , then x ∈ {a}C and y ∈ {b}C, i.e., x N a and
x N b. It follows from (·R) that x ◦ y N a · b, hence x ◦ y ∈ {a · b}C. Consequently,
X ◦ Y ⊆ {a · b}C and therefore X ·W+

Y = γN (X ◦ Y ) ⊆ {a · b}C.
On the other hand, let z ∈ W ′ and assume X ·W+

Y ⊆ {z}C. Since a ◦ b ∈
X ◦ Y ⊆ γN (X ◦ Y ) = X ·W+

Y , we have a ◦ b ∈ {z}C, so a ◦ b N z. Consequently,
a · b N z, by (·L), hence a · b ∈ {z}C. Thus, a · b ∈ X · Y .

Let • = \. If x ∈ X\W+
Y then X ◦ {x} ⊆ Y . Since a ∈ X and Y ⊆ {b}C, we

have a ◦ x ∈ {b}C, i.e., a ◦ x N b. By (\R) we obtain x N a\b, hence x ∈ {a\b}C.
On the other hand, if Y ⊆ {z}C, then b ∈ {z}C, so b N z. For all x ∈ {a}C, x N

a, so x ◦ (a\b) N z, by (\L), i.e., x ◦ (a\b) ∈ {z}C, for all x ∈ {a}C. Consequently,
{a}C ◦ {a\b} ⊆ {z}C, for all {z}C that contain Y , so {a}C ◦ {a\b} ⊆ Y . Since
X ⊆ {a}C, we have X ◦ {a\b} ∈ Y , so a\b ∈ X\W+

Y .
Statement (iii) is a direct consequence of (ii) for X = {a}C and Y = {b}C.
(iv) We first show that if (CUT) holds and c ∈ Z ⊆ {c}C then {c}C = Z. If

x ∈ {c}C, then x N c. To show that x ∈ Z, let Z ⊆ {z}C, for some z ∈ W ′. Since
c ∈ Z by assumption, we get c ∈ {z}C, or equivalently c N z. By (CUT) we obtain
x N z, namely x ∈ {z}C. Consequently, x ∈ Z by Corollary 2.4.

Taking c = a • b and Z = {a}C • {b}C, we obtain {a}C • {b}C = {a • b}C from
(ii).

(v) The (0L) rule immediately implies that 0 ∈ {ε}C, and it follows from (0R)
that x ∈ {ε}C implies x ∈ {0B}C for any x ∈ W . Hence {ε}C ⊆ x ∈ {0B}C. �

Note that the conditions in GN are not only sufficient, but also necessary for
condition (ii). We mention that there is a generalization of the above theorem that
refers to a notion of a Gentzen frame where W is not necessarily a groupoid and B
is a relational structure, but we do not have any applications at this point and we
do not state or prove it.

Corollary 4.3. If (W,B) is a Gentzen frame, the map x 7→ {x}C from B to W+

is a homomorphism from the partial algebra B into the r`u(z)-groupoid W+.

If (W,B) is a cut-free Gentzen frame, then x 7→ {x}C comes close to being a
homomorphism, hence it is called a quasi-homomorphism.

In a cut-free Gentzen frame (W,B) the relation N is called antisymmetric on
B if, for all a, b ∈ B, a N b and b N a implies a = b.

Corollary 4.4. If (W,B) is a (cut-free) Gentzen frame and N is antisymmetric
on B, then the map x 7→ {x}C from B to W+ is a (quasi-)embedding.

Proof. We only need to show that the map in injective. Assume {a}C = {b}C, for
a, b ∈ B. Recall that a ∈ {a}C and b ∈ {b}C, so a N b and b N a. Consequently,
a = b. �
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Embedding into the DM-completion and representation. Clearly if G is
an r`u-groupoid, the Galois relation ≤ of WG is antisymmetric on G.

Corollary 4.5. Let G be an r`u-groupoid. The map x 7→ {x}C from G to W+
G is

an embedding.

Therefore every residuated lattice can be embedded into a complete one.

Corollary 4.6. [5] Every residuated lattice is a subalgebra of the nucleus image of
the power set of a monoid.

It follows from the proof of this result that commutative residuated lattices are
represented by commutative monoids. More generally, since all monoid identities
are preserved by nuclei, residuated lattices defined by monoid equations that are
preserved under the powerset construction are represented by the class of monoids
that satisfy these identities. This includes all linear and balanced monoid identities
(where an identity is linear if each variable appears at most once on each side, and
balanced if each variable appears on both sides).

5. Cut elimination

The cut elimination property for a Gentzen system states that the set of provable
sequents does not change if the cut rule is removed from the system. Since the effect
of the cut rule cannot be simulated by composing the other rules (the cut rule is
not derivable) traditional arguments of cut elimination try to replace the cut rule
locally, by exploring the particulars of each occurrence of the rule. Such arguments
consist of an algorithm for rewriting proofs and in each rewriting step the resulting
proof is simpler (according to some complexity measure). The idea is that the proof
is rewritten locally so that the cut rules are pushed upward in the proof until they
finally disappear. The argument usually proceeds by double induction and consists
of a tedious case analysis.

A semantical proof of the cut elimination for FL is given in [2]. This method
was then extended in [10] to systems including GL, FL, FLec and various other
extensions. We will obtain the cut elimination for all the above systems, as well as
for PL, PL′a and ML among others, as corollaries of a general theorem. Note that
the notion of a sequent differs in these systems. To account for this we will prove
the theorem in a general setting and then instantiate it to the particular cases.

Cut elimination for GN. Let (W,B) be a cut-free Gentzen ru(z)-frame. From
now on we assume that B is a total L-algebra. For every homomorphism f : Fm→
B, we let f̄ : Fm→W+ be the L-homomorphism that extends the assignment p 7→
{f(p)}C, for all variables p of Fm. [More generally, we may define the assignment
by p 7→ Qp, where Qp is any set such that {f(p)}BC ⊆ Qp ⊆ {f(p)}C.]

Lemma 5.1. If (W,B) is a cut-free Gentzen frame and B a total algebra, then
for every homomorphism f : Fm → B, we have f(a) ∈ f̄(a) ⊆ {f(a)}C, for all
a ∈ Fm. If (W,B) is a Gentzen frame, then f̄(a) = {f(a)}C, for all a ∈ Fm.

Proof. Let f : Fm→B be a homomorphism. By definition of f̄ and the axiom (id),
the statement holds for the propositional variables. For a = 1, by Theorem 4.2(i),
we have f(1) = 1B ∈ γN (ε) = 1W+ ⊆ {1B}C = {f(1)}C. We proceed by in-
duction. Assume that f(a) ∈ f̄(a) ⊆ {f(a)}C and f(b) ∈ f̄(b) ⊆ {f(b)}C. By
Theorem 4.2(iii), for each connective •, we have f(a) •B f(b) ∈ f̄(a) •W+

f̄(b) ⊆
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{f(a) •B f(b)}C. Since f and f̄ are homomorphisms, we have f(a • b) ∈ f̄(a • b) ⊆
{f(a • b)}C. Finally, if (W,B) is a Gentzen frame, then f̄(a) = {f(a)}C, by
Theorem 4.2(iv). �

To account for the different types of sequents in the applications we will use
the most general type. For this section an (intuitionistic) sequent is an element
of Fm◦ × Fm, where Fm◦ = (Fm◦, ◦, ε) denotes the absolutely free algebra in the
signature {◦, ε} over the set Fm. We use the notation x ⇒ a for sequents.

Let (W,B) be a Gentzen frame. Note that every map f : Fm → B extends
inductively to a map f◦ : Fm◦→W by f◦(x ◦Fm◦

y) = f◦(x) ◦W f◦(y). Likewise,
every homomorphism f : Fm→G into an L-algebra G extends to a homomorphism
f◦ : Fm◦ → G. A sequent x ⇒ a is said to be valid in (W,B), if for every
homomorphism f : Fm→ B, we have f◦(x) N f(a). A sequent x ⇒ a is said to
be valid in a residuated `-groupoid G, if it is valid in the Gentzen frame (WG,G),
namely if for all homomorphisms f : Fm→G, we have f◦(x) ≤ f(a).

Theorem 5.2. If (W,B) is a cut free Gentzen r(u)(z)-frame, then every sequent
that is valid in W+ is also valid in (W,B).

Proof. Assume that x ⇒ a is valid in W+ and let f : Fm → B be a homomor-
phism. We will show that f◦(x) N f(a). Since x ⇒ a is valid in W+, for the
homomorphism f̄ : Fm→W+, we have f̄(x) ⊆ f̄(a). If x = tFm◦

(b1, . . . , bn), for
b1, . . . , bn ∈ Fm, then f̄(x) = f̄(xFm◦

(b1, . . . , bn)) = xW+
(f̄(b1), . . . , f̄(bn)). By

Lemma 5.1, f̄(a) ⊆ {f(a)}C and f(b) ∈ f̄(b), for all formulas b of t. Hence

f◦(x) = f◦(tFm◦
(b1, . . . , bn))

= t(W,◦)(f(b1), . . . , f(bn)) (f◦ is a homomorphism extending f)
∈ tP(W )(f̄(b1), . . . , f̄(bn)) (◦ in P(W ) is element-wise)
⊆ tW

+
(f̄(b1), . . . , f̄(bn)) (γN is a closure operator)

= f̄◦(x)

It follows that f◦(x) ∈ f̄◦(x) ⊆ f̄(a) ⊆ {f(a)}C, and therefore f◦(x) ∈ {f(a)}C,
i.e., f◦(x) N f(a). �

Remark 5.3. Theorem 5.2 is valid even in case B is a partial algebra. The neces-
sary modifications in various parts of the section are easy. Given a partial homo-
morphism from Fm to B, we can define a set of homomorphisms f̄ : Fm→W+

that extend the composition of f and { }C. For each such f̄ , Lemma 5.1 holds.
Validity of a sequent in a (cut-free) Gentzen frame is defined with the precondition
that all operations are defined; Theorem 5.2 remains valid.

