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IRREDUCIBLE RESIDUATED SEMILATTICES
AND FINITELY BASED VARIETIES

A b s t r a c t. This paper deals with axiomatization problems for

varieties of residuated meet semilattice-ordered monoids (RSs).

An internal characterization of the finitely subdirectly irreducible

RSs is proved, and it is used to investigate the varieties of RSs

within which the finitely based subvarieties are closed under fi-

nite joins. It is shown that a variety has this closure property

if its finitely subdirectly irreducible members form an elementary

class. A syntactic characterization of this hypothesis is proved,

and examples are discussed.

.1 Introduction

Residuated lattices (RLs) algebraize the associative full Lambek calculus

FL+, while residuated meet semilattices (RSs) algebraize the disjunction-
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free fragment of this system. In both cases there is a lattice anti-isomor-

phism between the axiomatic extensions of the logic and the subvarieties

of the algebraic class, which preserves and reflects finite axiomatizability

(cf. [9]). Every RS can be embedded into an RL, but it is not known which

equations in the language of RSs persist in suitable RL–extensions. Thus,

in general, results about varieties of RLs do not transfer effortlessly to RSs.

Some reasons for studying RSs in their own right can be found in [17].

In [6], Galatos showed how to transform the equational bases for two

varieties of RLs into an equational basis for their varietal join. In [16],

Olson showed how to axiomatize the varieties generated by certain universal

positive classes of commutative RSs. The arguments in these two papers

are rather different. Indeed, in [16], our capacity to get by with join-free

axioms appears to depend on an analysis of the subdirectly irreducible

algebras that breaks down in the noncommutative case, and that has no

explicit analogue in [6].

In the present paper we prove an internal characterization of the finitely

subdirectly irreducible RSs (Theorem 5) that allows us to unify and extend

the approaches of [6] and [16]. It turns out that in any variety V of RSs, if

the finitely subdirectly irreducible algebras are closed under ultraproducts

then they form an elementary class, in which case the finitely based subva-

rieties of V are closed under finite joins (Theorems 28, 30). The hypothesis

in this assertion will be characterized syntactically. The conclusion exceeds

what could be predicted from a general finite basis theorem of Jónsson

(Theorem 6). The result applies to all RSs satisfying a weak form of com-

mutativity, as well as to lattice-ordered groups and to subdirect products

of residuated chains.

.2 Residuated Semilattices

Definition 1. A residuated semilattice (briefly, an RS ) is an algebra

A = 〈A; ·, \, /,∧, e〉 such that 〈A;∧〉 is a semilattice, 〈A; ·, e〉 is a monoid

and \, / are binary residual operations, i.e., for all a, b, c ∈ A,

a · c ≤ b iff c ≤ a\b iff a ≤ b/c. (residuation) (1)

Here, and whenever a semilattice operation denoted by ∧ is under dis-

cussion, x ≤ y means x ∧ y = x (and x ≥ y is the inverse relation). It
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follows from (1) that the order of an RS is compatible with the monoid

operation, i.e.,

if a ≤ b and c ≤ d then a · c ≤ b · d.

To verify that a semilattice-ordered monoid 〈A; ·,∧, e〉 is residuated (i.e.,

that it admits an RS–structure), we need only check that ≤ is compatible

with · and that max {z : a · z ≤ b} and max {z : z · a ≤ b} both exist for all

a, b ∈ A. These maxima become a\b and b/a, respectively, so the RS–

expansion is unique.

Another consequence of (1) is that in every RS, we have

a ≤ b iff e ≤ a\b iff e ≤ b/a.

The monoid identity e need not be the greatest element of the semilattice

order, but we always have e\a = a = a/e.

The class of all residuated semilattices is a finitely based variety, which

we denote by RS. This variety is congruence distributive [10].

A residuated lattice (RL) is a lattice-ordered RS whose binary join oper-

ation ∨ is appended to the type as a new basic operation. For background

on residuated lattices, see [8, 11].

Given a partially ordered set 〈P ;≤〉, with a ∈ P and X ⊆ P , we use

the abbreviations [ a ) = {b ∈ P : b ≥ a} and [ X ) =
⋃

x∈X [ x ).

Suppose A is an RS (or an RL). The congruence lattice of A is iso-

morphic to the lattice of convex normal subalgebras of A, under the map

θ 7→ e/θ (cf. [3]). It is also isomorphic, under the map θ 7→ [ e/θ ), to the

lattice of deductive filters of A (cf. [9]); these subsets may be defined as the

semilattice filters F of 〈A;∧〉 that are also submonoids of 〈A; ·, e〉 with the

following closure property:

whenever a ∈ F then c\(a · c) ∈ F and (c · a)/c ∈ F for every c ∈ A.

The least deductive filter of A is always [ e ).

When A is understood and X ⊆ A, we use Fg(X) to denote the deduc-

tive filter of A generated by X, i.e., the intersection of all deductive filters

containing X. We write Fg(a) for Fg({a}).

An element a of an RS A is said to be negative if a ≤ e. Let a, b ∈ A,

with a negative. We say that b is a conjugate of a if

b = [ c\(a · c) ] ∧ e or b = [ (c · a)/c ] ∧ e
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for some c ∈ A. In particular, a is a conjugate of itself (set c = e). Let W

be the smallest subset of A such that a ∈ W and all conjugates of elements

of W belong to W . The elements of W are called the iterated conjugates

of a.

Note that iterated conjugates are always negative, and that e is the only

iterated conjugate of itself, because e ≤ c\c and e ≤ c/c for all c ∈ A.

Theorem 2. (cf. [9, Thm. 4.8(3)]) Let A be a residuated semilattice

and let a, b ∈ A. Then b ∈ Fg(a) iff b ≥ γ1 · . . . · γm for some m ∈ ω

and some iterated conjugates γ1, . . . , γm of a ∧ e.

(We allow m = 0, interpreting the empty product as e.)

.3 Finitely Subdirectly Irreducible Algebras

Although an RS A need not be lattice-ordered, we shall need to consider

subsets of A that do have least upper bounds (lubs). Generalizing [6,

Lem. 3.2], we have:

Lemma 3. Let A be a residuated semilattice and let A1, . . . , Am be sets

of negative elements of A.

If e is the lub of a1, . . . , am whenever each ai belongs to the correspond-

ing Ai, then e is also the lub of p1, . . . , pm whenever each pi is a finite

product of elements of Ai. (The factors of pi are not assumed distinct .)

Proof. Suppose e is the lub of X ∪ {b}, and also of X ∪ {c}, where

a, b, c ≤ e for all a ∈ X. We show that e is the lub of X ∪ {b · c}. Then the

general result will follow inductively. Certainly, b · c ≤ e · e = e, so e is an

upper bound of X ∪{b · c}. Suppose d is an upper bound of X ∪{b · c}. We

must show that e ≤ d. From b · c ≤ d we get c ≤ b\d. Also, for all a ∈ X,

we have a ≤ b\d, because b · a ≤ e · a = a ≤ d. Then because e is the lub

of X ∪ {c}, it follows that e ≤ b\d, i.e., b ≤ d. Now a, b ≤ d for all a ∈ X,

so e ≤ d, because e is the lub of X ∪ {b}. �

Recall that in any partially ordered set, an element c is said to be join-

irreducible if, whenever c is the lub of elements a, b, then a = c or b = c.

Definition 4. