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Abstract

We generalize the notion of an MV-algebra in the context of residuated lattices to include
commutative and unbounded structures. We investigate a number of their properties and pr
they can be obtained from lattice-ordered groups via a truncation construction that generali
Chang–MundiciΓ functor. This correspondence extends to a categorical equivalence that gene
the ones established by D. Mundici and A. Dvurečenskij. The decidability of the equational theo
of the variety of generalized MV-algebras follows from our analysis.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A residuated latticeis an algebraL = 〈L,∧,∨, ·,\, /, e〉 such that〈L,∧,∨〉 is a lattice;
〈L, ·, e〉 is a monoid; and for allx, y, z ∈ L,

x · y � z ⇔ x � z/y ⇔ y � x\z.
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Residuated lattices form a finitely based equational class of algebras (see, for ex
[4]), denoted byRL.

It is important to remark that the elimination of the requirement that a residuate
tice have a bottom element has led to the development of a surprisingly rich theo
includes the study of various important varieties of cancellative residuated lattices, s
the variety of lattice-ordered groups. See, for example, [2,4,9,12–14,18,20].

A lattice-ordered group(�-group) is an algebraG = 〈G,∧,∨, ·,−1, e〉 such that
〈G,∧,∨〉 is a lattice,〈G, ·,−1, e〉 is a group, and multiplication is order preserving (or
equivalently, it distributes over the lattice operations). The variety of�-groups is term
equivalent to the subvariety,LG, of residuated lattices defined by the equations(e/x)x ≈
e ≈ x(x\e); the term equivalence is given byx−1 = e/x andx\y = x−1y, y/x = yx−1.

See [1] for an accessible introduction to the theory of�-groups.
A residuated bounded-latticeis an algebraL = 〈L,∧,∨, ·,\, /, e,0〉 such that〈L,∧,∨,

·,\, /, e〉 is a residuated lattice andL satisfies the equationx ∨0 ≈ x. Note that	 = 0\0 =
0/0 is the greatest element of such an algebra. A residuated (bounded-) lattice is called
commutativeif it satisfies the equationxy ≈ yx andintegral if it satisfiesx ∧ e ≈ x.

Commutative, integral residuated bounded-lattices have been studied extensively
both algebraic and logical form, and include important classes of algebras, such as
variety of MV-algebras, which provides the algebraic setting for Łukasiewicz’s infi
valued propositional logic. Several term equivalent formulations of MV-algebras have be
proposed (see, for example, [8]). Within the context of commutative, residuated bou
lattices, MV-algebras are axiomatized by the identity(x → y) → y ≈ x ∨ y, which is a
relativized version of the law¬¬x ≈ x of double negation; in commutative residuat
lattices we writex → y for the common value ofx\y andy/x, and¬x for x → 0. The
term equivalence with the standard signature is given byx � y = x · y, ¬x = x → 0,
x ⊕ y = ¬(¬x · ¬y) and x → y = ¬x ⊕ y. The appropriate non-commutative gen
alization of an MV-algebra is a residuated bounded-lattice that satisfies the identities
x/(y\x) ≈ x ∨ y ≈ (x/y)\x. These algebras have recently been considered in [10,1
under the name pseudo-MV-algebras.

C.C. Chang proved in [7] that ifG = 〈G,∧,∨, ·,−1, e〉 is a totally ordered Abelian
group andu < e, then the residuated-bounded latticeΓ (G, u) = 〈[u, e],∧,∨,◦,\, /, e, u〉
—wherex ◦ y = xy ∨ u, x\y = x−1y ∧ e andx/y = xy−1 ∧ e—is an MV-algebra. Con
versely, if L is a totally-ordered MV-algebra, then there exists a totally ordered Ab
group with a strong order unitu < e such thatL ∼= Γ (G, u). This result was subsequent
generalized for arbitrary Abelian�-groups by D. Mundici [24] and recently for arbitra
�-groups by A. Dvurěcenskij [10]. It should be noted that all three authors have expre
their results in terms of the positive, rather than the negative, cone. Mundici and Dvučen-
skij have also shown that the object assignmentΓ can be extended to an equivalen
between the category of MV-algebras (respectively, pseudo-MV-algebras), and the
gory with objects Abelian (respectively, arbitrary)�-groups with a strong order unit, an
morphisms�-group homomorphisms that preserve the unit.

We generalize the concept of an MV-algebra in the setting of residuated lattice
dropping integrality (x ∧ e ≈ x), commutativity (xy ≈ yx) and the existence of bounds
to a class that includes�-groups, their negative cones, generalized Boolean algebra
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the 0-free reducts of MV-algebras. The aim of this paper is to extend the aforemen
results of Mundici and Dvurěcenskij.

A generalized MV-algebra(GMV-algebra) is a residuated lattice that satisfies the id
tities x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x. It is shown in Section 2, see Lemma 2
that every GMV-algebra has a distributive lattice reduct.

The negative coneof a residuated latticeL = 〈L,∧,∨, ·,\, /, e〉 is the algebraL− =
〈L−,∧,∨, ·,\L−, /L−, e〉, whereL− = {x ∈ L | x � e}, x\L−y = x\y ∧ e andx/L−y =
x/y ∧ e. It is easy to verify thatL− is a residuated lattice. It will be shown that ifL is a
GMV-algebra, thenL− is a GMV-algebra, as well. As noted before a residuated lattic
called integral, ife is the greatest element of its lattice reduct. The negative cone of
residuated lattice is, obviously, integral.

By anucleuson a residuated latticeL we understand a closure operatorγ on L satisfy-
ing γ (a)γ (b) � γ (ab), for all a, b in L.

We note that ifL = 〈L,∧,∨, ·,\, /, e〉 is a residuated lattice andγ is a nucleus onL,
then the imageLγ of γ can be endowed with a residuated lattice structure as follows
Lemma 3.3):

Lγ = 〈
Lγ ,∧,∨γ ,◦γ ,\, /, γ (e)

〉
,

γ (a) ∨γ γ (b) = γ (a ∨ b), γ (a) ◦γ γ (b) = γ (ab).

As an illustration, letu be a negative element of an�-groupG, and letγu :G− → G−
be defined byγu(x) = x ∨u, for all x ∈ G−. Then,γu is a nucleus onG− andG−

γu
is equal

to the 0-free reduct ofΓ (G, u).
We say that a residuated latticeA is thedirect sumof two of its subalgebrasB,C, in

symbolsA = B⊕C, if the mapf :B×C → A defined byf (x, y) = xy is an isomorphism
The primary purpose of this paper is to establish the following six results.

Theorem A (See Theorem 5.6). A residuated latticeM is a GMV-algebra if and only i
there are residuated latticesG,L, such thatG is an�-group,L is the negative cone of a
�-group,γ is a nucleus onL andM = G ⊕ Lγ .

Theorem B (See Theorem 3.12). A residuated latticeM is an integral GMV-algebra if and
only if there exists an�-groupH and a nucleusγ on H−, such thatM ∼= H−

γ .

Let IGMV be the category with objects integral GMV-algebras and morphisms re
ated lattice homomorphisms. Also, letLG−∗ be the category with objects algebras〈L, γ 〉,
such thatL is the negative cone of an�-group andγ is a nucleus on it such that its imag
generatesL as a monoid. Let the morphisms of this category be homomorphisms be
these algebras. The generalization of Mundici’s and Dvurečenskij’s results is provided b
the following theorem.

Theorem C (See Theorem 4.12). The categoriesIGMV andLG−∗ are equivalent.
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Theorem D (See Theorem 6.6). A residuated latticeL is a GMV-algebra if and only i
L ∼= Gβ , for some�-group G and some coreβ on G. (For the concept of a core, se
page281and Lemma6.8.)

Let GMV be the category with objects GMV-algebras and morphisms residuated l
homomorphisms. Also, letLG∗ be the category with objects algebras〈G, β〉 such thatG
is an �-group andβ is core onG whose image generatesG; let the morphisms of this
category be homomorphisms between these algebras.

Theorem E (See Theorem 6.9). The categoriesGMV andLG∗ are equivalent.

Let GMV be the variety of GMV-algebras and letIGMV be the variety of integra
GMV-algebras.

Theorem F (See Theorem 7.3). The varietiesGMV andIGMV have decidable equa
tional theories.

2. Definitions and basic properties

We refer the reader to [4] and [20] for basic results in the theory of residuated la
Here, we only review background material needed in the remainder of the paper.

The operations\ and / may be viewed as generalized division operations, withx/y

being read as “x over y” and y\x as “y underx”. In either case,x is considered the
numeratorandy is the denominator. We refer to\ as theleft divisionoperation and/
as theright division operation. Other commonly used terms for these operations arleft
residuationandright residuation, respectively.

As usual, we writexy for x · y and adopt the convention that, in the absence of pa
thesis,· is performed first, followed by\ and /, and finally by∨ and∧. For example
x/yz∧u\v represents the expression[x/(y ·z)]∧(u\v). We tend to favor\ in calculations,
but any statement about residuated structures has anopposite“mirror image” obtained by
reading terms backwards (i.e., replacingx · y by y · x and interchangingx/y with y\x).
Examples of opposite equations can be seen in properties (i)–(vi) of Lemma 2.1 bel

The existence of the division operations has the following basic consequences.

Lemma 2.1 [4]. Residuated lattices satisfythe following identities:

(i) x(y ∨ z) ≈ xy ∨ xz and(y ∨ z)x ≈ yx ∨ zx.
(ii) x\(y ∧ z) ≈ (x\y) ∧ (x\z) and(y ∧ z)/x ≈ (y/x) ∧ (z/x).
(iii) x/(y ∨ z) ≈ (x/y) ∧ (x/z) and(y ∨ z)\x ≈ (y\x) ∧ (z\x).
(iv) (x/y)y � x andy(y\x) � x.
(v) x(y/z) � (xy)/z and(z\y)x � z\(yx).

(vi) (x/y)/z ≈ x/(zy) andz\(y\x) ≈ (yz)\x.
(vii) x\(y/z) ≈ (x\y)/z.
(viii) x/e ≈ x ≈ e\x.
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(ix) e � x/x ande � x\x.
(x) (x/x)2 ≈ x/x and(x\x)2 ≈ x\x.

A residuated lattice is calledcommutative(respectively,cancellative), if its monoid
reduct iscommutative(respectively,cancellative). It is shown in [2] that the classCanRL
of all cancellative residuated lattices is a variety with defining equationsxy/y ≈ x ≈ y\yx.
As mentioned before, a residuated lattice is calledintegral if it satisfies the identity
e ∧ x ≈ x. The variety of all integral residuated lattices will be denoted byIRL. We
will also have the occasion to refer to the subvariety ofRL generated by all totally ordere
residuated lattices. We denote this variety byRLC and refer to its members asrepre-
sentableresiduated lattices. It follows from Jónsson’s Lemma on congruence-distrib
varieties (see [21]) that all subdirectly irreducible algebras inRLC are totally ordered
and whence every representable residuated lattice is a subdirect product of totally order
residuated lattices. The following result provides a concise equational basis forRLC .

Theorem 2.2 ([4,20], see also [18]). A residuated lattice is representable, i.e., it is a me
ber of the varietyRLC , if and only if it satisfies the identity(z\(x/(x ∨ y))z ∧ e) ∨
(w(y/(x ∨ y))/w ∧ e) ≈ e.

Definition 2.3.

(i) A generalized BL-algebra(GBL-algebra) is a residuated lattice that satisfies the id
tities (

(x ∧ y)/y
)
y ≈ x ∧ y ≈ y

(
y\(x ∧ y)

)
.

(ii) A generalized MV-algebra(GMV-algebra) is a residuated lattice that satisfies the id
tities

x/
(
(x ∨ y)\x) ≈ x ∨ y ≈ (

x/(x ∨ y)
)\x.

We denote the variety of all GBL-algebras byGBL and that of GMV-algebras b
GMV . GBL-algebras generalize BL-algebras, the algebraic counterparts of basic
(see [17]). In particular, representable, commutative, bounded (integral) GBL-algebr
(term equivalent to) the 0-free reducts of BL-algebras.

Lemma 2.4 [2]. The preceding sets of identities have, respectively, the following q
identity formulations:

x � y ⇒ (x/y)y ≈ x ≈ y(y\x)

and

x � y ⇒ x/(y\x) ≈ y ≈ (x/y)\x.
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Moreover, the first set of identities is also equivalent to the property ofdivisibility in the
setting of residuated lattices:

x � y ⇒ (∃z,w) (zy ≈ x ≈ yw).

Lemma 2.5 [2]. Every GMV-algebra is a GBL-algebra.

Proof. Let x, y be elements ofL such thatx � y. Set z = (x/y)y and note that, by
Lemma 2.1,z � x andz/y � z/x.

Using Lemma 2.1(vii), (vi) and the defining quasi-equation for GMV-algebras, we
the following:

z � x ⇒ (z/x)\z = x

⇒ (
(z/x)\z)/y = x/y

⇒ (z/x)\(z/y) = x/y

⇒ (z/y)/
(
(z/x)\(z/y)

) = (z/y)/(x/y)

⇒ z/x = z/(x/y)y

⇒ (z/x)\z = (
z/(x/y)y

)\z
⇒ x = (x/y)y.

Thus,x � y impliesx = (x/y)y. Likewise,x � y impliesy(y\x) = x. �
Lattice-ordered groups and their negative cones are examples of cancellative

algebras. Non-cancellative examples include generalized Boolean algebras.

Definition 2.6. An elementa in a residuated latticeL is calledinvertible, if a(a\e) = e =
(e/a)a; a is calledintegral, if e/a = a\e = e. We denote the set of invertible elements
L by G(L) and the set of integral elements byI (L).

Note thata is invertible if and only if there exists an elementa−1 such thataa−1 = e =
a−1a. In this casea−1 = e/a = a\e. It is easy to see that multiplication by an invertib
element is an order automorphism.

Lemma 2.7. Let L be a GBL-algebra.

(i) Every positive element ofL is invertible.
(ii) L satisfies the identitiesx/x ≈ x\x ≈ e.
(iii) L satisfies the identitye/x ≈ x\e.

Proof. For the first property, leta be a positive element; by the defining identity for GB
algebras, we geta(a\e) = e = (e/a)a; that is,a is invertible. By (i) and Lemma 2.1(ix)
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x/x andx\x are invertible for everyx. Hence, by Lemma 2.1(x),x/x = e = x\x. Finally,
by (ii) and Lemma 2.1(v),x(e/x) � x/x = e, hencee/x � x\e. Likewise,x\e � e/x. �
Lemma 2.8. A residuated lattice is a GBL-algebra if and only if it satisfies the identi
x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.

Proof. Assume thatL is a GBL-algebra andx, y ∈ L. By Lemmas 2.7(ii) and 2.1(ii), we
get

x ∧ y = x
(
x\(x ∧ y)

) = x(x\x ∧ x\y) = x(e ∧ x\y).

Likewise, we get the opposite identity.
Conversely assume that the identities in the statement of the lemma hold. W

show that every positive elementa is invertible. Indeed,e = a(a\e ∧ e) � a(a\e) � e.
So,a(a\e) = e and likewise(e/a)a = e. Arguing as in the proof of (ii) of Lemma 2.7, w
show thatx\x = x/x = e, for everyx ∈ L. Using Lemma 2.1(ii), we get

x
(
x\(x ∧ y)

) = x(x\x ∧ x\y) = x(e ∧ x\y) = x ∧ y.

Likewise, we obtain the opposite equation.�
Lemma 2.9. Every GBL-algebra has a distributive lattice reduct.

Proof. Let L be a GBL-algebra andx, y, z ∈ L. Invoking Lemmas 2.1 and 2.8, we have

x ∧ (y ∨ z) = [
x/(y ∨ z) ∧ e

]
(y ∨ z)

= [
x/(y ∨ z) ∧ e

]
y ∨ [

x/(y ∨ z) ∧ e
]
z

� (x/y ∧ e)y ∨ (x/z ∧ e)z

= (x ∧ y) ∨ (x ∧ z),

for all x, y, z. Thus, the lattice reduct ofL is distributive. �
Lemma 2.10. If x, y are elements of a GBL-algebra andx ∨ y = e (x, y are orthogonal),
thenxy = x ∧ y.

Proof. We have,x = x/e = x/(x ∨ y) = x/x ∧ x/y = e ∧ x/y = y/y ∧ x/y = (y ∧ x)/y.

So,xy = ((x ∧ y)/y)y = x ∧ y. �
The variety of integral GBL-algebras is denoted byIGBL and that of integral GMV-

algebras byIGMV . Obviously,IGBL= IRL∩ GBL andIGMV = IRL∩ GMV .
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Lemma 2.11.

(i) The varietyIGBL is axiomatized, relative toRL, by the equations(x/y)y ≈ x ∧ y ≈
y(y\x).

(ii) The varietyIGMV is axiomatized, relative toRL, by the equationsx/(y\x) ≈ x ∨
y ≈ (x/y)\x.

Proof. In view of the alternative axiomatizations ofGBL andGMV given in Lemma 2.8
the proposed equations hold in the corresponding varieties. For the reverse direct
verify that the proposed identities imply integrality. This is obvious for the first set
identities fory = e. For the second set, observe that for everyx,

e � e ∨ e/x = e/
(
(e/x)\e) = e/(e ∨ x);

soe ∨ x � e, i.e.,x � e. �
Negative cones of�-groups are examples of integral GMV-algebras, hence also o

tegral GBL-algebras. Moreover, these are cancellative residuated lattices, that is, membe
of CanRL. It is shown in [2] that the classLG− of negative cones of�-groups is a vari-
ety andLG− = IGMV ∩ CanRL = IGBL ∩ CanRL. This result provides an equation
basis forLG−.

Theorem 2.12 [2]. The class,LG−, of negative cones of�-groups is a variety and th
equationsxy/y ≈ x ≈ y\yx, x(x\y) ≈ x ∧ y ≈ (y/x)x form an equational basis for it
relative toRL.

The variety of Brouwerian algebras is term equivalent to the subvarietyBr of residuated
lattices axiomatized by the identityxy ≈ x ∧ y. It is clear thatBr ⊆ IGBL. The variety
GBA of generalized Boolean algebras is generated, in the setting of residuated latti
the two-element residuated lattice2 andGBA= IGMV ∩ Br (see [13]).

Lemma 2.13.

(i) Every integral GBL-algebra satisfies the identity(y/x)\(x/y) ≈ x/y and its opposite
(ii) Every integral GMV-algebra satisfies the identityx/y ∨ y/x ≈ e and its opposite.
(iii) Every integral GMV-algebra satisfies the identitiesx/(y ∧ z) ≈ x/y ∨ x/z, (x ∨

y)/z ≈ x/z ∨ y/z and the opposite ones.
(iv) Every commutative integral GMV-algebra is representable. Consequently, the s

rectly irreducible, commutative, integral GMV-algebras are totally ordered.

Proof. (i) For every integral GBL-algebra,y/x � e, so(y/x)\(x/y) � x/y. To show the
reverse inequality, we need to check that(

(y/x)\(x/y)
)
y � x.
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By Lemma 2.1(vii), it suffices to show that((
(y/x)\x)

/y
)
y � x.

Using Lemma 2.11(i), we see that the last equation is equivalent to(
y/

(
(y/x)\x))(

(y/x)\x)
� x,

which in turn is equivalent to

y/
(
(y/x)\x)

� x/
(
(y/x)\x)

.

To show that this holds note that

y/
(
(y/x)\x)

� y/x,

sincey/x � e, and that

y/x � x/
(
(y/x)\x)

,

sinceu � v/(u\v) is valid in every residuated lattice, by Lemma 2.1(iv).
(ii) Using Lemma 2.11(ii), we havex/y ∨ y/x = (x/y)/((y/x)\(x/y)), which simpli-

fies to(x/y)/(x/y), by invoking (i) and the fact that integral GMV-algebras are integ
GBL-algebras. Finally, the last term is equal toe in integral residuated lattices.

(iii) Since every GMV-algebra has a distributive lattice reduct by Lemma 2.9, the e
tions in (iii) follow from (ii) and Proposition 6.10(ii) of [4].

(iv) This follows from (ii) and [18]. �
It will be shown in Section 5, refer to Corollary 5.5, that the assumption of integr

in condition (iv) is not needed.

3. A concrete realization of integral generalized MV-algebras

A closure operatoron a posetP is a mapγ :P → P with the usual properties of preser
ing the order, being extensive (x � γ (x)), and being idempotent.Such a map is complete
determined by its image

C = imγ (3.1)

by virtue of the formula

γ (x) = min{c ∈ C: x � c}. (3.2)

A closure retractis any subsetC ⊆ P such that the minima (3.2) exist for allx ∈ P. Con-
ditions (3.1) and (3.2) establish a bijective correspondence between all closure op
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γ and all closure retractsC of P . In what follows, we will usePγ to denote the closur
retract onP corresponding to the closure operatorγ .

A nucleuson a residuated latticeL is a closure operatorγ on the lattice reduct ofL such
thatγ (a)γ (b) � γ (ab), for all a, b ∈ L. It is clear that a closure operatorγ on L is a nu-
cleus if and only ifγ (γ (a)γ (b)) = γ (ab), for all a, b ∈ L. Note that the monotonicity con
dition in the definition of a nucleus can be replaced by the inequalityγ (x)γ (x\y) � γ (y);
so, the property thatγ is a nucleus on a residuated lattice can be expressed equation
the expansion of the language of residuated lattices by a unary operation. A closure retra
C of a residuated latticeL is called asubactof L if x/y, y\x ∈ C, for all x ∈ C andy ∈ L.

As an example, note that ifu is an element of an integral residuated latticeL, then
γu :L → L—defined byγu(x) = x ∨ u, for all x ∈ L—is a nucleus onL. Its imageLγu is
the principal filter↑u = {x ∈ L | u � x}.

The next result describes the relationship between nuclei and subacts (see [25,
and [26, Corollary 3.7], for an earlier result in the setting of Brouwerian meet-semilatt

Lemma 3.1. Let γ be a closure operator on a residuated latticeL, and letLγ be the
closure retract associated withγ . The following statements are equivalent.

(i) γ is a nucleus.
(ii) γ (a)/b, b\γ (a) ∈ Lγ , for all a, b ∈ L.
(iii) Lγ is a subact ofL.

Proof. (i) ⇒ (ii). Let a, b ∈ L. We have,

γ (γ (a)/b)b � γ
(
γ (a)/b

)
γ (b) (γ is extensive)

� γ
((

γ (a)/b
)
b
)

(i)

� γ
(
γ (a)

) (
γ is monotone, Lemma 2.1(iv)

)
= γ (a) (γ is idempotent).

So,γ (γ (a)/b) � γ (a)/b, by the defining property of residuated lattices. Since the
verse inequality follows from the fact thatγ is extensive, we haveγ (a)/b = γ (γ (a)/b) ∈
Lγ . Likewise, we obtain the result for the other division operation.

(ii) ⇒ (i). Let a, b ∈ L. Sinceγ is extensive,ab � γ (ab), so a � γ (ab)/b. By the
monotonicity ofγ and the hypothesis,γ (a) � γ (ab)/b. Using the defining property o
residuated lattices, we getb � γ (a)\γ (ab). Invoking, once more, the monotonicity ofγ

and the hypothesis, we obtainγ (b) � γ (a)\γ (ab), namelyγ (a)γ (b) � γ (ab).
(ii) ⇔ (iii). This is trivial by the definition of a subact.�
Actually, it can be shown that an arbitrary mapγ on a residuated latticeL is a nucleus

if and only if γ (a)/b = γ (a)/γ (b) andb\γ (a) = γ (b)\γ (a), for all a, b ∈ L (see [25,
p. 30]).

Corollary 3.2. Conditions(3.1) and (3.2) establish a bijective correspondence betwe
nuclei on and subacts of a residuated lattice.
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Proof. Use Lemma 3.1. �
The next result shows that every subact of a residuated lattice is a residuated la

its own right.

Lemma 3.3. Let L = 〈L,∧,∨, ·,\, /, e〉 be a residuated lattice,γ be a nucleus onL and
Lγ be the subact associated withγ . Then the algebraic systemLγ = 〈Lγ ,∧,∨γ ,◦γ ,\, /,
γ (e)〉—wherex ◦γ y = γ (x · y) andx ∨γ y = γ (x ∨ y)—is a residuated lattice.

Proof. Obviously,γ (e) is the multiplicative identity ofLγ . Further,Lγ , being the image o
a closure operator onL, is a lattice with joins and meets defined byx ∨γ y = γ (x ∨ y) and
x ∧γ y = x ∧ y, for all x, y ∈ Lγ . One can easily check that multiplication is associat
Finally, to check that◦γ is residuated, recall thatLγ is closed under the division operatio
by Lemma 3.1. Considerx, y, z ∈ Lγ . We havex ◦γ y � z ⇔ γ (xy) � z ⇔ xy � z (since
z = γ (z) andxy � γ (xy)) ⇔ y � x\z. Likewise, we havex ◦γ y � z ⇔ x � z/y. �
Theorem 3.4. If L = 〈L,∧,∨, ·,\, /, e〉 is a GMV-algebra,γ a nucleus on it andLγ the
associated subact, then

(i) ∨γ = ∨;
(ii) γ preserves binary joins;
(iii) γ (e) = e;
(iv) Lγ = 〈Lγ ,∧,∨,◦γ ,\, /, e〉 is a GMV-algebra; and
(v) Lγ is a filter in L.

Proof. (i) SinceL is a GMV-algebra, ifx ∈ Lγ , thenx ∨ y = x/((x ∨ y)\x) ∈ Lγ , by
Lemma 3.1(iv). Thus,∨γ is the restriction of∨ on Lγ .

(ii) It is well known, and easy to prove, that ifγ is a closure operator on a posetP andX

is a subset ofP such thatP
∨

X exists, thenPγ
∨

γ (X) exists andPγ
∨

γ (X) = γ (P
∨

X).

Thus, (i) and (ii) are equivalent.
(iii) Since γ is extensive,e � γ (e). Hence,γ (e) is invertible, by Lemma 2.7(i). Sinc

γ is a nucleus,γ (e)γ (e) � γ (e), soγ (e) � e. Thus,γ (e) = e.
(iv) By Lemma 3.3,Lγ is a residuated lattice. It is a GMV-algebra because the join

division operations ofLγ are the restrictions of the corresponding operations inL, andL
is a GMV-algebra.

(v) If x ∈ Lγ , y ∈ L andx � y, then by Lemma 3.1,y = x ∨ y = x/((x ∨ y)\x) is an
element ofLγ . SinceLγ is also a sublattice, it is a lattice-filter.�
Corollary 3.5. If L is an integral GMV-algebra andγ is a nucleus onL, thenLγ is an
integral GMV-algebra.

Lemma 3.6. Let γ be a nucleus on the negative coneL of an�-group. If z ∈ L andu =
γ (z), thenγ agrees with the nucleusγu on the principal filter↑z.
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Proof. Let x � z. We will show thatγ (x) = u ∨ x. Note thatu ∨ x = γ (z) ∨ x � γ (x),
sinceγ is monotone and extensive. On the other hand,x � u ∨ x, soγ (x) � γ (u ∨ x) =
u ∨ x, becauseLγ is a filter, by Theorem 3.4(v). �
Corollary 3.7. Every nucleus on a GMV-algebra is a lattice homomorphism.

Proof. In view of Theorem 3.4(ii), we need only show thatγ preserves binary meet
Let x, y be elements of a GMV-algebra and setz = x ∧ y andu = γ (z). Recall that a
GMV-algebra has a distributive lattice reduct; refer to Lemmas 2.5 and 2.9. When
Lemma 3.6,γ (x ∧ y) = γu(x ∧ y) = u ∨ (x ∧ y) = (u ∨ x) ∧ (u ∨ y) = γu(x) ∧ γu(y) =
γ (x) ∧ γ (y). �

By Corollary 3.5, the image of a nucleus on the negative cone of an�-group is an
integral GMV-algebra. In the remainder of this section we are concerned with the
of the converse, namely that every integral GMV-algebra is the image of a nucle
the negative cone of an�-group. Our proof is based on Theorem 3.11, which is du
B. Bosbach, see [5] and [6].

Definition 3.8. A cone algebrais an algebraC = 〈C,\, /, e〉 that satisfies:

(x\y)\(x\z) ≈ (y\x)\(y\z)(z/y)/(x/y) ≈ (z/x)/(y/x),

e\y ≈ y, y/e ≈ y,

x\(y/z) ≈ (x\y)/z, x/(y\x) ≈ (y/x)\y,

x\x ≈ e, x/x ≈ e.

Lemma 3.9 [5,6]. If C = 〈C,\, /, e〉 is a cone algebra, then

(i) for all a, b ∈ C, a\b = e ⇔ b/a = e;
(ii) the relation� onC, defined bya � b ⇔ a\b = e, is a semilattice order witha ∨ b =

a/(b\a); in particular a � e, for all a;
(iii) if a � b, thenc\a � c\b anda/c � b/c.

It is easy to see that ifL = 〈L,∧,∨, ·,\, /, e〉 is an integral GMV-algebra—for exampl
L ∈LG−—then〈L,\, /, e〉 is a cone algebra, calledthe cone algebra ofL.

It will be shown that every cone algebra is a subalgebra of the cone algebra of a
uated lattice inLG−. In the following construction, the algebra inLG− is defined as the
union of an ascending chain〈Cn | n ∈ N〉 of cone algebras, each of which is a subalge
of its successor. In the process of constructing the algebrasCn, we also define inCn+1

binary products of elements ofCn. Each such product is identified with the congrue
class of the corresponding ordered pair. The definition below of the division operation
becomes less opaque if we note that the negative cones of any�-group satisfies the law
ab\cd = (b\(a\c)) · (((a\c)\b)\((c\a)\d)) and its opposite.
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Let C be a cone algebra. Define the operations\ and/ and the relationsΘ andΘ ′ on
C × C, by

(a, b)\(c, d) = (
b\(a\c), ((a\c)\b)\((c\a)\d))

,

(d, c)/(b, a) = ((
d/(a/c)

)
/
(
b/(c/a)

)
, (c/a)/b

)
,

(a, b) Θ (c, d) ⇔ (a, b)\(c, d) = (e, e) and (c, d)\(a, b) = (e, e),

(a, b) Θ ′ (c, d) ⇔ (a, b)/(c, d) = (e, e) and (c, d)/(a, b) = (e, e).

Lemma 3.10 [6]. LetC = 〈C,\, /, e〉 be a cone algebra. Then:

(i) Θ = Θ ′.
(ii) Θ is a congruence relation ofC × C.
(iii) s(C) = 〈C × C,\, /, e〉/Θ is a cone algebra.
(iv) For eachx ∈ C, let [(x, e)]Θ denote theΘ-congruence class of(x, e). Then the map

x �→ [(x, e)]Θ is an embedding ofC into s(C).

Let C0 = C, Cn+1 = s(Cn), for every natural numbern, andC = ⋃
Cn, the directed

union of theCn’s.
We can now establish the main result of [6].

Theorem 3.11 [6]. Every cone algebraC is a subalgebra of the cone algebra of so
Ĉ ∈ LG−. Moreover, every element of̂C can be written as a product of elements ofC.

Proof. We will show that the algebraC defined above is the cone algebra, i.e., the{\, /, e}-
reduct, of âC ∈ LG−.

For two elements ofC, we define their product,ab, to be the element[(a, b)]Θ .
This is well defined, because of the embedding ofCn into Cn+1, for every n. Let
Ĉ = 〈C,∧,∨, ·,\, /, e〉, where\ = \C, / = /C, x ∨ y = x/(y\x) andx ∧ y = (x/y)y.
We will show that̂C ∈ LG−.

By the definition of the operations in̂C and Lemma 3.9(ii),̂C is a join semilattice
Note thatab\cd = (b\(a\c)) · (((a\c)\b)\((c\a)\d)). In particular,ab\c = b\(a\c) and
a\ab = b. The opposite equations hold, as well. Finally, note thate/a = e = a\e.

Multiplication is order preserving
Let a � c; thene = a\c, by the definition of�. To show thatab � cb, we note that

ab\cb = b\[(c\a)\b] = [
(c\a)b

]\b.

On the other hand,

b/
[
(c\a)b

] = (b/b)/(c\d) = e/(c\d) = e.

This successively yields,(c\a)b � b, [(c\a)b]\b = e, ab\cb = e andab � cb. Likewise
a � c impliesba � bc.
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Multiplication is residuated
Note thata(a\c) � c, since[a(a\c)]\c = (a\c)\(a\c) = e. If ab � c, thena\ab �

a\c, sob � a\c. Conversely, ifb � a\c, thenab � a(a\c) � c. The other equivalence
obtained similarly.

Multiplication is associative
We have the following sequence of equivalences:

(ab)c � d ⇔ ab � d/c ⇔ b � a\(d/c) ⇔ b � (a\d)/c

⇔ bc � (a\d) ⇔ a(bc) � d.

∧ is the meet operation
We havea(a\b) � b and a(a\b) � ae = a. Additionally, if c � a and c � b, then

e = c\a = c\b. We have,c\a(a\b) = (c\a)\(c\b) = e, soc � a(a\b). Interchanging the
roles ofa andb we get thatc � a, b ⇔ c � b(b\a). The opposite properties are obtain
similarly.

Thus,Ĉ is a residuated lattice. Since it satisfies the identitiesx\xy ≈ y ≈ yx/x and
x/(y\x) ≈ x ∨ y ≈ (x/y)\x, it is in LG−, by Theorem 2.12. Finally, by constructio
every element of̂C is the product of elements ofC. �

The algebrâC is called theproduct extensionof C.
We can now prove the main result of this section.

Theorem 3.12. The residuated latticeM is an integral GMV-algebra if and only ifM ∼= Lγ ,
for someL ∈ LG− and some nucleusγ on L.

Proof. One direction follows from Corollary 3.5. For the opposite implication, letM =
〈M,∧,∨,◦,\, /, e〉 be an integral GMV-algebra. Using Lemmas 2.5, 2.11(ii), 2.1(
2.7(ii), 2.1(viii), 2.1(vii) and 2.11(i), we see that〈M,\, /, e〉 is a cone algebra. So, by Th
orem 3.11, it is a subreduct of a residuated latticeL = M̂ ∈ LG− such thatM generatesL
as a monoid.

Since the division operations ofM are the restrictions of the division operations ofL,

we use the symbols\ and/ for the latter, as well. Moreover, the same holds for the join
the constante, because in integral GMV-algebras they are term definable by the div
operations:x ∨ y ≈ x/(y\x) ande ≈ x/x. We use “·” to denote the multiplication ofL.

SinceM generatesL as a monoid, for everyx ∈ L there exists a sequence(x1, . . . , xn)

of elements ofM such thatx = x1 · · ·xn.

Claim 1. If z ∈ M,x ∈ L and (x1, . . . , xn) is a sequence of elements ofM such thatx =
x1 · · ·xn, thenz ∨ x = z ∨ x1 ◦ · · · ◦ xn.

Indeed,

z ∨ x = z/(x\z) (axiom of IGMV-algebras)
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= z/
(
(x1 · · ·xn)\z

)
= z/

[
xn\

(· · · (x2\(x1\z)
) · · ·)] (

Lemma 2.1(vi)
)

= z/
(
(x1 ◦ · · · ◦ xn)\z

) (
Lemma 2.1(vi)

)
= z ∨ x1 ◦ · · · ◦ xn (axiom of IGMV-algebras).

Claim 2. Let (x1, . . . , xn) and (y1, . . . , ym) be sequences of elements ofM such that
x1 · · ·xn = y1 · · ·ym. Then,x1 ◦ · · · ◦ xn = y1 ◦ · · · ◦ ym.

Indeed,x1 ◦ · · · ◦ xn ∨y1 ◦ · · · ◦ ym = x1 ◦ · · · ◦ xn ∨x1 ◦ · · · ◦ xn, by the preceding claim
It follows thaty1 ◦ · · ·◦ ym � x1 ◦ · · ·◦ xn, and likewise,x1 ◦ · · ·◦ xn � y1 ◦ · · ·◦ ym. Hence,
x1 ◦ · · · ◦ xn = y1 ◦ · · · ◦ ym.

We now define a mapγ on L as follows: if x ∈ L and (x1, . . . , xn) is a sequence o
elements ofM such thatx = x1 · · ·xn, we letγ (x) = x1 ◦ · · · ◦ xn. By Claim 2,γ is well
defined. We will show that it is a nucleus onL, Lγ = M andLγ

∼= M.
Note thatγ (x) ∈ M, for all x ∈ L, so by settingz = γ (x) in the statement of Claim 1

we getγ (x) ∨ x = γ (x). So,x � γ (x), for all x ∈ L. If x � y, then

γ (x) � γ (y) ∨ γ (x)

= γ (y) ∨ x
(
Claim 1 forz = γ (y)

)
� γ (y) ∨ y (x � y)

� γ (y) (sinceγ is extensive).

This shows thatγ is monotone. The following computation shows thatγ is idempotent,
and hence a closure operator.

γ (γ (x)) = γ (x1 ◦ · · · ◦ xn) = x1 ◦ · · · ◦ xn = γ (x).

Finally, if x = x1 · · ·xn andy = y1 · · ·ym, are two representations ofx andy in terms
of elements ofM, then

γ (x)γ (y) � γ
(
γ (x)γ (y)

)
(sinceγ is extensive)

= γ (x) ◦ γ (y) (definition ofγ )

= (x1 ◦ · · · ◦ xn) ◦ (y1 ◦ · · · ◦ ym) (definition ofγ )

= γ (xy) (definition ofγ ).

Thus,γ is a nucleus.
It is clear thatLγ = M, by the definition ofγ (x). Further, we have already observ

that the division operations, join ande agree onLγ andM. Also, for x, y ∈ M, x ◦γ y =
γ (xy) = x ◦ y. Finally, the meet operation on the two structures is the same, since in
GMV-algebras satisfy the identityx ∧ y ≈ (x/y)y. Thus, the two structuresM andLγ are
identical. �
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As an example, we note that the collection of all co-finite subsets ofω is the universe
of a generalized Boolean algebraA, hence an integral GMV-algebra. It is easy to see
A ∼= ((Z−)ω)γ , whereZ is the�-group of the integers under addition and the natural or
andγ ((xn)n∈ω) = (xn ∨ (−1))n∈ω.

4. A categorical equivalence for integral GMV-algebras

In this section we extend the representation of integral GMV-algebras, discussed
previous section, to a categorical equivalence.

Let IGMV be the category with objects integral GMV-algebras and morphisms r
uated lattice homomorphisms. Also, letLG−∗ be the category with objects algebr
〈L,∧,∨, ·,\, /, e, γ 〉, whereL = 〈L,∧,∨, ·,\, /, e〉 ∈ LG− andγ is a nucleus onL such
that its image generatesL as a monoid. (In what follows, we will use the notation〈L, γ 〉
for the objects ofLG−∗ .) Let the morphisms of this category be homomorphisms betw
these algebras. The main result of this section, Theorem 4.12, asserts that the two ca
gories defined above are equivalent.

Definition 4.2 and Lemma 4.3 below have been influenced by results in [24].
mas 4.5 and 4.7 are non-commutative, unbounded versions of results in the same p

Lemma 4.1. Let a, b, c be elements of a residuated latticeL ∈ LG−. Then,ab = c iff
(a = c/b andc � b) iff (b = a\c andc � a).

Proof. We prove only the first equivalence. Ifab = c, thenab/b = c/b, so, by Theo-
rem 2.12,a = c/b. Moreover,c = ab � eb � b, by integrality. Conversely, ifa = c/b and
c � b, thenab = (c/b)b. So,ab = c ∧ b, becauseL ∈ IGBL, by Theorem 2.12. Sinc
c � b, we getab = c. �

Recall that ifγ is a nucleus on someL ∈ LG−, the monoid multiplication◦γ of Lγ is
defined byx ◦γ y = γ (xy), for all elementsx, y ∈ L (see Lemma 3.3).

Definition 4.2. Let γ be a nucleus onL ∈ LG− and letx be an element ofL. A sequence
(x1, . . . , xn) of elements ofLγ is called adecompositionof x with respect toγ if x =
x1 · · ·xn. A decomposition is calledcanonicalif, in addition,xi ◦γ xi+1 = xi , for all i ∈
{1, . . . , n − 1}.

Lemma 4.3. Let L ∈ LG− and let γ be a nucleus onL such thatLγ generatesL as
a monoid. Then every element ofL has a canonical decomposition with respect toγ .
Moreover, if(x1, . . . , xn) and(x ′

1, . . . , x
′
m) are canonical decompositions of the same e

ment with respect toγ andm � n, thenxi = x ′
i , for all i ∈ {1, . . . , n} andx ′

i = e for all
i ∈ {n + 1, . . . ,m}.

Proof. We first construct a canonical decomposition of an arbitrary elementx of L. Let
x1 = γ (x) and xi+1 = γ ((x1 · · ·xi)\x), for all i � 1. We will prove that there exists
natural numbern such thatx = x1 · · ·xn andxi ◦γ xi+1 = xi for all i ∈ {1, . . . , n − 1}.
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We show, by induction, thatx � x1 · · ·xk, for every integerk � 1. Fork = 1 we have
x � γ (x) = x1. If x � x1 · · ·xk, then Lemma 2.11(i) yields

x = x1 · · ·xk ∧ x

= x1 · · ·xk · [(x1 · · ·xk)\x
]

� x1 · · ·xk · γ (
(x1 · · ·xk)\x

)
= x1 · · ·xk · xk+1.

Next, letz be any element ofL such thatz � x and setu = γ (z). By Lemma 3.6, the
mapsγ andγu agree on↑x. The arguments ofγ in the definition of the elementsxi , as
well as in the equalityγ (xi ·xi+1) = xi , are in↑x, so we can replaceγ by γu. In particular,
a decomposition of an elementx is canonical with respect toγ if and only if it is canonical
with respect to some/everyγu such thatu = γ (z) andz � x.

Applying Lemma 4.1, fora = xi , b = xi\((x1 · · ·xi−1)\x) andc = (x1 · · ·xi−1)\x, we
obtain for alli � 1,

xi

[
xi\

(
(x1 · · ·xi−1)\x

)] = (x1 · · ·xi−1)\x,

wherex1 · · ·xi−1 = e for i = 1. It follows that, for alli � 1,

xi ◦γ xi+1 = γ (xixi+1) = γu(xixi+1)

= u ∨ (xixi+1) = u ∨ (
xiγu

(
(x1 · · ·xi)\x

))
= u ∨ xi

(
u ∨ [

(x1 · · ·xi)\x
])

= u ∨ xiu ∨ xi

[
(x1 · · ·xi)\x

]
= u ∨ xiu ∨ xi

[
xi\

(
(x1 · · ·xi−1)\x

)]
= u ∨ xiu ∨ [

(x1 · · ·xi−1)\x
]

= u ∨ [
(x1 · · ·xi−1)\x

]
= γu

(
(x1 · · ·xi−1)\x

)
= γ

(
(x1 · · ·xi−1)\x

) = xi.

We next show that(x1 · · ·xk)\x = uk\x, for all k � 1, using induction onk. Fork = 1,
we have

x1\x = γ (x)\x = γu(x)\x = (x ∨ u)\x = x\x ∧ u\x = e ∧ u\x = u\x.

Assume that the statement is true fork. To show that it is true fork + 1, note that, using
properties (iii) and (vi) of Lemma 2.1, we get
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(x1 · · ·xk+1)\x = xk+1\
[
(x1 · · ·xk)\x

]
= γ

(
(x1 · · ·xk)\x

)\[(x1 · · ·xk)\x
]

= [
u ∨ (

(x1 · · ·xk)\x
)]\[(x1 · · ·xk)\x

]
= u\[(x1 · · ·xk)\x

] ∧ [
(x1 · · ·xk)\x

]\[(x1 · · ·xk)\x
]

= u\[(x1 · · ·xk)\x
] ∧ e

= u\(uk\x) = uk+1\x.

We have shown that(x1 · · ·xk)\x = uk\x, for all k � 1.
SinceL is the monoid generated byLγ , there exist a natural numbern and elements

a1, . . . , an ∈ Lγ such thatx = a1 · · ·an. Thus,u � γ (x) = γ (a1 · · ·an) = a1 ◦γ · · · ◦γ an �
ai , for all i. It follows thatun � a1 · · ·an = x. Consequently,e � un\x = (x1 · · ·xn)\x, that
is, x1 · · ·xn � x. Since the reverse inequality was established above, we havex = x1 · · ·xn.

To establish uniqueness, let(x1, . . . , xn) and(x ′
1, . . . , x

′
m) be canonical decomposition

of an elementx with respect toγ andm � n. Then,xi ◦γ xi+1 = xi , x ′
i ◦γ x ′

i+1 = x ′
i , for

all appropriate values ofi, andx1 · · ·xn = x ′
1 · · ·x ′

m. So,γ (x1 · · ·xn) = γ (x ′
1 · · ·x ′

m), i.e.,

x1 ◦γ · · · ◦γ xn = x ′
1 ◦γ · · · ◦γ x ′

m.

Hencex1 = x ′
1, by the defining property of canonical decompositions. Consequent

x1\x1x2 · · ·xn = x ′
1\x ′

1x
′
2 · · ·x ′

m, sox2 · · ·xn = x ′
2 · · ·x ′

m, by cancellativity. Proceeding in
ductively, we getxi = x ′

i , for all i ∈ {1, . . . , n}. Another application of cancellativity yield
e = x ′

n+1 · · ·x ′
m, hencex ′

i = e for all i ∈ {n + 1, . . . ,m}, by integrality. �
It follows from the preceding lemma that eachelement has a canonical decomposit

unique up to the addition of extra terms, equal toe, at the end of the sequence. Thus, wh
we consider canonical decompositions of a finite set of elements, we may assume that
have the same length.

Corollary 4.4. Let L ∈ LG− and letγ be a nucleus onL. If (x1, . . . , xn) and(y1, . . . , yn)

are canonical decompositions of the elementsx andy, respectively, with respect toγ and
x � y, thenxi � yi , for all i � n.

Proof. In view of the preceding lemma, we may assume thatxi andyi are given by the
formulas at the beginning of its proof. Letz be an element ofL such thatz � x ∧ y and let
u = γ (z). From the proof of the previous theorem we have that(x1 · · ·xk)\x = uk\x, and
(y1 · · ·yk)\y = uk\y, for all k ∈ {1, . . . , n}. Thus, for alli ∈ {1, . . . , n},

xi = γ
(
(x1 · · ·xi−1)\x

) = γ
(
ui−1\x)

� γ
(
ui−1\y) = γ

(
(y1 · · ·yi−1)\y

) = yi,

wherex1 · · ·xi−1 = y1 · · ·yi−1 = e, if i = 1. �
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Lemma 4.5. Let L ∈ LG− and letγ be a nucleus onL such thatLγ generatesL as a
monoid. Also, let(x1, . . . , xn) and (y1, . . . , yn) be canonical decompositions for the e
mentsx andy, respectively. Then,

x ∧ y =
n∏

i=1

(xi ∧ yi) and x ∨ y =
n∏

i=1

(xi ∨ yi).

Proof. Let (z1, . . . , zn) be a canonical decomposition ofz = x ∧ y. Without loss of gener
ality we assume that the length of the decomposition ofz is n. We can do that by extendin
the decompositions ofx andy or of z with extra terms each equal toe. Obviously,

n∏
i=1

(xi ∧ yi) �
n∏

i=1

xi ∧
n∏

i=1

yi = x ∧ y = z.

Moreover,z � x, y, sozi � xi, yi , for all i, by Corollary 4.4; hencezi � xi ∧ yi . Con-
sequently,

z =
n∏

i=1

zi �
n∏

i=1

(xi ∧ yi).

Thus,

z =
n∏

i=1

(xi ∧ yi).

The proof for joins is analogous.�
The following refinement lemma can be found in [11]. Its importance in the proof o

categorical equivalence was suggested to us by the considerations in [10]. For com
ness, we give the proof in the language of negative cones of�-groups.

Lemma 4.6 [11, Theorem 1, p. 68]. Let L ∈ LG− and leta1, . . . , an, b1, . . . , bm be ele-
ments ofL. The following statements are equivalent.

(1) The equalitya1 · · ·an = b1 · · ·bm holds.
(2) There exist elementscij of L, where1� i � n and1 � j � m, such that for alli, j ,

aj =
m∏

i=1

cij , bi =
n∏

j=1

cij and
m∏

l=j+1

cil ∨
n∏

k=i+1

ckj = e.
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Notation. We denote the fact that condition (2) holds by the following configuration:

a1 · · · an

b1
...

bm


 c11 · · · c1n

...
...

cm1 · · · cmn




Thus, with respect to this description, condition (2) states that for alli and j , aj is the
product of the elements of thej th column,bi is the product of the elements of theith
row and that the product of the elements to the right ofcij is orthogonal to the product o
elements below it.