Corollary 5.4. (Adequacy) If a sequent is valid in RLUG, then it is valid in all
cut-free Gentzen ru-frames.

Completeness and cut elimination. Combining the soundness of the various
Gentzen systems given in Lemmas 3.2, 3.3, 3.4, 3.6 with respect to RLUG, and their
adequacy given as part of Corollary 5.4, we have the completeness of these systems.

Corollary 5.5. (Completeness, cf. [10]) A sequent is provable in GL (PL or ML)
iff it is valid in RLUG. The same holds for FL and the systems GLa, FL, PLa and
PL′a.

A Gentzen frame is said to have the cut-elimination property if it satisfies the
same sequents as its cut-free version.



20 NIKOLAOS GALATOS AND PETER JIPSEN

Theorem 5.6. (Cut elimination) If a given (associative) Gentzen ru-frame is
sound for RLUG (or FL), then the frame has the cut-elimination property.

Proof. By assumption, every sequent that is valid in the frame is also valid in RLUG.
By Corollary 5.4 it is also valid in the cut-free version of the frame. The converse
direction is obvious. �

An inference rule is admissible if its addition does not lead to more provable
sequents. Note that only the admissibility of the rules (of GL) is used in the proof.

Now, combining the soundness results with Theorem 5.6 we obtain the following.

Corollary 5.7. The systems GL, GLa, FL, PL, PLa, PL′a and ML enjoy the
cut elimination property.

Proof. For GL, note that if `GL x ⇒ a, then |=RLUG x ⇒ a, so W+
cfGL |= x ⇒ a,

where W+
cfGL is the frame associated with cut-free GL. By Theorem 5.2, we have

(WcfGL,Fm) |= x ⇒ a, so `cfGL x ⇒ a. �

Note that validity in the (cut-free) Gentzen system is equivalent to validity in
the class RLUG, or FL in the associative case.

Decidability. The cut elimination property allows for an effective decision proce-
dure for determining if a given sequent is provable or not.

Corollary 5.8. Each of the systems GL, GLa, FL, PL, PLa PL′a and ML has
a decidable set of provable sequents.

Proof. Given a sequent we perform a exhaustive proof search in the cut free system
by constructing all possible proof figures with the sequent as the end result. This is
done by matching the sequent with the denominators of the rules, which can only
be done in finitely many ways, and applying the rule (working upwards) for each
step. This process terminates for cut-free GL, GLa, FL, PL and PLa, because all
sequents in the numerators of the rules have fewer connectives than the sequent in
the denominator. In PL′a the identification of the formulas by the relation ≡m adds
only a finite number of matching terms within each equivalence class. Likewise, in
ML the application of the bidirectional rules produces only a finite number of
sequents to be investigated at each step. �

Corollary 5.9. The varieties RLUG and FL have decidable equational theories.

Cut elimination with simple structural rules. It is well known that for ex-
ample FLe also has the cut elimination property. In [10], and independently in
[21], the same is shown for systems obtained from GL by adding certain structural
rules, including the basic ones. Here we prove cut elimination for many extensions
of the systems we have considered in the last section (see Cor. 5.16).

Let t0, t1, . . . , tn be elements of the absolutely free algebra in the signature {◦, ε}
over a countable set of variables, with t0 a linear term, and let (W,B) be a Gentzen
frame. As usual, tWi denotes the term function on W defined by ti.

A simple rule is of the form
t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn. For example exchange, contrac-
tion, integrality and associativity are simple structural rules. We say that (W,B)
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satisfies this rule if for all z ∈ W ′, and for all sequences x̄ of elements of W matching
the variables involved in t0, t1, . . . , tn, the conjunction of the conditions tWi (x̄) N z,
for i ∈ {1, . . . , n}, implies tW0 (x̄) N z.

Note that ti and the term function tFm
i on the algebra (Fm, ·, 1) are interdefin-

able, once we fix a bijection between the sets of variables of the two related algebras.
Also, the rule (r) and the inequality ε = (tFmL

0 ≤ tFm
1 ∨· · ·∨tFm

n ) are interdefinable.
We denote by ε(r) the inequality corresponding to the above rule and by R(ε) the
rule corresponding to the above inequality. Such equations are called simple.

In RLUG, every equation ε over {∨, ·, 1} is equivalent to a conjunction of inequal-
ities of the form above. To show this we distribute all products over all joins to
reach a form s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn, where si, tj are unital groupoid terms.
Such an equation is in turn equivalent to the conjunction of the two inequalities
s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm. Finally, the first
one is equivalent to the conjunctions of the inequalities sj ≤ t1 ∨ · · · ∨ tn. Like-
wise, the second inequality is written as a conjunction, as well. We now rewrite
each of the conjuncts, say s ≤ t1 ∨ · · · ∨ tn, in a form for which s is a linear term.
For each variable x that appears k > 1 times in s, we replace each occurrence of
x in the equation by x1 ∨ x2 ∨ · · · ∨ xk, where x1, . . . , xk are fresh variables. As
multiplication distributes over join, the new equation can be written in the form
s′1 ∨ · · · ∨ s′p ≤ t′1 ∨ · · · ∨ t′q, where all the terms are products of variables. Let s′l be
one of the k!-many linear terms among s′1, . . . , s

′
p. The last equation clearly implies

the equation s′l ≤ t′1∨· · ·∨ t′q, but it is actually equivalent to it, as the latter implies
s ≤ t1 ∨ · · · ∨ tn by setting all duplicate copies of each variable equal to each other.
Given an equation ε, let R(ε) denote the set of rules associated with each of these
conjuncts (inequalities) obtained from ε in the way described above.

In the way of transforming simple rules to equations over {∨, ·, 1} and vice versa
we established the following lemma, whose proof-theoretic analogue appears in [21].

Lemma 5.10. Every equation over {∨, ·, 1} is equivalent to a conjunction of simple
equations.

Lemma 5.11. Every equation ε over {∨, ·, 1} is equivalent, relative to RLUG, to
R(ε). More precisely, for every G ∈ RLUG, G satisfies ε iff WG satisfies R(ε).

Proof. It suffices to show the lemma for the case where ε is of the form tFm
0 ≤

tFm
1 ∨· · ·∨tFm

n . Clearly WG satisfies R(ε) iff G satisfies the implication: if tFm
i ≤ z

for all i ∈ {1, . . . , n}, then tFm
0 ≤ z, for all propositional variables z, which by

lattice-theoretic considerations is equivalent to ε. �

Theorem 5.12. Let (W,B) be a cut free Gentzen frame and let ε be an equation
over {∨, ·, 1}. Then (W,B) satisfies R(ε) iff W+ satisfies ε.

Proof. Clearly it suffices to show the lemma for the case where ε is simple, namely
of the form tFm

0 ≤ tFm
1 ∨ · · · ∨ tFm

n , where t0 is linear.
Assume that (W,B) satisfies R(ε). Let X̄ = (Xj)j∈J be a sequence of elements

in W+. We will show that εW+
(X̄) holds, i.e., tW

+

0 (X̄) ⊆ tW
+

1 (X̄)∨ · · ·∨ tW
+

n (X̄).
Assume that tW

+

1 (X̄) ∨ · · · ∨ tW
+

n (X̄) ⊆ zC, for some z ∈ W ′. It suffices to show
that tW

+

0 (X̄) ⊆ zC. We have tW
+

1 (X̄) ∪ · · · ∪ tW
+

n (X̄) ⊆ tW
+

1 (X̄) ∨ · · · ∨ tW
+

n (X̄),
so for every i ∈ {1, . . . n}, we have tW

+

i (X̄) ⊆ zC. If xj ∈ Xj , for all j ∈ J , (we
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abbreviate this by x̄ ∈ X̄) and x̄ = (xj)j∈J , then

tWi (x̄) = tWi ((xj)j∈J)
∈ t
P(W)
i (({xj})j∈J) (by the definition of ◦ in P(W))

⊆ t
P(W)
i (X̄) (operations are element-wise)

⊆ γN (tP(W)
i (X̄)) (γN is a closure operator)

= tW
+

i (X̄) ⊆ zC (Lemma 2.6(ii))

It follows that tWi (x̄) N z, for all i ∈ {1, . . . n}. Hence tW0 (x̄) N z, by r(ε)W, and
tW0 (x̄) ∈ zC, for all x̄ ∈ X̄. Since t0 is a linear term, we obtain t

P(W)
0 (X̄) ⊆ zC.

Since zC is a closed set, we have tW
+

0 (X̄) = γN (tP(W)
0 (X̄)) ⊆ zC.

Conversely, assume that W+ satisfies ε. For every sequence X̄ = (Xj)j∈J of
elements in W+, we have tW

+

0 (X̄) ⊆ tW
+

1 (X̄) ∨ · · · ∨ tW
+

n (X̄). In particular, for
Xj = γN ({xj}), where xj ∈ W , we have

tW
+

0 ((γN ({xj}))j∈J) ⊆ tW
+

1 ((γN ({xj}))j∈J) ∨ · · · ∨ tW
+

n ((γN ({xj}))j∈J).

By Lemma 2.6(ii)

γN (tP(W)
0 (({xj})j∈J)) ⊆ γN (tP(W)

1 (({xj})j∈J) ∪ · · · ∪ tP(W)
n (({xj})j∈J)),

hence
γN ({tW0 (x̄)}) ⊆ γN ({tW1 (x̄), . . . , tWn (x̄)}).

Therefore, for all z ∈ W ′, γN ({tW1 (x̄), . . . , tWn (x̄)}) ⊆ zC implies γN ({tW0 (x̄)}) ⊆
zC, namely {tW1 (x̄), . . . , tWn (x̄)} ⊆ zC implies tW0 (x̄) ∈ zC. Consequently, (tW1 (x̄) N
z and . . . tWn (x̄) N z) implies tW0 (x̄) N z, and r(ε) holds in (W,B). �

It follows from Lemma 5.11 that if (W,B) is a Gentzen frame, then W+ satisfies
ε iff W+ satisfies R(ε).

We say that a set R of rules is preserved by ( )+, if for every cut-free Gentzen
frame (W,B), if (W,B) satisfies R then W+ satisfies R. The following corollary
follows directly from Theorem 5.12.