Proof. First, we show that (2) implies (1). Recall that ifx ∨ y = e, thenxy = yx, by
Lemma 2.10. Form = n = 2, we havea1a2 = c11c21c12c22 = c11c12c21c22 = b1b2. We
proceed by induction on the pair(m,n). Let m � 2, n > 2 and assume that the lemma
true for all pairs(m, k), wherek < n. We will show it is true for the pair(m,n).

Suppose that condition (2) holds. It is easy to see that

a2 · · · an

c1
...

cm


 c12 · · · c1n

...
...

cm2 · · · cmn


 and

a1 c

b1
...

bm


 c11 c1

...
...

cm1 cm




where c = c1 · · ·cm. So, a1a2 · · ·an = a1(c1 · · ·cm) = a1c = b1b2 · · ·bm. Note that the
lemma holds for the pair(m,n) if and only if it holds for the pair(n,m), a fact that com-
pletes the induction proof.

For the converse we use induction, as well. We first prove it form = n = 2. Assume tha
a1a2 = b1b2 = c and set

c11 = a1 ∨ b1, c12 = a2/c22,

c21 = c11\a1, c22 = a2 ∨ b2.

Using Lemmas 2.13(iii), 4.1 and 2.1 we get

c12 = a2/c22 = a2/(a2 ∨ b2)

= (a1\c)/(a1\c ∨ b1\c) = (a1\c)/
(
(a1 ∧ b1)\c

)
= a1\

[
c/

(
(a1 ∧ b1)\c

)] = a1\
[
(a1 ∧ b1) ∨ c

]
= a1\(a1 ∧ b1) = a1\a1 ∧ a1\b1

= e ∧ a1\b1 = a1\b1 ∧ b1\b1

= (a1 ∨ b1)\b1 = c11\b1.
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Similarly, we show thatc21 = b2/c22. So, we have

c11c21 = c11(c11\a1) = c11 ∧ a1 = (a1 ∨ b1) ∧ a1 = a1,

c12c22 = (a2/c22)c22 = a2 ∧ c22 = a2,

c11c12 = c11(c11\b1) = c11 ∧ b1 = b1,

c21c22 = (b2/c22)c22 = b2 ∧ c22 = b2.

Finally, c21 ∨ c12 = c11\a1 ∨ c11\b1 = c11\(a1 ∨ b1) = c11\c11 = e.
For the general case, we proceed by induction on the pair(m,n). Let m � 2, n > 2

and assume that the lemma is true for all pairs(m, k), wherek < n. We will show it is
true for the pair(m,n). Assume thata1a2 · · ·an = b1b2 · · ·bm and seta = a2a3 · · ·an. So,
a1a = b1b2 · · ·bm. By the induction hypothesis, we get

a1 a

b1
...

bm


 c11 c12

...
...

cm1 cm2


 and

a2 · · · an

c12
...

cm2


 d12 · · · d1n

...
...

dm2 · · · dmn




for somecij , dkl , with appropriate indices. So, we have

a1 a2 . . . an

b1
...

bm


 c11 d12 . . . d1n

...
...

cm1 dm2 . . . dmn


 . �

Lemma 4.7. Let L ∈ LG−, γ be a nucleus on it anda, a1, . . . , an ∈ Lγ . Thena = a1 ·
a2 · · ·an if and only ifa = a1◦γ a2 ◦γ · · · ◦γ an andak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1◦γ

ak+2 ◦γ · · · ◦γ an), for all 1 � k < n.

Proof. We use induction onn. Forn = 2, if a = a1a2, thenγ (a) = γ (a1a2), soa = a1 ◦γ

a2. Moreover, by Lemma 4.1,a1 = a/a2, soa1 = (a1◦γ a2)/a2. Conversely, ifa = a1◦γ a2
and (a1 ◦γ a2)/a2 = a1, thena = γ (a1a2) � γ (a2) = a2. Sincea1 = a/a2, we geta =
a1a2, by Lemma 4.1.

Assume now that the statement is true for all numbers less thann. Note that if
a1a2 · · ·an ∈ Lγ , thena2 · · ·an ∈ Lγ , sincea1a2 · · ·an � a2 · · ·an andLγ is a filter, by
Theorems 3.4 and 2.12,

a = a1(a2 · · ·an)

⇔ a = a1b, b = a2 · · ·an and b ∈ Lγ

⇔ a = a1 ◦γ b, a1 = a/b, b = a2 ◦γ · · · ◦γ an and
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ak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an) for all 2 � k < n

⇔ a = a1 ◦γ a2 ◦γ · · · ◦γ an and

ak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an)

for all 1 � k < n. �
Lemma 4.8. Assume thatK,L ∈ LG−, γ1, γ2 are nuclei onK,L andKγ1, Lγ2 generateK
andL as monoids, respectively. Letf : Kγ1 → Lγ2 be a residuated lattice homomorphis
and let a1, . . . , an, b1, . . . , bm be elements ofKγ1, such thata1a2 · · ·an = b1b2 · · ·bm,
where multiplication is inK. Then,f (a1)f (a2) · · ·f (an) = f (b1)f (b2) · · ·f (bm), where
multiplication takes place inL.

Proof. First note that, for allc1, c2, . . . , cn ∈ Kγ1, if c1c2 · · ·cn ∈ Kγ1, then

f (c1c2 · · ·cn) = f (c1)f (c2) · · ·f (cn).

Indeed, by Lemma 4.7, the statementc = c1c2 · · ·cn, for an elementc ∈ K, is equivalent
to a system of IGMV-algebra equations inKγ1. Sincef is a homomorphism, the sam
equations hold for the images of the elements underf . Applying Lemma 4.7 again, we ge
f (c) = f (c1)f (c2) · · ·f (cn).

Next, the equalitya1a2 · · ·an = b1b2 · · ·bm implies, by Lemma 4.6, that there existcij ∈
Kγ1, such that if for alli, j ,

aj =
m∏

i=1

cij , bi =
n∏

j=1

cij and
m∏

l=j+1

cil ∨
n∏

k=i+1

ckj = e.

Note that all of the products above are inKγ1. Using the observation above and the f
that f preserves joins (recall that the join operation inKγ1 is the restriction of the join
operation inK, by Theorems 3.4 and 2.12), we get that, for alli, j ,

f (aj ) =
m∏

i=1

f (cij ), f (bi) =
n∏

j=1

f (cij ) and
m∏

l=j+1

f (cil) ∨
n∏

k=i+1

f (ckj ) = e.

Finally, we obtain

f (a1)f (a2) · · ·f (an) = f (b1)f (b2) · · ·f (bm)

by applying Lemma 4.6 once more.�
The following result is an immediate consequence of Theorem 1.4.5 of [3].

Lemma 4.9. Any multiplicative meet-homomorphism between two members ofLG− is a
residuated lattice homomorphism.
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Lemma 4.10. Let K,L ∈ LG−, and letγ1, γ2 be nuclei onK,L, respectively, such tha
Kγ1,Lγ2 generateK,L as monoids. Iff : Kγ1 → Lγ2 is a residuated lattice homomo
phism, then there exists a unique homomorphismf̄ : K → L, such thatf ◦ γ1 = γ2 ◦ f̄ .

Proof. By assumption every element ofK is a product of elements ofKγ1. By
Lemma 4.8, the map̄f :K → L, defined byf̄ (x1x2 · · ·xn) = f (x1)f (x2) · · ·f (xn), for
x1, x2, . . . , xn ∈ Kγ1, is well defined and obviously preserves multiplication.

If x ∈ K, then there existx1, . . . , xn ∈ Kγ1 such thatx = x1 · · ·xn. Hence,

f̄
(
γ1(x)

) = f
(
γ1(x)

) = f
(
γ1(x1 · · ·xn)

) = f (x1 ◦γ1 · · · ◦γ1 xn)

= f (x1) ◦γ2 · · · ◦γ2 f (xn) = γ2
(
f (x1) · · ·f (xn)

) = γ2
(
f̄ (x)

)
.

Thus,f̄ ◦ γ1 = γ2 ◦ f̄ .
Moreover, if (x1, . . . , xn) is a canonical decomposition forx with respect toγ1, then

x = x1 · · ·xn andxi ◦γ1 xi+1 = xi. So, f̄ (x) = f (x1) · · ·f (xn) andf (xi) ◦γ2 f (xi+1) =
f (xi), i.e., (f (x1), . . . , f (xn)) is a canonical decomposition for̄f (x) with respect toγ2.

We can now show that̄f preserves meets. Let(x1, . . . , xn) and(y1, . . . , yn) be canonica
decompositions forx, y. Then, by Lemma 4.5,

f̄ (x ∧ y) = f̄

(
n∏

i=1

(xi ∧ yi)

)
=

n∏
i=1

f (xi ∧ yi) =
n∏

i=1

(
f (xi) ∧ f (yi)

) = f̄ (x) ∧ f̄ (y),

where the last equality is given by Lemma 4.5, sincef preserves canonical decomp
sitions. Thusf̄ preserves multiplication and meet, and hence it is a residuated l
homomorphism, by Lemma 4.9.�
Corollary 4.11. Under the hypothesis of the previous lemma, iff is an injection, a surjec
tion or an isomorphism, then so is̄f .

Proof. Assume thatf is onto and lety ∈ L. There existy1, . . . , yn ∈ Lγ2, such thaty =
y1 · · ·yn. Moreover, there existx1, . . . , xn ∈ Kγ1, such thatf (xi) = yi for all i. Then,
f̄ (x1 · · ·xn) = f (x1) · · ·f (xn) = y1 · · ·yn = y.

Assume thatf is injective. If (x1, . . . , xn), (y1, . . . , yn) are canonical decomposition
for x, y and f̄ (x) = f̄ (y), namelyf (x1) · · ·f (xn) = f (y1) · · ·f (yn) then, by the preser
vation of the canonicity of the decomposition underf̄ , established in the proof of th
previous lemma, we getf (xi) = f (yi) for all i. By the injectivity off we getxi = yi , for
all i, sox = y. �
Theorem 4.12. The categoriesIGMV andLG−∗ are equivalent.

Proof. For an object〈K, γ 〉 of LG−∗ , let Γ (〈K, γ 〉) = Kγ ; for a homomorphism
f : 〈K, γ1〉 → 〈L, γ2〉, let Γ (f ) be the restriction off to Kγ1.

By Corollary 3.5,Γ (〈K, γ 〉) is an object inIGMV. Using the fact thatf commutes
with the nucleiγ1 and γ2, it is easy to see thatΓ (f ) is a morphism ofIGMV. To
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Table 1
Categorical equivalences

K = IGMV LG−∗ LG∗
K Obj IGMV 〈L, γ 〉 ∈LG−∗ (G, γ ), G ∈ LG

L = 〈γ (L)〉 G− = 〈γ (G−)〉
γ is a nucleus onG−

Mor H(IGMV) H(LG−∗ ) f ∈ H(LG), f :G → H
f |G− ◦ γ = γ ◦ f |G−

bK Obj bIGMV 〈L, γu〉 ∈ LG−∗ (G, γu), G ∈ LG
u ∈ L = 〈γ (L)〉 u ∈ G− = 〈γu(G−)〉

γu is a nucleus onG−

Mor H(IGMV) H(LG−∗ ) f ∈ H(LG), f :G → H
f |G− ◦ γ = γ ◦ f |G−

Kb Obj IGMV 〈L, γ 〉 ∈LG−∗ (G, γ ), G ∈ LG
L = 〈γ (L)〉 G− = 〈γ (G−)〉

γ is a nucleus onG−

Mor f ∈ H(IGMV) f ∈ H(LG−∗ ) f ∈ H(LG), f :G → H
f :M → N, f :K → L, f |G− ◦ γ = γ ◦ f |G−
↑f [M] = N ↑f [K] = L ↑f [G] = H

bKb Obj bIGMV 〈L, γu〉 ∈ LG−∗ (G, γu), G ∈ LG
u ∈ L = 〈γ (L)〉 u ∈ G− = 〈γu(G−)〉

γu is a nucleus onG−

Mor f ∈ H(IGMV) f ∈ H(LG−∗ ) f ∈ H(LG), f :G → H
f :M → N, f :K → L, f |G− ◦ γ = γ ◦ f |G−
↑f [M] = N ↑f [K] = L ↑f [G] = H

check, for example, that it preserves multiplication, note thatΓ (f )(x ◦γ1 y) = f (γ1(xy)) =
γ2(f (xy)) = γ2(f (x)f (y)) = f (x) ◦γ2 f (y).