Corollary 5.13. All simple rules are preserved by ( )+.

For example the rules of exchange, weakening, contraction and associativity are
preserved by ( )+. For a given set R of rules a Gentzen R-frame is simply a Gentzen
frame that satisfies R. We denote by RLUGR the subvariety of RLUG axiomatized
by ε(R). By Theorem 5.2 we have the following.

Corollary 5.14. If a sequent is valid in RLUGR, then it is valid in all cut-free
R-Gentzen frames.

Theorem 5.15. Let R be a set of rules that are preserved by ( )+. If a given
Gentzen R-frame is sound for RLUGR, then the frame has the cut-elimination prop-
erty.

Proof. By assumption, every sequent that is valid in the frame is also valid in
RLUGR. By Corollary 5.14 it is also valid in the cut-free version of the frame. The
converse direction is obvious. �

Recall that if R is a set of rules, and L a sequent calculus, then LR denotes the
system obtained from L by adding the set R.
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Corollary 5.16. The systems GLR, FLR, PLR, PL′aR, MLR enjoy the cut elimi-
nation property, for every set R of rules that are preserved by ( )+, and in particular
for the set R = R(ε) with simple rules for an equation ε over {∨, ·, 1}.

Corollary 5.17. The basic systems GLR, where R is a subset of {a, e, c, i} have
the cut elimination property.

Finite model property. We say that a Gentzen system has the finite model
property (FMP), if for every sequent that is not provable there exists a finite coun-
termodel. We will show the FMP for extensions by simple rules of the Gentzen
systems that we have considered.

Recall that a variety is a class of algebras closed under homomorphic images,
subalgebras and direct products. Equivalently, it is an equational class, namely the
class of all algebras that satisfy a given set of equations. A variety is generated by a
class of algebras, if it is the smallest variety that contains this class. We say that a
variety has the finite model property if every non-valid equation is actually falsified
in a finite algebra in the variety. Clearly a variety has the finite model property if
it is generated by (the class of) its finite members.

Let L be a sequent system that enjoys cut elimination and gives rise to a Gentzen
frame. For a sequent s, let s← be the least set of sequents such that

• s ∈ s←

• if ({t1, t2}, t) is an instance of a rule of L (other than cut) and t ∈ s←, then
t1, t2 ∈ s←. (Also, if there is no t2.)

In other words, s← is the set of all sequents involved in an exhaustive proof search
for s.

We say that a simple rule in a sequent system does not increase complexity if the
complexity of each sequent in the numerator is at most as big as the complexity
of the denominator. For simple structural rules, complexity of a sequent can be
defined to be, for example, its length. As there are only finitely many sequents of
the same complexity the addition of such a rule contributes only a finite number of
sequents to s←.

If a system has logical rules with the subformula property and the structural
rules do not increase complexity (i.e., there is an upper bound on the number of
commas), then all possible sequents in a proof search will be among sequents with a
bounded number of commas and formulas taken from the finite set of subformulas
of the original sequent. So, s← will be finite.

Theorem 5.18. The systems GL, FL, PL, PL′a and ML, as well as their exten-
sions with simple rules that do not increase complexity, have the FMP.

Proof. We will give the proof for GL, as the arguments for the other systems
are analogous. We consider the involutive frame WGL = (W,W ′, N, ◦, E) and a
sequent s that is not provable in GL. Let N ′ be the relation defined by

x N ′ (u, a) iff x N (u, a) or (u(x) ⇒ a) 6∈ s←.

To see that N ′ is nuclear, let x, y ∈ W , (u, a) ∈ W ′ and define v(z) = u(z ◦ y),
for all z ∈ W . We have x ◦ y N ′ (u, a) iff x ◦ y N (u, a) or [u(x ◦ y) ⇒ a] 6∈ s←

iff x N (v, a) or (v(x) ⇒ a) 6∈ s← iff x N ′ (v, a). Also, N ′ satisfies the conditions
GN. Indeed, let ({t1, t2}, t0) be a rule of GN and assume that t1, t2 ∈ N ′. If
t1, t2 ∈ N , then t0 ∈ N (since N satisfies GN) and t0 ∈ N ′. Otherwise, t′1 6∈ s←
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or t′2 6∈ s←. Here, if ti = (x, (u, a)), by t′i we denote the sequent u(x) ⇒ a. By the
(contrapositive of the) second condition for s←, we have t′0 6∈ s← and thus again
t0 ∈ N ′. So, (Ws,Fm) is a Gentzen frame, where Ws = (W,W ′, N ′, ◦,,�, E).

Since s← is finite, there are only finitely many x, u, a such that (u(x) ⇒ a) ∈ s←.
Therefore, the complement (N ′)c of N ′ is finite, hence also its image Im((N ′)c) =
{z ∈ W ′ : x (N ′)c z, for some x ∈ W}. If z 6∈ Im((N ′)c), then W N ′ z and
zC = W , where C is with respect to N ′. Therefore, zC 6= W only for the finitely
many z ∈ Im((N ′)c). Consequently, there are only finitely many basic closed sets
and W+

s is finite.
Moreover, s fails in W+

s . Indeed, let s be the sequent x ⇒ a and let b = xFm.
Since s is not provable in GL, then b ⇒ a is not provable either (the two sequents
are interderivable in GL). Moreover, if b ⇒ a would be in s←, then s would be
also, in view of the rule (·L). Hence, b ⇒ a is not in N ′, namely b 6N ′ a and b 6∈ aC.
Since b ∈ bC, we have bC 6⊆ aC. Since (Ws,Fm) is a Gentzen frame, the map
C : Fm→W+

s is a homomorphism by Cor. 4.3. Consequently, the inequality b ≤ a
is not valid in W+

s , so neither is the sequent x ⇒ a. �

Given a sequent s, we can perform a (necessarily terminating) exhaustive proof
search. If on the way we construct a proof of s, then of course s is provable. If
all partial proofs fail to be proofs, then we know s is not provable. Along the way
we have constructed the set s←. This can be used, in turn, to construct the finite
algebra W+

s . Therefore, we have described a constructive method that yields either
a proof or a counterexample for a given sequent.

The result for FL was proved in [16] in the setting of phase spaces, for PL′a
it was shown in [14], and for GL it was proved in [10] in the setting of Gentzen
matrices. It is clear from our proof that the result applies to any sequent system
with the cut elimination property, that has rules that do not increase complexity,
and gives rise to a Gentzen frame.

We note that in the proof of the above theorem in [16], definition of s← includes
the extra condition:

• If u(x) ⇒ a ∈ s←, then u(ε) ⇒ a ∈ s←

As we saw in the proof of Theorem 5.18, this condition is not needed, but it simplifies
the argument of finiteness in [16]. See [10] for a comparison of the two definitions
in the setting of Gentzen matrices.

Note that the addition of the extra condition in the definition of s← simulates
the effect of having the rule (i) of left-weakening (or integrality) in the generation of
sequents in s←, without adding the rule in the system FL. The latter is witnessed by
the fact that in the definition of the relation N ′, the relation N still corresponds to
provability in FL (not in FLi). Surprisingly, even though the additional condition
enlarges s←, it does so in such a way that W+ becomes smaller. (Note that there
is no direct relation between the size of the Galois relation N and the size of W+.)
Alternatively, or additionally, one could add further conditions to the definition of
s←. If s← remains finite (for example by stipulating closure under any simple rule
that does not increase complexity) then the counter-model W+ will be finite, and
actually simpler. Moreover, even in situations where s← is infinite it may happen
that W+ is finite. However, proving that W+ is always finite in such cases would
require additional techniques.
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Finite embeddability property. Let A be a r`u-groupoid and B a partial sub-
algebra of A. Recall that (WA,B,B) is a Gentzen frame. By Corollary 4.4 we
obtain the following result that was originally proved in [4].

Corollary 5.19. The map { }C : B→W+
A,B is an embedding of the partial sub-

algebra B of the r`u-groupoid A into the r`u-groupoid W+
A,B.

Theorem 5.20. If an equation over {∨, ·, 1} is valid in the r`u-groupoid A, then
it is also valid in W+

A,B, for every partial subalgebra B of A.

Proof. By Lemma 5.10 it is enough to consider simple equations ε, namely of the
form t0 ≤ t1 ∨ · · · ∨ tn, where t0 is a linear term. Assume that ε is valid in A, and
let B be a partial subalgebra of A. By Theorem 5.12 and Remark 5.3, to show that
ε is valid in W+

A,B is enough to show that the rule

t1 N (u, c) · · · tn N (u, c)
t0 N (u, c)

R(ε)

is valid in the Gentzen frame (W,B), namely that if u(ti) ≤A c, for all i ∈
{1, . . . , n}, then u(ti) ≤A c; here we abused notation slightly by using, for example,
c initially as a metavariable and then as an element of B. The latter implication
follows directly from the fact that A satisfies ε. �

A class of algebras K is said to have the finite embeddability property (FEP) if
for every algebra A in K and every finite partial subalgebra B of A, there exists
an algebra D in K such that B embeds into D.

Theorem 5.21. Every variety of integral r`u-groupoids axiomatized by equations
over the signture {∨, ·, 1} has the FEP.

Proof. We follow the ideas in [4] to establish the finiteness of W+
A,B. Let k be the

cardinality of the set B = {b1, . . . , bk} and F the free groupoid with unit over k
generators x1, . . . , xk (so all non-unit elements of F are just products of generators).
For s, t ∈ F , we write s ≤F t iff t is obtained from s by deleting some (possibly none)
of the generators. As a degenerate case we allow s ≤F 1. In [4] it is shown that this
relation is a partial order on F such that F has no infinite antichains and no infinite
ascending chains (it is dually well-ordered), using Higman’s Lemma. Moreover it
is shown that under the above order and multiplication F can be expanded to an
integral ru-groupoid F.