Moreover, it is obvious thatΓ (f ◦ g) = Γ (f ) ◦ Γ (g) and thatΓ (idKγ1
) = idKγ2

. Thus,
Γ is a functor between the two categories.

By Theorem 3.12,Γ is onto the objects ofIGMV and by Lemma 4.10,Γ is full.
Finally, Γ is faithful, because if two morphisms agree on a generating set, they agree
the whole negative cone of the�-group. Thus,Γ is a categorical equivalence between
two categories, by Theorem 1, page 93, of [23].�

In addition toIGMV andLG−∗ , we also consider the following categories, the defi
tions of which we organize in Table 1.

We first explain the notation that is used. AboundedGMV-algebra is a residuate
bounded-lattice whose 0-free reduct is a GMV-algebra; bounded GMV-algebras are cal
pseudo-MV-algebrasin [15]. It is easy to see that every bounded GMV-algebra is i
gral. Bounded GMV-algebras form a variety, which we denote bybIGMV . We denote the
class of integral GMV-algebras byIGMV , and the class of objects of the categoryLG−∗
by LG−∗ . If K is a class of algebras, we denote byH(K) the class of all homomorphism
between the algebras ofK; we denote the submonoid of a residuated lattice generated b
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a setX by 〈X〉. The categoryK in the first column takes as values the categories in the
row. For example, the last entry of the table describes the categorybLG∗b.

Note that the functor defining the equivalence of Theorem 4.12 specializes to p
domain and range as described in (the first two columns of) the last three rows
table. Moreover, since the category of�-groups and the category of their negative co
are equivalent, by [2], the categoriesLG−∗ andLG∗ are equivalent. Consequently, all thr
categories in the first row of the table are equivalent. The same arguments apply to
two columns of the remaining three rows, soeach of the four rows consists of a triple
equivalent categories. The categorical equivalence of the last row is the one esta
by A. Dvurěcenskij in [10]. If we restrict further to the commutative case, we obtain
Mundici’s result in [24].

5. Decomposition of GBL-algebras

The primary objective of this section is to establish Theorem A (see Theorem 5
low). Its proof is based on the decomposition result of Theorem 5.2. We refer the rea
[22] for a comprehensive discussionof products of residuated structures.

Lemma 5.1. GBL-algebras satisfy the identityx ≈ (x ∨ e)(x ∧ e).

Proof. By Lemma 2.8,(e/x ∧ e)x = x ∧ e. Moreover, by Lemma 2.7(i),x ∨ e is invertible
and(x ∨ e)−1 = e/(x ∨ e) = e/x ∧ e. Thus,(x ∨ e)−1x = x ∧ e, orx = (x ∨ e)(x ∧ e). �

The following theorem shows that ifL is a GBL-algebra then the setsG(L) andI (L),
given in Definition 2.6, are subuniverses ofL. We denote the corresponding subalgeb
by G(L) andI(L).

Theorem 5.2. Every GBL-algebraL decomposes into the direct sumG(L) ⊕ I(L).

Proof. We begin with a series of claims.

Claim 1. G(L) is a subuniverse ofL.

Let x, y be invertible elements. It is clear thatxy is invertible. Additionally, for all
x, y ∈ G(L) and z ∈ L, z � x−1y ⇔ xz � y ⇔ z � x\y. It follows that x\y = x−1y,
hencex\y is invertible. Likewise,y/x = yx−1 is invertible.

Moreover,x ∨ y = (xy−1 ∨ e)y. So,x ∨ y is invertible, since every positive eleme
is invertible, by Lemma 2.7(i), and the product of two invertible elements is invertible
Lemma 2.1(iii),x ∧ y = e/(x−1 ∨ y−1), which is invertible, since we have already sho
thatG(L) is closed under joins and the division operations.

Claim 2. I (L) is a subuniverse ofL.

Note that every integral elementa is negative, sincee = e/a impliese � e/a anda � e.
Forx, y ∈ I (L), using Lemma 2.1 repeatedly, we get:
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e/xy = (e/y)/x = e/x = e, so xy ∈ I (L),

e/(x ∨ y) = e/x ∧ e/y = e, so x ∨ y ∈ I (L),

e � e/x � e/(x ∧ y) � e/xy = e, so x ∧ y ∈ I (L),

e = e/(e/y) � e/(x/y) � e/(x/e) = e/x = e, so x/y ∈ I (L).

Claim 3. For everyg ∈ (G(L))− and everyh ∈ I (L), g ∨ h = e.

Let g ∈ (G(L))− andh ∈ I (L). We havee/(g ∨ h) = e/g ∧ e/h = e/g ∧ e = e, since
e � e/g. Moreover,g � g ∨h, soe � g−1(g ∨h). Thus, by the GBL-algebra identities an
Lemma 2.1

e = (
e/

[
g−1(g ∨ h)

])[
g−1(g ∨ h)

] = ([
e/(g ∨ h)

]
/g−1)g−1(g ∨ h)

= (
e/g−1)g−1(g ∨ h) = gg−1(g ∨ h) = g ∨ h.

Claim 4. For everyg ∈ (G(L))− and everyh ∈ I (L), gh = g ∧ h.

In light of Lemma 5.1,g−1h = (g−1h ∨ e)(g−1h ∧ e). Multiplication by g yieldsh =
(h∨g)(g−1h∧e). Using Claim 3, we havegh = g(g−1h∧e) = h∧g, since multiplication
by an invertible element is an order automorphism.

Claim 5. For everyg ∈ G(L) and everyh ∈ I (L), gh = hg.

The statement is true ifg � e, by Claim 4. Ifg � e theng−1 � e, thusg−1h = hg−1,
hencehg = gh. For arbitraryg, note that bothg ∨ e andg ∧ e commute withh. Using
Lemma 5.1, we getgh = (g ∨ e)(g ∧ e)h = (g ∨ e)h(g ∧ e) = h(g ∨ e)(g ∧ e) = hg.

Claim 6. For everyx ∈ L, there existgx ∈ G(L) andhx ∈ I (L), such thatx = gxhx .

By Lemma 5.1,x = (x ∨e)(x ∧e). Sincee � x ∨e ande � e/(x ∧e), by Lemma 2.7(i),
these elements are invertible. Setgx = (x ∨ e)(e/(x ∧ e))−1 andhx = (e/(x ∧ e))(x ∧ e).
It is clear thatx = gxhx , gx is invertible andhx is integral.

Claim 7. For everyg1, g2 ∈ G(L) andh1, h2 ∈ I (L), g1h1 � g2h2 if and only ifg1 � g2
andh1 � h2.

For the non-trivial direction we have

g1h1 � g2h2 ⇒ g−1
2 g1h1 � h2 ⇒ g−1

2 g1 � h2/h1 � e ⇒ g1 � g2.

Moreover,
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g−1
2 g1 � h2/h1 ⇒ e � g−1

1 g2(h2/h1)

⇒ e = [
e/g−1

1 g2(h2/h1)
]
g−1

1 g2(h2/h1)

⇒ e = [(
e/(h2/h1)

)
/g−1

1 g2
]
g−1

1 g2(h2/h1)

⇒ e = g−1
2 g1g

−1
1 g2(h2/h1)

⇒ e = h2/h1

⇒ h1 � h2.

By Claims 1 and 2,G(L) andI(L) are subalgebras ofL. Definef : G(L) × I(L) → L by
f (g,h) = gh. We will show thatf is an isomorphism. It is onto by Claim 6 and an ord
isomorphism by Claim 7. So, it is a lattice isomorphism, as well. To verify thatf preserves
the other operations note thatgg′hh′ = ghg′h′, for all g,g′ ∈ G(L) andh,h′ ∈ I (L), by
Claim 5. Moreover, for allg,g′, ḡ ∈ G(L) andh,h′, h̄ ∈ I (L), ḡh̄ � gh/g′h′ if and only
if ḡh̄g′h′ � gh. By Claim 5, this is equivalent tōgg′h̄h′ � gh, and, by Claim 7, tōgg′ � g

andh̄h′ � h. This is in turn equivalent tōg � g/g′ andh̄ � h/h′, which is equivalent to
ḡh̄ � (g/g′)(h/h′) by Claim 7. Thus, for allg,g′ ∈ G(L) andh,h′ ∈ I (L), gh/g′h′ =
(g/g′)(h/h′) and, likewise,g′h′\gh = (g′\g)(h′\h). �
Corollary 5.3. The varietiesGBL andGMV decompose as follows:

GBL= LG × IGBL= LG ∨ IGBL and GMV = LG × IGMV = LG ∨ IGMV .

Taking intersections withCanRL and recalling Theorem 2.12, we get:

Corollary 5.4. CanGMV = CanGBL= LG ×LG−.

Here we have setCanGMV = CanRL∩GMV andCanGBL= CanRL∩GBL. More-
over, in conjunction with Lemma 2.13(iv) and Theorem 2.2, Corollary 5.3 yields:

Corollary 5.5. Every commutative GMV-algebra is representable.

By combining Theorems 5.2 and 3.12, we obtain the main result of this section.

Theorem 5.6. A residuated latticeM is a GMV-algebra if and only if there exist residuat
latticesG,L, such thatG is an�-group,L ∈LG−, γ is a nucleus onL andM = G ⊕ Lγ .
Equivalently,M is a GMV-algebra if and only if it has a direct product decomposit
M ∼= G × H−

γ , whereG,H are �-groups andγ is a nucleus onH−.

6. A categorical equivalence for GMV-algebras

The goal of this section is to establish Theorems D and E (see Theorems 6.6 a
below).
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If G,H are �-groups andγ is a nucleus onH−, define δ(g,h) = (g,h ∧ e) and
γ ′(g,h′) = (g, γ (h′)), for all g ∈ G, h ∈ H andh′ ∈ H−. It follows from Theorem 5.6
that the underlying set of every GMV-algebraM is of the formγ ′(δ(G×H)), whereG,H
are�-groups andγ is a nucleus onH−.

Note thatδ is an interior operator onL = G × H, i.e., it iscontracting(δ(x) � x, for all
x ∈ L), monotone(if x � y, thenδ(x) � δ(y), for all x, y ∈ L) andidempotent(δ(δ(x)) =
δ(x), for all x ∈ L). Moreover, its imageLδ = δ(L) is a submonoid and a lattice ideal ofL.
More explicitly, we haveδ(δ(x)δ(y)) = δ(x)δ(y), δ(e) = e, δ(x) ∧ y = δ(δ(x) ∧ y) and
δ(x) ∨ δ(y) = δ(δ(x) ∨ δ(y)), for all x, y in L. We call an interior operator on a residuat
lattice that satisfies the above properties akerneloperator; note that the last equality follow
from the fact thatδ is an interior operator and is not needed in the definition of a ke
A coreoperator on a residuated latticeL is the compositionγ ◦ δ of a kernel operatorδ on
L and a nucleusγ on the imageLδ of δ; see Lemma 6.1.

6.1. The object level: representations of GMV-algebras

The main result of this subsection is Theorem D (see Theorem 6.6 below). En rou
show that any core on a GMV-algebra has a unique representation as the composit
nucleus and a kernel operator.

Lemma 6.1. If L is a residuated lattice andδ a kernel on it, then the algebraLδ =
〈δ(L),∧,∨, ·,\δ, /δ, e〉, wherex/δy = δ(x/y) and x\δy = δ(x\y), is a residuated lat-
tice. Moreover,Lδ is a lattice ideal ofL. If L is a GMV-algebra or a GBL-algebra, then s
is Lδ .

Proof. Lδ is closed under join, sinceδ is an interior operator, and under multiplication,
the first property of a kernel. Moreover, it containse and it is obviously closed under\δ

and/δ. By the third property of a kernel and the fact that it is closed under joins,Lδ is an
ideal ofL. So,Lδ is a submonoid and a subsemilattice ofL. Moreover,Lδ is residuated
For all x, y, z ∈ Lδ , x � z/δy is equivalent tox � δ(x/y), which in turn is equivalent to
x � z/y, sinceδ is contracting andx = δ(x).

If L is a GMV-algebra, then

(x ∨ y)\x = x\x ∧ y\x = e ∧ y\x � e.