Let h : F →W be the (surjective) homomorphism that extends the assignment
xi 7→ bi. Consider the new frame WF

A,B = (F,W ′, h◦N, ·F,h,�h), where x (h ◦N)
z iff h(x) N z, and xhz = h(x)z and z�hy = z�h(y). It is easy to see that h ◦N
is nuclear, so WF

A,B is a residuated frame.
To prove that W+

A,B is finite, it suffices to prove that it possesses a finite basis
of sets zCN = Nz, for z ∈ W ′, where the polarity is calculated with respect to N .
As h is surjective, it suffices to show that there are finitely many sets of the from
zC, for z ∈ W ′, where in this case the polarity is calculated with respect to h ◦N .

For x ∈ F , and (u, b) ∈ W ′, we have x ∈ (u, b)C iff u(h(x)) ≤ b iff h(v(x)) ≤ b,
for some v ∈ SF such that h(v) = u, since h is a surjective homomorphism (here we
have extended h to a map from SF to SW ). Equivalently, v(x) ∈ h−1(↓Ab), for some
v ∈ h−1(u). Now, h−1(u) is a downset in F and, because F is dually well-ordered,
this downset is equal to ↓Mb, for some finite Mb ⊆ F . So, the above statement is
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equivalent to v(x) ≤ m, or to x ≤ m
v , for some v ∈ h−1(u) and some m ∈ Mb. Here

m
v is defined inductively by m

1 = m, m
v·x = m/x

v and m
x·v = x\m

v , where the divisions
are calculated in F. Consequently, (u, b)C = ↓{m

v : m ∈ Mb, h(v) = u}.
Note that the set {m

v : m ∈ Mb, b ∈ B, h(v) = u, u ∈ SW } is finite, being a
subset of the finite set ↑

⋃
b∈B Mb, as m ≤ m

v (or v(m) ≤ m), by integrality. Thus,
there are only finitely many choices for (u, b)C. �

In [4] the FEP is estalished for the cases of whole variety of r`u-groupoids,
as well as for the associative and the commutative subvarieties. This result was
further extended in [22] for case of subvarieties axiomatized by equations of the
form xn ≤ xm. The result also specializes to associative and/or commutative
r`u(z)-groupoids. It is well known that if a finitely axiomatized class of algebras
has the FEP, then it has a decidable universal theory. Hence it is decidable whether
each of these varieties of integral residuated groupoids satisfies a given universal
formula.

The results we have proved so far in the paper work also for poorer signatures
that do not include the connectives ∧, \, /, as the proof of Theorem 4.2 handles
each connective separately. The connectives ∨, ·, 1 need to be present, however, for
all results that rely on the linearization process.

6. Involutive frames

Definition and examples. An involutive (residuated) frame is a structure of the
form W = (W,N, ◦, E,∼,−), where

(i) (W,W,N, ◦, E) is an ru-frame,
(ii) x∼− = x = x−∼, for all x ∈ W (∼ and − are maps on W )
(iii) (y∼ ◦ x∼)− = (y− ◦ x−)∼ [= x⊕ y], for all x, y ∈ W (weak involution)
(iv) x ◦ y N z iff y N x∼ ⊕ z iff x N z ⊕ y−, for all x, y, z ∈ W (nuclear)
(v) (x ◦ E)B = xB = (E ◦ x)B, for all x ∈ W (weak unit)

Recall that x ◦ y = {z | (x, y, z) ∈ ◦}, and we also make use of the convention that
X∼ = {x∼ | x ∈ X} and X− = {x− | x ∈ X}. Note that condition (iii) guarantees
that N is nuclear and we do not need to stipulate it in (i). In particular, we have
xy = x∼ ⊕ y and y�x = y ⊕ x−.

Note that, in view of (ii), condition (iii) can be written equivalently in the form
(x ◦ y)∼∼ = x∼∼ ◦ y∼∼ or (x ◦ y)−− = x−− ◦ y−−.

An involutive groupoid with unit is an algebra G = (G, ◦, 1,∼,−) such that
(G, ◦, 1) is a groupoid with unit, and for all x, y ∈ G, we have ∼−x = x = −∼x
and ∼(x◦y) = ∼y◦∼x. It follows that −(x◦y) = −y◦−x, −(∼y◦∼x) = ∼(−y◦−x)
and ∼1 = −1 = 1. We often prefer the notation x∼ and x− instead of ∼x and −x.
We will use this notation when considering the free involutive groupoid with unit
over the set of formulas, to avoid confusion with the connectives ∼ and −.

A weakly involutive groupoid with unit is an algebra G = (G, ◦, 1,∼,−) such
that (G, ◦, 1) is a groupoid with unit, and for all x, y ∈ G, we have ∼−x = x =
−∼x and −(∼y ◦ ∼x) = ∼(−y ◦ −x). It follows that ∼∼(x ◦ y) = ∼∼x ◦ ∼∼y,
−−(x ◦ y) = −−x ◦ −−y and ∼1 = −1. The operation ⊕ is defined by x ⊕ y =
−(∼y ◦ ∼x) = ∼(−y ◦ −x) and (G,⊕, 1,∼,−) is also a weakly involutive groupoid
with unit.

Note that structures that satisfy conditions (ii) and (iii) are related to weakly
involutive groupoids, which in turn are more general than involutive groupoids.
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x⇒ a a⇒ z
x⇒ z (CUT) a⇒ a (Id)

x⇒ a b⇒ z
x ◦ (a\b)⇒ z

(\L) a ◦ x⇒ b
x⇒ a\b

(\R)

x⇒ a b⇒ z
(b/a) ◦ x⇒ z

(/L) x ◦ a⇒ b
x⇒ b/a

(/R)

a ◦ b⇒ z
a · b⇒ z

(·L)
x⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)

a⇒ z
a ∧ b⇒ z

(∧L`) b⇒ z
a ∧ b⇒ z

(∧Lr) x⇒ a x⇒ b
x⇒ a ∧ b

(∧R)

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L) x⇒ a
x⇒ a ∨ b

(∨R`) x⇒ b
x⇒ a ∨ b

(∨Rr)

ε⇒ z
1⇒ z

(1L)
ε⇒ 1 (1R)

a∼⇒ z
∼a⇒ z (∼L) x⇒ a∼

x⇒∼a (∼R)
a−⇒ z
−a⇒ z

(−L) x⇒ a−

x⇒−a
(−R)

x ◦ y ⇒ z

y ⇒ x∼ ◦ z
(∼)

x ◦ y ⇒ z

x⇒ z ◦ y−
(−)

Figure 5. The system InGL.

The Gentzen system InGL is defined in Figure 5 and is an involutive analogue
of GL. One important difference is that the rules are written without any explicit
reference to a context u. However, the bidirectional rules (∼) and (−) essentially
allow any context to be moved back and forth between the two sides of a sequent.

Metavariables a, b, c range over formulas and x, y over elements of the free invo-
lutive groupoid with unit over the set of formulas. We also consider the Gentzen
system InFL, defined by taking the free involutive monoid, instead. Note that in
InFL, for x = a1, . . . , an (written using comma in place of ◦), we have ε∼ = ε− = ε,
x∼ = a∼n , . . . , a∼1 and x− = a−n , . . . , a−1 . The next result is proved by checking that
each InGL-rule (resp. InFL-rule) is valid in involutive r`u-groupoids (resp. InFL-
algebras).

Lemma 6.1. (Soundness) Every sequent that is provable in InGL is valid in all
involutive r`u-groupoids. The same holds for InFL and InFL-algebras.

Recall that in involutive r`u-groupoids, the negation and the division operations
are interdefinable. Likewise, in the system InGL we can omit the negation or the
division rules and define the omitted connectives in terms of the remaining ones.



28 NIKOLAOS GALATOS AND PETER JIPSEN

Then the omitted rules become derivable in the system. Futhermore, in the same
sense, we can conservatively add the rules:

a⇒ z b⇒ w
a + b⇒ z ◦ w

(+L) x⇒ a x⇒ b
x⇒ a + b

(+R)
0⇒ ε

(0L) x⇒ ε
x⇒ 0 (0R)

and even rules for −· · and −· ·, by taking the duals of the division rules.

The involutive frames WInGL and WInFL are defined in the obvious way, where
x N z iff ` x ⇒ z. In both cases (W, ◦, 1,∼,−} is a involutive groupoid with unit
and x ◦ y = x⊕ y.

It is easy to see that if G is an involutive r`u-groupoid, then WG = (G,≤, ·,∼,−, 1)
is an involutive frame. Note that (G, ·, 1,∼,−) is not a involutive groupoid with
unit, since in general x · y 6= x + y.

Galois algebra. If Y ⊆ W , we define Y ∼ = {y∼ : y ∈ Y } and Y − = {y− : y ∈ Y }.
Also, in involutive frames, we define −Y = Y −C and ∼Y = Y ∼C for Y ⊆ W . Note
that −Y and ∼Y are Galois closed sets.

Lemma 6.2. Let W be an involutive frame, and let x, y ∈ W and X, Y, Z ⊆ W .
Then,

(i) x N y− iff y N x∼.
(ii) ∼E = −E.
(iii) −Y = Y B− = Y −C and ∼Y = Y B∼ = Y ∼C.
(iv) X ◦ Y ⊆ Z iff Y ⊆ ∼(−Z ◦X) iff X ⊆ −(Y ◦ ∼Z), if Z is Galois closed.

Proof. (i) x N y− iff x ◦ E N y− iff E N x∼ ⊕ y− iff E ◦ y N x∼ iff y N x∼.
(ii) x ∈ ∼E = E∼C iff x N E∼ iff x ◦ E N E∼ iff x N E∼ ⊕ E− iff E ◦ x N E−

iff x N E− iff x ∈ E−C = −E.
(iii) For all x ∈ W , we have x ∈ Y −Ciff x N Y − iff Y N x∼ iff x∼ ∈ Y B iff

x ∈ Y B−, by (i).
(iv) We have X ◦ Y ⊆ Z = ZBC iff X ◦ Y N ZB iff Y N X∼ ⊕ ZB iff Y ⊆

(X∼⊕ZB)C. Also, (X∼⊕ZB)C = (X∼⊕ZB)−∼C = (ZB−◦X∼−)∼C = ∼(−Z◦X),
by (iii). Likewise, we prove the second equivalence. �

For an involutive frame W, we know that (W,W,N, ◦, E)+ is a r`u-groupoid (we
will also write 1 for E). We will show that ∼1 = −1 and denote the common value
by 0. We write W+ for the extension of that r`u-groupoid with the element 0.

Corollary 6.3. For any involutive frame W, W+ is an involutive r`u-groupoid.

Proof. Note that the operations ∼ and − are defined independently of the opera-
tions in a r`u-groupoid. We will show that they coincide with the usual negation
operations of an r`u-groupoid, namely that ∼Z = Z\0 and −Z = 0/Z, for all
Z ∈ W+.

We have ∼−Z = ZB−∼C = ZBC = Z, by Lemma 6.2(iii). Likewise, −∼Z = Z.
Also, ∼1 = −1, by Lemma 6.2(i). Finally, by Lemma 6.2(iv), Z\0 = ∼(−0 ◦ Z) =
(E ◦ Z)B∼ = ZB∼ = ∼Z, and likewise 0/Z = ∼Z. Consequently, W+ is an
involutive r`u-groupoid. �

Involutive Gentzen frames. An involutive Gentzen frame is a pair (W,B) where
(i) W = (W,N, ◦, {ε},∼,−) is an involutive frame, where ◦ is an operation
(ii) B is a partial algebra of the type of InGL,
(iii) B is a subset of W that generates (W, ◦, ε,∼,−) and
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(iv) N satisfies GN and the following rules, for all a, b ∈ B, x, y ∈ W and
z ∈ W ′.

x N a
x ◦ (∼a) N ε

(∼L) a ◦ x N ε
x N ∼a

(∼R)

x N a
(−a) ◦ x N z

(−L) x ◦ a N ε
x N −a

(−R)

For example, (WInGL,Fm) and (WInFL,Fm) are involutive Gentzen frames.

Theorem 6.4. Let (W,B) be a cut free involutive Gentzen frame. Then the con-
ditions in Theorem 4.2 hold. Moreover, for all a ∈ B, X ∈ W+, if ∼a and −a are
defined and a ∈ X ⊆ {a}C, then

(i) ∼a ∈ ∼X ⊆ {∼a}C and −a ∈ −X ⊆ {−a}C.
(ii) In particular, ∼a ∈ ∼{a}C ⊆ {∼a}C and −a ∈ −{a}C ⊆ {−a}C.
(iii) If, additionally, N satisfies (CUT) then ∼{a}C = {∼a}C and −{a}C =

{−a}C.

Proof. If Br is the 0-free reduct of B and Wr = (W,W,N, ◦, ε), then (Wr,Br)
satisfies the conditions of a Gentzen frame except for the fact that Br generates
(W, ◦, ε). Nevertheless, this condition is not used in the proof of Theorem 4.2. Since
W+ is simply the expansion of W+

r by 0, the conclusion of Theorem 4.2 holds.
We want to show that ∼X ⊆ {∼a}C. If x ∈ ∼X = X∼C, then x N X∼. Since

a ∈ X, we have x N a∼. By (∼R) we obtain x N ∼a, or x ∈ {∼a}C.
To show that ∼a ∈ ∼X = X∼C we need to prove that ∼a N X∼. We have

X ⊆ {a}C, so X N a and a∼ N X∼, by (∼) and (−). Finally, by (∼L) we get
∼a N X∼. �

Corollary 6.5. If (W,B) is an involutive Gentzen frame, the map { }C : B→W+

is a homomorphism of the partial algebra B into the involutive r`u-groupoid W+.

Embedding into the DM-completion and representation.

Corollary 6.6. Let G be an involutive r`u-groupoid. The map { }C : G→W+
G

is an embedding.

Therefore, every involutive FL-algebra can be embedded into a complete one.

Corollary 6.7. Every InFL-algebra is a subalgebra of the nucleus image of the
power set of a weakly involutive monoid.

Cut elimination. For this section a (classical) sequent is an element of Fmi×Fmi,
where Fmi denotes the free groupoid with unit over the set of negated formulas.
Here negated formulas are elements of the form a∼n or a−n, for a ∈ Fm, defined
inductively by a∼0 = a and a∼(n+1) = (a∼n)∼ (and likewise for a−n). We use the
notation x ⇒ y for sequents.

Let (W,B) be an involutive Gentzen frame. Note that every map f : Fm → B
extends to a groupoid (with unit) homomorphism f◦ : (Fmi, ◦, ε) → (W, ◦, ε) by
f◦(x∼) = (f◦(x))∼, f◦(x−) = (f◦(x))− and f◦(x ◦Fmi

y) = f◦(x) ◦W f◦(y). Like-
wise, every assignment f : Fm → B extends to a groupoid (with unit) homomor-
phism f⊕ : (Fmi, ◦, ε) → (W,⊕, ε∼) by f⊕(x∼) = (f⊕(x))∼, f⊕(x−) = (f⊕(x))−

and f⊕(x ◦Fmi

y) = f⊕(x)⊕W f⊕(y).
Also, every homomorphism f : Fm → G into an L-algebra G extends to a

groupoid (with unit) homomorphism f : Fmi →G. A sequent x ⇒ y is said to be
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valid in (W,B), if for every assignment f : Fm → B, we have f◦(x) N f⊕(y). A
sequent x ⇒ y is said to be valid in an involutive r`u-groupoid G, if it is valid in the
involutive Gentzen frame (WG,G), namely if for all homomorphisms f : Fm→G
we have f◦(x) ≤ f⊕(y).

We would like to mention that if p, q are propositional variables, then the sequent
p ◦ q ⇒ p ◦ q is not provable in InGL. This is in agreement with the fact that the
equation p · q ≤ p + q is not valid in InGL. This indicates why ◦ needs to be
interpreted as · in the left hand side and as + in the right hand side of a sequent.

Also, note that (p ◦ q)∼ ⇒ ∼(p + q) is provable in InGL, but the equation ∼(p ·
q) ≤ ∼(p+q) is not valid in InGL. On the other hand the equation∼(p+q) ≤ ∼(p+q)
is clearly valid. Therefore, the above comment about the interpretation of ◦ on the
two sides of a sequent holds only for occurrences of ◦ not under negations. This is
the reason why we defined (classical) sequents is such a way that all occurrences of
◦ are outermost and all negations are applied to formulas.

Note that we have different interpretations of the comma (also denoted by ◦) on
the two sides of a sequent: comma is interpreted by ◦ on the left and by ⊕ on the
right. This means that for interpretations in an algebra, comma is interpreted as
· and +, respectively. This agrees with the usual practice in semantics for sequent
calculus systems. For classical logic we obtain interpretations by using ∧ and ∨,
respectively.

Also note that the set W in InGL is taken to be a the free involutive groupoid
with unit. On the other hand, in the definition of an involutive frame the set W
is only weakly involutive, whenever the operation ◦ is a function. This should not
create the impression that we can assume the stronger involutive condition in the
definition of a frame.

To clarify things, we mention that we could have simply taken the free weakly
involutive groupoid with unit W = (W, ◦,∼,−, ε) on a countable set X of variables.
By the weakly involutive law we can define an operation ⊕, which can be easily
shown to be associative and have as unit the element δ = ε∼ = ε−. We can also
define iterated negations of elements of X, by taking repeated applications of the
operations ∼,− on elements of X. The resulting set is denoted X¬. It is easy to
see that the underlying set of W can be concretely realized as the underlying set V
of the free bi-groupoid with unit V = (V, ◦, ε,⊕, δ) on the set X¬. In other words
V supports the free weakly involutive monoid by defining involution functions that
satisfy (x ◦ y)∼ = y∼ ⊕ x∼.

Let V◦ denote the ◦-submonoid of V generated by X¬ and V⊕ the ⊕-submonoid
of V generated by X¬. Clearly V◦ and V⊕ are isomorphic. Actually, they both
support the free involutive monoid generated by X, the first with involutive func-
tions satisfying (x ◦ y)∼ = y∼ ◦ x∼ and the second with (x ⊕ y)∼ = y∼ ⊕ x∼. We
could have taken sequents as elements of V◦ × V⊕, but since the two monoids are
isomorphic and support the free involutive monoid generated by X, we chose to
identify them.

Lemma 6.8. A classical sequent x ⇒ y is valid in (WInGL,Fm) iff f◦(x) ⇒ f⊕(y)
is provable in InGL, where f is the identity map.

Let W be an involutive frame and X ⊆ W . We define (∼n)X and X∼n induc-
tively by

(∼0)X = X∼0 = X, (∼(n + 1))X = ∼(∼n)X and X∼(n+1) = (X∼n)∼.
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Likewise, we define (−n)X and X−n.

Lemma 6.9. Let W be a residuated frame.

(i) The operation + on W+ is order preserving on both coordinates.
(ii) If X, Y ∈ W+, then XC + Y C ⊆ (X ⊕ Y )C.
(iii) If X ∈ W+, then (∼n)X = X∼n and (−n)X = X−n, for every even

natural number n.

Proof. (i) For subsets X1, X2, Y1, Y2 of W with X1 ⊆ X2 and Y1 ⊆ Y2 we have
XB

2 ⊆ XB
1 and Y B

2 ⊆ Y B
1 . Therefore, XB

2 Y B
2 ⊆ XB

1 Y B
1 and (XB

1 Y B
1 )C ⊆

(XB
2 Y B

2 )C, namely X1 + Y1 ⊆ X2 + Y2. We used that X + Y = −[(∼Y )(∼X)] =
(Y B∼XB∼)−C = (XB∼−Y B∼−)C = (XBY B)C.

(ii) Recall that CB is a closure operator, C is order reversing and that X ◦ Y ⊆
X ·Y , for all X, Y ⊆ W . Also, we define X⊕Y element-wise. We have XC +Y C =
−[(∼Y C) · (∼XC)] = (Y CB∼ · XCB∼)−C ⊆ (Y ∼ · X∼)−C ⊆ (Y ∼ ◦ X∼)−C =
(X ⊕ Y )C, so XC + Y C ⊆ (X ⊕ Y )C.