SinceLδ is an ideal that containse, we haveδ((x ∨ y)\x) = (x ∨ y)\x, for x, y ∈ Lδ . So,

x/δ

[
(x ∨ y)\δx

] = δ
(
x/δ

(
(x ∨ y)\x)) = δ

(
x/

(
(x ∨ y)\x)) = δ(x ∨ y) = x ∨ y.

Similarly, if L is a GBL-algebra, we have(
(x ∧ y)/δy

)
y = δ

(
(x ∧ y)/y

)
y = (

(x ∧ y)/y
)
y = x ∧ y,

since(x ∧ y)/y � e. �
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Note that the mapδ on a residuated latticeL, defined byδ(x) = x ∧ e, is a kernel onL
andLδ = L−.

For a class of algebrasK we denote byn(K) andk(K) the class of all images of nu
clei and kernels, respectively, of members ofK. We already know thatn(LG−) = IGMV ,
from Theorem 3.12, andGMV ⊆ n(k(LG)). We will show thatk(LG) = CanGMV and
n(CanGMV) = GMV . Moreover, we will give an alternative characterization of core
erators. It follows from the lemma below thatn(LG) = LG andk(IGMV) = IGMV .

Lemma 6.2.

(i) The identity map is the only nucleus on an�-group.
(ii) The identity is the only kernel on an integral GMV-algebra.

Proof. (i) Assumeγ is a nucleus on the�-groupG. SinceG is a GMV-algebra, we hav
e = γ (e) ∈ Gγ , by Theorem 3.4; henceG+ ⊆ Gγ . Moreover, by Lemma 3.1, for ever
x ∈ G, e/x ∈ Gγ , that is,x−1 ∈ Gγ . Thus,Gγ = G. Since a closure operator is unique
defined by its image,γ is the identity onG.

(ii) Assume thatδ is a kernel on an integral GMV-algebraM. By Lemma 6.1,Mδ is an
ideal ofM. Moreover,e = δ(e) ∈ Mδ . So,Mδ = M andδ is the identity map onM. �

The following corollary describes the action of a kernel on a GMV-algebra and s
thatk(LG) ⊆ CanGMV . In what follows, we will use the term�-subgroup for a subalgeb
of a residuated lattice that happens to be an�-group.

Corollary 6.3. If δ is a kernel on a GMV-algebraM, then there exist a GMV-subalgeb
N and an�-subgroupH of M, such thatM = N ⊕ H andδ(nh) = n(h ∧ e), for all n ∈ N

andh ∈ H . Thus,Mδ = N ⊕ H−. If M is an�-group, then so isN.

Proof. By Theorem 5.6, there exist�-groupsG,L, and a nucleusγ on L−, such that
M = G ⊕ L−

γ . The restrictions ofδ on G andL−
γ , also denoted byδ, are kernels, becaus

of the equational definition of a kernel.
First, note thatδ(L−

γ ) ⊆ L−
γ andδ(G) ⊆ G. To verify this, observe that the image ofM

underδ is an ideal ofM, that contains the identitye, by Lemma 6.1; hence the negati
cone ofM is fixed byδ. In particular,L−

γ andG− are fixed byδ. Consider an elementx
in G. We will show thatδ(x) is also inG. Let δ(x) = yk, wherey ∈ G andk ∈ L−

γ . Since
yk = δ(x) � x = xe, we havey � x. Both yk ande are fixed byδ, so the same holds fo
their join (y ∨ e)(k ∨ e) = y ∨ e, since the image ofδ is a lattice ideal. Likewise,y is fixed
by δ sincey � y ∨ e. The elementδ(x) is the maximum element belowx fixed by δ; so
y � δ(x), sincey � x. On the other hand,δ(x) = yk � y; henceδ(x) = y ∈ G.

We will show that there exist�-subgroupsK,H of G, such thatG = K⊕H andδ(kh) =
k(h ∧ e), for all k ∈ K andh ∈ H . Observe thatGδ is a GMV-algebra, by Lemma 6.1, s
there are�-groupsK,H and a nucleusγ on H−, such that

Gδ = K ⊕ H−
γ ,
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by Theorem 5.6. SinceK × H−
γ is isomorphic toGδ , the negative conesK− × H−

γ and

G−
δ are isomorphic. Moreover, we have(Gδ)

− = G−, becauseGδ is an ideal ofG that
containse. The operations on(Gδ)

− andG− agree, since the lattice and monoid operati
on both algebras are the restrictions to(Gδ)

− = G− of the operations onG. Additionally,
for all z ∈ G, z ∧ e is the greatest element fixed underδ that is belowz; so,z ∧ e = δ(z) =
δ(z) ∧ e, and for allx, y ∈ G−, x\(Gδ)−y = x\δy ∧ e = δ(x\y) ∧ e = x\y ∧ e = x\G−y

and likewise for right division. Consequently,K− × H−
γ is isomorphic toG− via the map

(k,h) �→ kh; i.e.,

G− = K− ⊕ H−
γ .

SinceH−
γ is a subalgebra ofG− ∈ LG−, we haveH−

γ ∈ LG−. For simplicity of the pre-
sentation, and without loss of generality, we assume thatH is such thatγ is the identity on
H−. So,

G− = K− ⊕ H− = (K ⊕ H)−

andG is isomorphic toK ⊕ H. We simplify notation by identifying isomorphic algebra
soG = K ⊕ H.

We have shown that(K ⊕ H)δ = K ⊕ H−. Thus,δ(K ⊕ H) = δ′(K ⊕ H), where
δ′(gh) = g(h ∧ e) is a interior operator. Since an interior operator is defined by its im
we getδ(gh) = g(h ∧ e). SoM = K ⊕ H ⊕ L−

γ . Moreover,δ is the identity onL−
γ . If we

setN = K ⊕ L−
γ , we getM = N ⊕ H andδ(nh) = n(h ∧ e), for all n ∈ N andh ∈ H . �

Definition 6.4.

(i) If δ is a map on a residuated latticeL andγ a map onδ(L), define the mapβ(γ,δ) on
L by β(γ,δ)(x) = γ (δ(x)).

(ii) If β is a map on a residuated latticeL, define the mapsδβ on L andγβ on δβ(L) by
δβ(x) = β(x) ∧ x andγβ(x) = β(x).

Lemma 6.5. Let L be a GMV-algebra. Ifδ is a kernel onL andγ a nucleus onLδ , then
δβ(γ,δ)

= δ, γβ(γ,δ)
= γ .

Proof. We haveδβ(γ,δ)
(x) = β(γ,δ)(x) ∧ x = γ (δ(x)) ∧ x. In view of Corollary 6.3, to

show thatδβ(γ,δ)
= δ, it will suffice to verify thatγ (δ(x)) ∧ x = δ(x), only for the cases

δ(x) = x andδ(x) = x ∧ e. In the first case, the equation holds, becauseγ is extensive. In
the second case, the equation reduces toγ (x ∧e)∧x = x ∧e. Sinceγ is extensive, we hav
x ∧ e = x ∧ e ∧ x � γ (x ∧ e) ∧ x. Invoking the monotonicity ofγ we getγ (x ∧ e) ∧ x �
γ (e) ∧ x = e ∧ x, by Theorem 3.4(iii).

For everyx in the range ofδβ(γ,δ)
= δ, namely forx = δ(x), we haveγβ(γ,δ)

(x) =
β(γ,δ)(x) = γ (δ(x)) = γ (x). �

Therefore cores on GMV-algebras decompose uniquely as compositions of kerne
nuclei. For a GMV-algebraL and a coreβ on it, defineLβ = (Lδβ )γβ .
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Theorem 6.6. A residuated latticeL is a GMV-algebra if and only ifL ∼= Gβ , for some
�-groupG and some coreβ on G.

Proof. By Lemma 6.1, ifG is an�-group andδ a kernel on it, thenGδ is a GMV-algebra.
Moreover, by Theorem 3.4,(Gδ)γ is a GMV-algebra, as well.

Conversely, letL be a GMV-algebra. By Corollary 5.6,L ∼= K×H−
γ , for some�-groups

K andH, and a nucleusγ on H−. Define a mapδ onK × H , by δ(k,h) = (k,h ∧ e). We
will show thatδ is a kernel. It is obviously an interior operator andδ(e, e) = (e, e). Note
that

δ(k,h)δ
(
k′, h′) = (k,h ∧ e)

(
k′, h′ ∧ e

)
= (

kk′, (h ∧ e)
(
h′ ∧ e

))
= (

kk′, hh′ ∧ h ∧ h′ ∧ e
)

andδ(kk′, hh′ ∧ h ∧ h′ ∧ e) = (kk′, hh′ ∧ h ∧ h′ ∧ e). Similarly

δ(k,h) ∧ (
k′, h′) = (k,h ∧ e) ∧ (

k′, h
) = (

k ∧ k′, h ∧ e ∧ h′)
andδ(k ∧ k′, h ∧ e ∧ h′) = (k ∧ k′, h ∧ e ∧ h′).

Note that the underlying set of(K×H)δ is K ×H−. Defineγ̄ onK ×H−, by γ̄ (k, h) =
(k, γ (h)). We will show thatγ̄ is a nucleus on(K × H)δ. It is obviously a closure operato
Moreover,

γ̄ (k, h)γ̄
(
k′, h′) = (

k, γ (h)
)(

k′, γ
(
h′))

= (
kk′, γ (h)γ

(
h′))

�
(
kk′, γ

(
hh′))

= γ̄
(
kk′, hh′)

= γ̄
(
(k,h)

(
k′, h′)).

We haveγ̄ ((K ×H)δ) = γ̄ (K ×H−) = K ×H−
γ . SoK×H−

γ and((K×H)δ)γ̄ have the
same underlying set. Recalling the definitionsof the image of a residuated lattice unde
kernel and under a nucleus, we see that the lattice operations on the two algebras coinci
To show that the other operations coincide, note that for all(k,h), (k′h′) ∈ K × H−

γ ,

(k,h) ◦((K×H)δ)γ̄

(
k′, h′) = (k,h) ◦γ̄

(
k′, h′)

= γ̄
(
(k,h) · (k′, h′))

= γ̄
(
kk′, hh′)

= (
kk′, γ

(
hh′))

= (
kk′, h ◦γ h′)

= (k,h) ◦ −
(
k′, h′),
K×Hγ
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(k,h)\((K×H)δ)γ̄

(
k′, h′) = δ

(
(k,h)\K×H

(
k′, h′))

= δ
((

k\Kk′, h\Hh′))
= (

k\Kk′, h\Hh′ ∧ e
)

= (
k\Kk′, h\H−h′)

= (
k\Kk′, h\H−

γ
h′)

= (k,h)\K×H−
γ

(
k′, h′).

The proof for the other division operation is analogous.�
It follows from the preceding theorem thatk(n(LG)) = GMV . We show below tha

k(LG) = CanGMV and n(CanGMV) = GMV . Further, we provide an equational d
scription for a core operator.

Corollary 6.7.

(i) A residuated latticeL is a cancellative GMV-algebra if and only ifL ∼= Gδ , for some
�-groupG and some kernelδ on G.

(ii) A residuated latticeL is a GMV-algebra if and only ifL ∼= Kγ , for some cancellative
GMV-algebraK and some nucleusγ on K.

Proof. (i) One direction follows from Corollaries 6.3 and 5.4. For the other direct
assume thatL is a cancellative GMV-algebra. By Corollary 5.4,L = K × H−, for some
�-groupsK,H. We have already remarked that the mapδ on K × H, defined byδ(k,h) =
(k,h ∧ e), is a kernel and that(K × H)δ = K × H− = L.

(ii) One direction follows from Theorem 3.4. Conversely, ifL is a GMV-algebra, then
by Theorem 5.6, there exist�-groupsG,H and a nucleusγ onH−, such thatL = G × H−

γ .
It is easy to check that the map̄γ onG × H−, defined byγ̄ (g,h) = (g, γ (h)), is a nucleus
and that(G × H−)γ̄ = G × H−

γ = L. Finally,K = G × H− is a cancellative GMV-algebra
by Corollary 5.4. �
Lemma 6.8. A mapβ on a GMV-algebraL is a core if and only if it is monotone, idemp
tent and satisfies the following properties:

(i) β(x)β(y) � β(xy),
(ii) β(e) = e,
(iii) (β(x) ∧ x)(β(y) ∧ y) � β((β(x) ∧ x)(β(y) ∧ y)),
(iv) β(x) ∧ x ∧ y � β(β(x) ∧ x ∧ y),
(v) β(β(x) ∧ x) = β(x).