(iii) For w ∈ W , we have w ∈ ∼X = XB∼ iff w− ∈ XB iff X N w−. We also
have ∼X = XB∼ N w iff w− N XB iff w− ∈ XBC = X.

Consequently, w ∈ ∼∼X iff ∼X N w− iff w−− ∈ X iff w ∈ X∼∼. So, ∼∼X =
X∼∼ and for every even number n, (∼n)X = X∼n. �

Theorem 6.10. If (W,B) is a cut free involutive Gentzen frame, then every se-
quent that is valid in W+ is also valid in (W,B).

Proof. Assume that s = (x, y) is valid in W+ and let f : Fm → B be a homo-
morphism. We will show that f◦(x) N f⊕(y). Since s is valid in W+, for every
homomorphism f̄ : Fm→W+ with f̄ ∈ H(f), we have f̄◦(x) ⊆ f̄⊕(y).

For brevity we adopt the notation ¬n = ∼n, for non-negative integers and ¬n =
−|n| for negative integers. By definition, there exist formulas a1, . . . , an, b1, . . . , bm ∈
Fm and groupoid (with unit) terms tx, ty such that x = tFmi

x (a¬k1
1 , . . . , a¬kn

n ) and

y = tFmi

y (b¬l1
1 , . . . , b¬lm

m ). Then f̄◦(x) = t
(W+,·)
x ((¬k1)f̄(a1), . . . , (¬kn)f̄(an)) and

f̄⊕(y) = t
W+,+)
y ((¬l1)f̄(b1), . . . , (¬ln)f̄(bm)).

By Lemma 5.1, f̄(c) ⊆ f(c)C and f(c) ∈ f̄(c), for all formulas c ∈ Fm. From
f̄(c) ⊆ f(c)C we also obtain f(c) ∈ f̄(c)B, so f(c)∼ ∈ f̄(c)B∼ = ∼f̄(c) and
f(c)− ∈ −f̄(c). Thus, using Lemma 6.9(iii), we can show that for all k we have

(*) f(c)¬k ∈ (¬k)f̄(c).

So,

f◦(x) = f◦(tFmi

x (a¬k1
1 , . . . , a¬kn

n ))
= t

(W,◦)
x (f(a1)¬k1 , . . . , f(an)¬kn) (f◦ extends f)

∈ t
(P(W ),◦)
x ((¬k1)f̄(a1), . . . , (¬kn)f̄(an)) (*), (◦ in P(W ) is element-wise)

⊆ t
(W+,·)
x ((¬k1)f̄(a1), . . . , (¬kn)f̄(an)) (γN is a closure operator)

= f̄◦(x)

From f(c) ∈ f̄(c) we have f(c)¬ ∈ f̄(c)¬, hence f̄(c)¬C ⊆ f(c)¬C, namely
¬f̄(c) N f(c)¬. By the negation rules for N , we have (¬f̄(c))¬k N f(c)¬(¬k) for
every even integer k, so (¬f̄(c))¬k ⊆ f(c)¬(k+1)C. Using Lemma 6.9(iii), we have
(¬(k + 1))f̄(c) ⊆ f(c)¬(k+1)C, for every even integer k.
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On the other hand, from f̄(c) ⊆ f(c)C we have f̄(c) N f(c). By the nega-
tion rules for N , we have f̄(c)¬k N f(c)¬k, for every even integer k, so f̄(c)¬k ⊆
f(c)(¬k)C. In view of Lemma 6.9(iii), we obtain (¬k)f̄(c) ⊆ f(c)(¬k)C, for every
even integer k.

Consequently, we have

(**) (¬k)f̄(c) ⊆ f(c)(¬k)C, for every integer k.

f̄⊕(y) = t
(W+,+)
y ((¬l1)f̄(b1), . . . , (¬ln)f̄(bm))

⊆ t
(W+,+)
y (f(b1)(¬l1)C, . . . , f(bm)(¬lm)C) (**), (Lemma 6.9(i))

= [t(W,⊕)
y (f(b1)(¬l1), . . . , f(bm)(¬lm))]C (Lemma 6.9(ii))

= [f⊕(y)]C

Consequently, f◦(x) ∈ f̄◦(x) ⊆ f̄⊕(y) ⊆ {f⊕(y)}C. Thus, f◦(x) ∈ {f⊕(y)}C,
i.e., f◦(x) N f⊕(y). �

Corollary 6.11. (Adequacy) If a sequent is valid in InGL, then it is valid in all
cut-free involutive Gentzen frames.

Combining the soundness of InGL (InFL) with respect to involutive r`u-groupoids
(InFL-algebras) given by Lemma 6.1, and their adequacy given as part of Corol-
lary 6.11, we have the completeness of these systems.

Corollary 6.12. (Completeness) A sequent is provable in InGL iff it is valid in
RLUG. The same holds for InFL and InFL.

Theorem 6.13. (Cut elimination) If InGL (or InFL) is sound for a given (associa-
tive) involutive Gentzen frame, then the frame has the cut-elimination property.

Proof. By assumption, every sequent that is valid in the frame is also valid in InGL.
By Corollary 6.11 it is also valid in the cut-free version of the frame. The converse
direction is obvious. �

Now, combining the soundness results with Theorem 6.13 we obtain the follow-
ing.

Corollary 6.14. The systems InGL and InFL enjoy the cut elimination property.

Decidability. Even though an exhaustive proof search for a given sequent in InGL
or InFL is never finite, we can still restrict our attention to a finite part.

Theorem 6.15. The equational theory of InFL-algebras (and InGL-algebras) is
decidable.

Proof. At every step of a proof search there are only finitely many sequents, ob-
tained by applying (∼) and (−), such that not all formulas have external negations
on them. If all formulas have external negations then no logical rule can be applied
(upwards). Therefore we need to explore, by using (∼) and (−), only finitely many
sequents between applications of logical rules.

Indeed, for the associative case, if a1 ◦ a2 ◦ · · · ◦ am ⇒ b1 ◦ b2 ◦ · · · ◦ bn is a
sequent, then the possible sequents that can be obtained using the rules for external
negations are given by moving the formulas according to the following diagram:
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∼
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For example the above sequent is equivalent to the following sequents:

a2 ◦ · · · ◦ am ⇒ a∼1 ◦ b1 ◦ · · · ◦ bn

a2 ◦ · · · ◦ am ◦ b∼n ⇒ a∼1 ◦ b1 ◦ · · · ◦ bn−1

...
b∼n ◦ · · · ◦ b∼2 ◦ b∼1 ⇒ a∼m ◦ · · · ◦ a∼2 ◦ a∼1

...
a∼∼1 ◦ a∼∼2 ◦ · · · ◦ a∼∼m ⇒ b∼∼1 ◦ b∼∼2 ◦ · · · ◦ b∼∼n

a2 ◦ · · · ◦ am ⇒ a∼1 ◦ b1 ◦ · · · ◦ bn

a2 ◦ · · · ◦ am−1 ⇒ a∼1 ◦ b1 ◦ · · · ◦ bn ◦ a−m
...

a2 ⇒ a∼1 ◦ b1 ◦ · · · ◦ bn ◦ a−m ◦ · · · ◦ a−3

In the non-associative case the possible moves are even more restricted, therefore
we can obtain only a finite set of possible sequents with at least one non-negated
formula. �

A cut-free system for cyclic involutive FL-algebras, from which decidability is
derived, is given in [24]. Also, a cut-free system for involutive FL-algebras is pre-
sented in [1]. A complicated argument is given to establish cut-elimination for this
system, but no decision procedure is derived.

The (unital) involutive frames we have defined satisfy the property: x N y− iff
y N x∼ (Lemma 6.2(i)). Also the rule (followed by its derivation)

x⇒ y−

y ⇒ x∼
(G)

x ◦ ε ⇒ y−

ε ⇒ x∼ ◦ y−
(∼)

ε ◦ y ⇒ x∼
(−)

holds in InGL. Note that these derivations require the existence of E and ε,
respectively. It is possible to define involutive frames without E and modify InGL
to not include 1 and to not allow sequents with an empty side. In this case, if
we simply stipulate the above frame condition and the displayed rule, our results
extend in a natural way.
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Cut elimination with simple structural rules. We will extend the notion of
a simple structural rule to the involutive case.

Let t0, t1, . . . , tn be elements of the free groupoid with unit (using the signature
if {◦, ε}) over a countable set of possibly negated variables, i.e., formal expressions
of the form q¬n, for even integers n, with the usual conventions for ¬ adopted in the
proof of Theorem 6.10. Note that the construction is similar to Fmi. We further
assume that t0 is a linear term.

A simple rule is of the form

t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn. Satisfaction of a rule in a frame,
as well as the correspondence between simple rules and equations, are defined as
before. So, a simple equation over {∨, ·, 1,∼,−} is of the form tFm

0 ≤ tFm
1 ∨· · ·∨tFm

n ,
where t0 is linear and the negations are applied directly and an even number of times
to the variables.

Theorem 6.16. Let (W,B) be a cut free involutive Gentzen frame and let ε be a
simple. Then (W,B) satisfies R(ε) iff W+ satisfies ε.

Proof. Clearly it suffices to show the lemma for the case where ε is simple, namely
of the form tFm

0 ≤ tFm
1 ∨ · · · ∨ tFm

n , where t0 is linear.
As in Theorem 6.10, εW+

(X̄) holds iff tW
+

0 (X̄) ⊆ tW
+

1 (X̄) ∨ · · · ∨ tW
+

n (X̄), for
all sequences X̄ = (Xj)j∈J of elements in W+. By Corollary 2.4, this is equiv-
alent to the stipulation that for all z ∈ W ′, tW

+

1 (X̄) ∨ · · · ∨ tW
+

n (X̄) ⊆ zC im-
plies tW

+

0 (X̄) ⊆ zC. As tW
+

1 (X̄) ∨ · · · ∨ tW
+

n (X̄) = γN (tW
+

1 (X̄) ∪ · · · ∪ tW
+

n (X̄)),
tW

+

i (X̄) = γN (tP(W)
i (X̄)) and in view of Lemma 6.9(iii), this is equivalent to asking

that

(*) ∀z ∈ W ′, if t
P(W)
i (X̄) ⊆ zC for every i ∈ {1, . . . n}, then t

P(W)
0 (X̄) ⊆ zC.

Assume first that (W,B) satisfies R(ε) and let xj ∈ Xj , for all j ∈ J (we write
x̄ ∈ X̄ and x̄ = (xj)j∈J). Note that

tWi (x̄) = tWi ((xj)j∈J) ∈ t
P(W)
i (({xj})j∈J) ⊆ t

P(W)
i (X̄),

by the definition of the operations in P(W). Note further that for all z ∈ W ′,
if t
P(W)
i (X̄) ⊆ zC for every i ∈ {1, . . . n}, then tWi (x̄) N z, for all i ∈ {1, . . . n},

tW0 (x̄) N z, by R(ε), and tW0 (x̄) ∈ zC, for all x̄ ∈ X̄. Since t0 is a linear term, we
obtain t

P(W)
0 (X̄) ⊆ zC, namely (*) holds and W+ satisfies ε.

Conversely, assume that (*) holds for Xj = γN ({xj}), where xj ∈ W , namely
for all z ∈ W ′, {tW1 (x̄), . . . , tWn (x̄)} ⊆ zC implies tW0 (x̄) ∈ zC. Consequently,
(tW1 (x̄) N z and . . . tWn (x̄) N z) implies tW0 (x̄) N z, and R(ε) holds in (W,B). �

Corollary 6.17. All simple rules are preserved by ( )+.

Corollary 6.18. All extensions of InGL by simple rules enjoy the cut elimination
property.
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7. Finite model property for InGL and extensions

Clearly every finite involutive r`u-groupoid satisfies the equation (∼(k + n))x =
(∼k)x for some natural numbers k and n. By taking k many right negations (−)
of both sides we have (∼n)x = x. (Note that this equation is in turn equivalent to
the equation x = (−n)x.) If n is an odd number, then f(x) = (∼n)x is an order
antimorphism, so the involutive r`u-groupoid is trivial. Consequently, every finite
non-trivial involutive r`u-groupoid satisfies an equation of the form (∼n)x = x,
and n can be taken to be both even and minimal non-zero. Clearly (∼2)x = x is
equivalent to cyclicity ∼x = −x.

Consider the following bi-directional rule.
x∼n ⇒ z
x ⇒ z (∼n)

We will call two sequences of formulas n-equivalent if one is obtained from the
other by adding or removing exactly n-many negations (of the same kind) to/from
some of the formulas in the sequence. Clearly this equivalence (in the presence of
the external negations rules) simulates the effect of the rule (∼n) to the one side of
the sequents involved. We extend the equivalence also to sequents in the obvious
way. For every equivalence class there are representatives such that all formulas in
them contain no more than n negations. We will call them minimal representatives.
The following result follows from Theorem 6.16.

Corollary 7.1. Let W be an involutive frame for InGL and n an even natural
number. The frame W satisfies the rule (∼n) iff W+ satisfies the equation (∼n)x =
x.

Corollary 7.2. The system InGL + (∼n) has the cut elimination property, for
every even natural number n. Furthermore, it is decidable.

Proof. Soundness of the calculus is routine. The proof proceeds as for the cut elim-
ination of InGL, by using Corollary 7.1. Decidability follows from the observation
that, due to the rule (∼n), there are finitely many sequents with up to n negations
that need to be considered at each step of the proof search. �

Corollary 7.3. The system InGL + (∼n) has the FMP, for every even natural
number n.

Proof. We consider the involutive frame W, where W = W ′ is the free monoid over
Fm and x N z iff `InGL+(∼n) x ⇒ z. Consider a sequent s that is not provable
and let s← be the set of all the sequents involved in a thorough proof search for
s. Note that s← is infinite, since the (∼) and (−) rules can be applied an arbitrary
number of times. We also consider the relation N ′ = N ∪ (s←)c. It is easy to see
that N ′ is a nuclear relation and W′ = (W,W ′, N ′, ◦, ε) is an involutive frame for
InGL + (∼n).

Clearly s← is a union of n-equivalence classes. Moreover, there are only finitely
many such classes. Note that if y, z ∈ W are n-equivalent then yC = zC because
of the rule (∼n). Consequently, the basic closed sets are finitely many and W′+ is
finite. Moreover, s fails in W′+. �

Recall that for x ∈ W and m ∈ Z+, x¬m denotes the element x∼m if m > 0, the
element x−m if m < 0, and x if m = 0.
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Theorem 7.4. Every sequent provable in InGL + (∼n) has a proof in InGL
augmented by intial sequents of the form p¬kn ⇒ p¬mn, ε ⇒ 1¬mn and 0¬kn ⇒ ε
where p ranges over the propositional variables of the sequent and m,n ∈ Z.

Proof. Assume that a sequent s is provable in InGL + (∼n). By cut-elimination
(Corollary 7.2) it is provable in the cut free systems. All of the systems we will
mention in this proof will be considered in their cut-free versions. Note that in the
presence of (∼) and (−), the rules

u(x) ⇒ z

u(x∼n) ⇒ z
(∼nL)

x ⇒ u(z)

x ⇒ u(z∼n)
(∼nR)

are derivable from (∼n), and vice versa. Here u is such that u(x) is an element of
W in which no negations are applied to x. Note that these rules could have been
called (−nL) and (−nR), as the versions with − instead of ∼ are simple the upward
direction of the rule, since x−∼ = x. So, s is provable in InGL + (∼nL) + (∼nR).

We will first prove, inductively, that the rules (∼nL) and (∼nR) can be moved
to the top of the proof in InGL + (∼nL) + (∼nR), namely that there is a proof
of s in which all applications of the rules (∼nL) and (∼nR) precede all application
of rules in InGL. We proceed by focusing on the rule applied immediately before
(∼nL) or (∼nR). Below, we give a proof and its rewritten version. We will be using
often the following instances of (∼) and (−)

x ⇒ z−n

x∼n ⇒ z
(∼n)

x−n ⇒ z
x ⇒ z∼n (−n)

which hold for even n.
We first deal with the case where (∼nL), applied upward, is preceded by a left

rule. For (/L), we have

x ⇒ a b ⇒ z
(b/a) ◦ x ⇒ z

(/L)

(b/a)∼n ◦ x ⇒ z
(∼nL)

→

x ⇒ a
x∼n ⇒ a

(∼nL)
b ⇒ z

b ⇒ z−n
(∼nR)

b/a ◦ x−n ⇒ z−n
(/L)

(b/a)∼n ◦ x ⇒ z
(∼n)

Note that this case illustrates the necessity of replacing (∼n) by (∼nL), and (∼nR),
in our arguments. If ∼n is applied to x, the situation is even simpler. The rewriting
for (\L) is similar. The situation for all other left rules is somehow simpler, and all
of them are handled in exactly the same way. For example, For (∨L), we have

a ⇒ z b ⇒ z
a ∨ b ⇒ z

(∨L)

(a ∨ b)∼n ⇒ z
(∼nL)

→

a ⇒ z

a ⇒ z−n
(∼nR)

b ⇒ z

b ⇒ z−n
(∼nR)

a ∨ b ⇒ z−n
(∨L)

(a ∨ b)∼n ⇒ z
(∼n)

For the case where (∼nR) is preceded by a right rule, of slight interest are (/L)
and (·R).

x ◦ a ⇒ b
x ⇒ b/a

(/R)

x ⇒ (b/a)∼n (∼nR)
→

x ◦ a ⇒ b

x−n ◦ a ⇒ b
(∼nL)

x−n ⇒ b/a
(/R)

x ⇒ (b/a)∼n (−n)
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x ⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)

x ◦ y ⇒ (a · b)∼n (∼nR)
→

x ⇒ a

x−n ⇒ a
(∼nL)

y ⇒ b

y−n ⇒ b
(∼nL)

x−n ◦ y−n ⇒ a · b
(·R)

x ◦ y ⇒ (a · b)∼n (−n)

We used (x ◦ y)−n = x−n ◦ y−n, which is true for even n. The remaining right rules
are handled in the same way.

The cases where (∼nR) is preceded by a left rule and (∼nL) is preceded by a
right rule are much simpler. We show only one example.

x ⇒ a
x ⇒ a ∨ b

(∨L)

x∼n ⇒ a ∨ b
(∼nR) →

x ⇒ a
x∼n ⇒ a

(∼nL)

x∼n ⇒ a ∨ b
(∨R)

So far we have considered the bidirectional rules (∼nL) and (∼nR) in the down-
ward direction. In the inverse direction they take the same form, but with ∼n

replaced by −n; this shows that the rules could have been called (−nL) and (−nR).
The proof rewriting for these cases is completely analogous to the cases handled
above.

Finally, we show that (∼nL) and (∼nR) commute with the rules (∼) and (−).
We show two illustrative cases.

x ◦ u(y) ⇒ z

u(y) ⇒ x∼ ◦ z
(∼)

u(y∼n) ⇒ x∼ ◦ z
(∼nL)

→

x ◦ u(y) ⇒ z

x ◦ u(y∼n) ⇒ z
(∼nL)

u(y∼n) ⇒ x∼ ◦ z
(∼)

x ◦ u(y) ⇒ z

x ⇒ z ◦ u−(y−)
(−)

x ⇒ z ◦ u−((y−)∼n)
(∼nL)

→

x ◦ u(y) ⇒ z

x ◦ u(y∼n) ⇒ z
(∼nL)

x ⇒ z ◦ u−((y−)∼n)
(∼)

We used (y∼n)− = (y−)∼n, and u(y)− = u−(y−), where u− is obtained from u by
reversing the order and applying − to every factor.