Proof. The result is a consequence of the following two claims and Lemma 6.5.
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Claim 1. If β is a monotone, idempotent map onL that satisfies the properties above, th
δβ is a kernel onL, γβ is a nucleus onLδβ andβ(γβ,δβ ) = β .

Sinceγβ is the restriction ofβ , we haveγβ(x)γβ(y) � γβ(xy), by the first property
Moreover,γβ is monotone and idempotent, being a restriction ofβ . It is also extensive on
Lδβ becauseδβ(x) = β(x) ∧ x � β(β(x) ∧ x) = γβ(δβ(x)), by (iv). Thus,γβ is a nucleus

Obviously,δβ(e) = β(e)∧ e = e, by the second property. The remaining two proper
of a kernel state thatδβ(x)δβ(y) and δβ(x) ∧ y are elements fixed byδβ . It is easy to
see that for everyx, δβ(x) = x if and only if x � β(x). So, the remaining properties a
equivalent to properties (iii) and (iv) of the lemma. Additionally,δβ is an interior operator
sinceδβ(x) = β(x)∧x � x; δβ(δβ(x)) = β(β(x)∧x)∧x = β(x)∧x = δβ(x), by (v); and
if x � y, thenδβ(x) = β(x) ∧ x � β(y) ∧ y = δβ(y). Thus,δβ is a kernel.

Finally, β(γβ,δβ)(x) = γβ(δβ(x)) = β(β(x) ∧ x) = β(x).

Claim 2. If δ is a kernel onL and γ a nucleus onLδ , then the mapβ(γ,δ) is monotone
idempotent and it satisfies the properties in the statement of the lemma.

For the first property we have

β(x)β(y) = γ
(
δ(x)

)
γ
(
δ(y)

)
� γ

(
δ(x)δ(y)

)
= γ

(
δ
(
δ(x)δ(y)

))
� γ

(
δ(xy)

)
= β(xy).

Also, β(e) = γ (δ(e)) = γ (e) = e, by Theorem 3.4(iii).
Since for everyx, x � β(γ,δ)(x) if and only if δβ(γ,δ)

(x) = x, properties (iii) and (iv)
hold for β(γ,δ) if and only if the corresponding properties of a kernel hold forδβ(γ,δ)

. This
is actually the case, sinceδβ(γ,δ)

= δ, by Lemma 6.5.
The last property forβ(γ,δ) is equivalent toβ(γ,δ)(δβ(γ,δ)

(x)) = β(γ,δ)(x), that is,
β(γ,δ)(δ(x)) = β(γ,δ)(x), which follows from the idempotency ofδ. �
6.2. The morphism level

Let GMV be the category with objects GMV-algebras and morphisms residuated l
homomorphisms. Also, letLG∗ be the category with objects algebras〈G, β〉 such thatG
is an�-group andβ is a core onG whose image generatesG; let the morphisms of this
category be homomorphisms between these algebras.

Theorem 6.9. The categoriesGMV andLG∗ are equivalent.

Proof. For an object〈G, β〉 of LG∗, defineΓ (〈G, β〉) = Gβ . For a morphismf of LG∗
with domain〈G, β〉, defineΓ (f ) to be the restriction off to Gβ .

Let δ = δβ andγ = γβ . By Lemma 6.1 and Theorem 3.4, the algebraΓ (〈G, β〉) is an
object ofGMV. Actually, it can be easily seen thatGβ = 〈(Gδ)γ ,∧,∨,◦γ ,\δ, /δ, e〉. To
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show thatΓ (f ) is a morphism ofGMV, we use the fact thatf commutes withβ—we use
the same symbol for the cores in the domain and in the codomain.

First note thatf commutes withδ on L andγ on δ(L). Indeed, by Lemma 6.5,

δ
(
f (x)

) = β
(
f (x)

) ∧ f (x) = f
(
β(x)

) ∧ f (x)

= f
(
β(x) ∧ x

) = f
(
δ(x)

)
.

Moreover,γ (f (x)) = γ (δ(f (x))) = f (γ (δ(x))) = f (γ (x)). In particular, if x = β(x),
thenx = γ (x) = δ(x) andf (x) = δ(f (x)) = γ (f (x)).

We can now show thatf preserves multiplication. Forx, y ∈ β(G), x = δ(x) = γ (x)

andy = δ(y) = γ (y), so

δ(xy) = δ
(
δ(x)δ(y)

) = δ(x)δ(y) = xy.

Thus,

f (x ◦γ y) = f
(
γ (xy)

) = γ
(
f (xy)

) = γ
(
f (x)f (y)

) = f (x) ◦γ f (y).

Additionally,

f (x/δy) = f
(
δ(x/y)

) = δ
(
f (x/y)

) = δ
(
f (x)/f (y)

) = f (x)/δf (y).

The proof for the other division is analogous.Γ (f ) preserves the lattice operations, b
cause they are restrictions of the lattice operations of the�-group, soΓ (f ) is a homomor-
phism.

By Theorem 6.6,Γ is onto the objects ofGMV. Moreover,Γ is faithful, because if two
morphisms agree on a generating set, they agree on the whole�-group.

To see thatΓ is full, let g : M → N, be a morphism inGMV. By Theorem 5.6, ther
exist�-groupsK,H,K,H and nucleiγ on H− andγ on H−, such that

M = K × H−
γ and N = K × H−

γ .

Moreover, by the proof of Theorem 6.6, there exist kernelsδ onK×H, δ onK×H, and nu-
clei γ ′ on(K×H)δ andγ ′ on(K×H)δ, such thatδ(k,h) = (k,h∧e), δ(k,h) = (k,h∧e),
γ ′(k,h) = (k, γ (h)) andγ ′(k,h) = (k, γ (h)), for h ∈ H,h ∈ H,k ∈ K andk ∈ K. For the
coresβ = γ ′ ◦ δ andβ = γ ′ ◦ δ, there exist homomorphismsg1 : K → K andg2 : H−

γ1
→

H−
γ2

such thatg = (g1, g2); the reason for this is that invertible and integral eleme
are preserved under homomorphisms. By Theorem 4.10, there exists a homomo
f −

2 : H− → H− that extendsg2 and commutes with theγ ’s. By the results in [2], there
exists a homomorphismf2 : H → H that extendsf −

2 . Letf : 〈K × H, β〉 → 〈K × H, β〉 be
defined byf = (g1, f2). It is clear thatΓ (f ) = g. We will show thatg(β(x)) = β(f (x)).
Let (k,h) ∈ K × H .
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(
β(k,h)

) = g
(
γ
(
δ(k,h)

)) = g
(
k, γ (h ∧ e)

)
= (

g1(k), g2
(
γ (h ∧ e)

)) = (
g1(k), γ

(
f −

2 (h ∧ e)
))

= (
g1(k), γ

(
f2(h) ∧ e

)) = γ ′(g1(k), f2(h) ∧ e
)

= γ
(
δ
((

g1(k), f2(h)
))) = β

(
f (k,h)

)
.

Thus, by [23, Theorem 1, p. 93],Γ is an equivalence between the two categories.�

7. Decidability of the equational theories

In this section, we obtain the decidability of the equational theories of the var
IGMV andGMV as an easy application of the representation theorems established in t
previous sections.

For a residuated lattice termt and a variablez /∈ Var(t), we define the termtz inductively
on the complexity of a term, by

xz = x ∨ z, ez = e,

(s ∨ r)z = sz ∨ rz(s ∧ r)z = sz ∧ rz,

(s/r)z = sz/rz, (s\r)z = sz\rz, (sr)z = szrz ∨ z,

for every variablex and every pair of termss, r.
For a termt and an algebraL, we writetL for the term operation onL induced byt .
For a residuated lattice termt , a residuated latticeL and a mapγ on L, we define the

operationtγ onL, of arity equal to that oft , by

xγ = γ
(
xL)

, eγ = eL,

(s ∨ r)γ = sγ ∨ rγ (s ∧ r)γ = sγ ∧ rγ ,

(s/r)γ = sγ /rγ , (s\r)γ = sγ \rγ , (sr)γ = γ (sγ rγ ),

for every variablex and every pair of termss, r.
Note thattγ is obtained fromtL by replacing every productsr by γ (sr) and every

variablex by γ (x); tz is obtained fromt by replacing every productsr by sr ∨ z and every
variablex by x ∨ z. We extend the above definitions to every residuated lattice ide
ε = (t ≈ s) by εz = (tz ≈ sz), for a variablez that does not occur inε. Moreover, we define
εγ (ā) = (tγ (ā) = sγ (ā)), whereā is an element of an appropriate power ofL.

Proposition 7.1. An identityε holds inIGMV if and only if the identityεz holds inLG−,
wherez /∈ Var(ε).

Proof. We prove the contrapositive of the lemma. Letε be an identity that fails inIGMV .
Then there exists an integral GMV-algebraM, and an element̄a in an appropriate power,n,
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of M, such thatε(ā) is false. By Theorem 3.12, there exists anL ∈ LG− and a nucleusγ
on L such thatM = Lγ . By the definition ofLγ , it follows thatεγ (ā) does not hold inL.
Let p be the meet of all productstγ (ā)sγ (ā), wheret, s range over all subterms ofε and
u = γ (p). By Lemma 3.6,γ andγu agree on the principal filter ofp. Since the argument
of all occurrences ofγ in εγ (ā) are of the formtγ (ā)sγ (ā), wheret, s are subterms ofε,
andtγ (ā)sγ (ā) are in the principal filter ofp, we can replace, working inductively inward
all occurrences ofγ in εγ (ā) by γu. Henceεγu(ā) = εγ (ā) andεγu(ā) fails in L. Moreover,
εγu(ā) = (εz)

L(ā, u). Thusεz fails in L andεz is not a valid identity ofLG−.
Conversely, ifεz, fails in LG−, there exist anL ∈ LG−, ā in an appropriate power,n,

of L andu ∈ L such that(εz)
L(ā, u) is false. Obviously,γu is a nucleus onL, soLγu is

an integral GMV-algebra. Let̄b be the element ofLn, defined byb̄(i) = ā(i) ∨ u, for all
i ∈ {1, . . . , n}. Note that(εz)

L(ā, u) = εγu(ā) = εγu(b̄) = εLγu (b̄) andu, b̄(i) ∈ Lγu , for all
i ∈ {1, . . . , n}. Soε fails in Lγu and hence inIGMV . �

In view of Theorem 5.6 we have the following corollary.

Corollary 7.2. An identityε holds inGMV if and only if ε holds inLG and εz holds in
LG−, wherez /∈ Var(ε).

The variety of�-groups has a decidable equational theory by [19]. Based on this fa
is shown in [2] that the same holds forLG−. So, we obtain the following result.

Theorem 7.3. The varietiesIGMV andGMV have decidable equational theories.

Recall that a bounded GMV-algebra (also called a pseudo MV-algebra) is an exp
of a GMV-algebra by a constant 0 that satisfies the identityx ∧ 0 ≈ 0. We denote the
variety of all bounded GMV-algebras bybGMV . Note that every bounded GMV-algeb
is integral, as a consequence of Theorem 5.6.

For a termt in the language of residuated bounded-lattices and a variablez /∈ Var(t),
we define the termtz inductively on the complexity of a term, by

xz = x ∨ z, ez = e, 0z = z,

(s ∨ r)z = sz ∨ rz(s ∧ r)z = sz ∧ rz,

(s/r)z = sz/rz, (s\r)z = sz\rz, (sr)z = szrz ∨ z,

for every variablex and every pair of termss, r. We use the same notationεz as before,
since the two definitions agree if the equationε does not contain any occurrences of
constant 0.

Minor modifications in the proof of Proposition 7.1 yield the following result.

Proposition 7.4. An identityε holds inbGMV if and only if the identityεz holds inLG−,
wherez �∈ Var(ε).
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A careful analysis of the construction of an algebra inLG− from an integral GMV-
algebra shows that if the latter is commutative then so is the former. The same re
shown in [24]. So, the proof of Proposition 7.1 also shows the following.

Proposition 7.5. An identityε holds inMV if and only if the identityεz holds inLG−,
wherez /∈ Var(ε).

Consequently, we have the following result.

Theorem 7.6. The varieties of MV-algebras and bounded GMV-algebras have decid
equational theories.
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