We have shown that there is a proof of the sequent s in which (∼nL) and (∼nR)
are applied before rules of InGL. As the only initial sequents are of the form
p ⇒ p, ε ⇒ 1 and 0 ⇒ ε, the seqents obtained by applications of only (∼nL) and
(∼nR) are of the form p¬kn ⇒ p¬mn, ε ⇒ 1¬mn and 0¬kn ⇒ ε, where p ranges over
the propositional variables of the sequent and m,n ∈ Z. Consequently, we have
obtained a proof of s in InGL from these initial sequents. �

Corollary 7.5. Given a sequent that is not provable in InGL, there is an upper
bound on the number n such that the sequent is provable in InGL + (∼n).

Proof. Assume that the sequent is provable in InGL+ (∼n). Then there is a proof
of the sequent in GL from the sequents of the form p¬kn ⇒ p¬mn, ε ⇒ 1¬mn and
0¬kn ⇒ ε, where p is a variable and m,n ∈ Z. Reading the proof in InGL upward,
note that between applications of logical rules there is a bounded number of external
negations that can be added via the rules (∼) and (−); for the other sequents
obtained by applications of these rules no logical rule would be applicable (again
upward). Consequently, there is only a bounded number of external negations
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that can appear in the initial sequents of the form p¬kn ⇒ p¬mn, ε ⇒ 1¬mn and
0¬kn ⇒ ε used in the proof of the sequent. �

Corollary 7.6. For every sequent s there exists an even natural number ns such
that s is provable in InGL + (∼ns) iff s is provable in InGL.

Corollary 7.7. The system InGL has the FMP.

Proof. If s is not provable InGL, then s is not provable in InGL+(∼ns). Since the
latter has the FMP, there exists a finite involutive r`u-groupoid (that also satisfies
x∼ns = x) where s fails. �

Lemma 7.8. The rules (∼nL) and (∼nR) commute with all simple structural
rules.

Proof. Let
t1 ⇒ z · · · tk ⇒ z

t0 ⇒ z
(r)

be a (multiple conclusion) simple structural rule. Also, let x appear in t0. We will
write t0(x) for t0, treating t0 as a unary linear polynomial.

t1(x) ⇒ z · · · tk(x) ⇒ z

t0(x) ⇒ z
(r)

t0(x∼n) ⇒ z
(∼nL)

→

t1(x) ⇒ z

t1(x∼n) ⇒ z · · ·
tk(x) ⇒ z

tk(x∼n) ⇒ z
(∼nL)

t0(x∼n) ⇒ z
(r)

where the uppermost steps in the second proofs indicate repeated applications of
(∼nL) to each occurence of x in ti(x). �

Corollary 7.9. The systems InGLR have the FMP, for every set R of simple rules
for which the complexity does not increase. In particular, InGLa and InGLae have
the FMP.

8. Further results

We conclude the paper with two sections devoted to exploring certain links with
work on one-sided sequent systems and with representation theorems for perfect
algebras.

One-sided involutive frames. A one-sided involutive frame is a structure of the
form W = (W, ◦, E, D,∼,−), where W is a set, ◦ is a ternary relation on W , ∼,−

are unary maps on W , and E,D are subsets of W , such that

(i) x∼− = x = x−∼

(ii) (x∼ ◦ y∼)− = (x− ◦ y−)∼ (weak involution)
(iii) x ◦ y∼ ∈ D iff y− ◦ x ∈ D (nuclear)
(iv) w ◦ [(x ◦ y) ◦ z] ⊆ D iff w ◦ [x ◦ (y ◦ z)] ⊆ D (weak associativity)
(v) w ◦ (E ◦ x) ⊆ D iff w ◦ x ⊆ D (weak unit)
(vi) (x ◦ y) ◦ z ⊆ D iff x ◦ (y ◦ z) ⊆ D (associativity under D)

Theorem 8.1. Weakly associative involutive frames and one-sided involutive frames
are interdefinable.
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Proof. Assume that (W, ◦, E, D,∼,−) is a one-sided involutive frame and define
x N y iff x◦y∼ ⊆ D. We then have x◦y N z iff (x◦y)◦ z∼ ⊆ D iff x◦ (y ◦ z∼) ⊆ D
iff x N (y ◦ z∼)− = z ⊕ y−, where we used associativity under D. Also, we have
x ◦ y N z iff z− ◦ (x ◦ y) ⊆ D iff (z− ◦ x) ◦ y ⊆ D iff y N (z− ◦ x)∼ = x∼ ⊕ z.
Consequently, N is nuclear.

For all w, x, y, z ∈ W , we have w ∈ [(x◦y)◦z]B iff (x◦y)◦z N w iff w∼◦[(x◦y)◦z] ⊆
D iff w∼ ◦ [x ◦ (y ◦ z)] ⊆ D iff w ∈ [x ◦ (y ◦ z)]B.

For all w, x ∈ W , we have w ∈ xB iff x N w iff w∼ ◦ x ⊆ D iff w∼ ◦ (E ◦ x) ⊆ D
iff w ∈ (E ◦ x)B.

Therefore, (W,N, ◦, E,∼,−) is an involutive frame.
Conversely, assume that (W,N, ◦, E,∼,−) is an involutive frame and define the

set D = {w ∈ W : w N E∼} = ∼E.
We have x ◦ y∼ ⊆ D iff x ◦ y∼ N E∼ iff x N E∼ ⊕ y iff x N y iff x N y ⊕E∼ iff

y− ◦ x N E∼ iff y− ◦ x ⊆ D.
Note that w ◦ [(x ◦ y) ◦ z] ⊆ D iff w ∈ [(x ◦ y) ◦ z]B iff w ∈ [(x ◦ y) ◦ z]B iff

w ◦ [x ◦ (y ◦ z)] ⊆ D. Also, w ◦ (E ◦ x) ⊆ D iff w ∈ (E ◦ x)C = xC iff w ◦ x ⊆ D. �

Such one-sided Gentzen frames include applications to sequent systems as the
ones in [25] and [24].

Perfect involutive frames. Assume that L is a perfect involutive r`u-groupoid
and ∼ is a map on the set J = J∞(L) of completely join irreducibles of L such that
x∼∼ = ∼∼x, for all x ∈ J ; note that the map x 7→ ∼∼x is a lattice isomorphism,
which restricts to an isomorphism on the poset (J,≤). We define the structure
W∼

L = (W,N, ◦,∼,−, E), where W = J , x ◦ y = ↓J(xy), − is the inverse of ∼,
x N y iff x ≤ −(y∼) and E = ↓J1. Note that x∼∼ = ∼∼x is equivalent to
x−− = −−x and to −(y∼) = ∼(y−), hence we also have x N y iff x ≤ ∼(y−).

Theorem 8.2. Let L be a perfect involutive r`u-groupoid and let ∼ be a map on
J such that x∼∼ = ∼∼x, for all x ∈ J . Then W∼

L is an involutive frame and L
is embedded in (W∼

L )+ via the map x 7→ {x}C = ↓Jx. If L is complete then this
embedding is an isomorphism.

Proof. For every x, y, z ∈ W , we have the following series of equivalent statements

z ∈ x∼∼ ◦ y∼∼ = ↓J(x∼∼ · y∼∼)
z ≤ x∼∼ · y∼∼ = ∼∼x · ∼∼y = ∼∼(xy)

−−z ≤ xy
z−− ≤ xy

z−− ∈ ↓J(xy)
z ∈ ↓J(xy)∼∼ = (x ◦ y)∼∼

Therefore, we have x∼∼ ◦ y∼∼ = (x ◦ y)∼∼. Moreover, for x, y, z ∈ W ,

x ◦ y N z
↓J(xy) ≤ ∼(z−)

xy ≤ ∼(z−)
z− ≤ −(xy) = −y/x

z−x ≤ −y
z− ◦ x = ↓J(z−x) ≤ −y

y ≤ ∼(z− ◦ x)
y N (z− ◦ x)∼ = x∼ ⊕ z

x ◦ y N z
↓J(xy) ≤ −(z∼)

xy ≤ −(z∼)
z∼ ≤ ∼(xy) = y\∼x

yz∼ ≤ ∼x
y ◦ z∼ = ↓J(yz∼) ≤ −x

x ≤ −(y ◦ z∼)
x N (y ◦ z∼)− = z ⊕ y−
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Let x, y, z ∈ W . Note that xy =
∨
↓J(xy), so for every w ∈ J , w ≤ (↓J(xy))z

iff w ≤ (xy)z, as multiplication distributes over join. Therefore, (↓J(xy))z =
x(↓J(yz)) and (x ◦ y) ◦ z = ↓J [(↓J(xy))z] = ↓J [x(↓J(yz))] = x ◦ (y ◦ z). Thus, we
have (weak) associativity. For similar reasons, we have (x ◦ E) = ↓J(x↓J1) = ↓Jx,
which gives (weak unit).

We claim that the map f : L→ (W∼
L )+ defined by f(x) = ↓Jx is an embedding.

Note that ↓Jx is indeed a closed element. Also, if X ⊆ J , γN (X) = ↓J

∨
X. It

is shown in [7] that, in general, f is a lattice embedding, and if L is complete
then it is a lattice isomorphism. To show that it is an involutive r`u-groupoid
isomorphism it suffices to show that it is a groupoid isomorphism, which in turn
follows from proving that multiplication agrees on the completely join irreducible
elements, namely that f(xy) = f(x) ◦γN

f(y), for x, y ∈ J . Indeed we have xy =∨
↓Jx ·

∨
↓Jy =

∨
(↓Jx · ↓Jy), by the distributivity of multiplication over join.

Therefore, f(xy) = ↓J(xy) = ↓J

∨
(↓Jx · ↓Jy) = γN (f(x) ◦ f(y)). �

We also note that D = ↓J0, since for w ∈ W , we have w ∈ D = ∼(W∼
L )+E iff

w N E∼ = ∼(E∼−) = ∼E = ∼(↓J1) = ↑M∼1 = ↑0 iff w ∈ ↓J(↑M0) = ↓J0.
Let idJ be the identity map on J , and let WidJ

L = (W,N, idJ , idJ , E).

Corollary 8.3. For any perfect cyclic InFL-algebra L, the structure WidJ

L is an in-
volutive frame and L is embedded in (WidJ

L )+. If L is complete then this embedding
is an isomorphism.
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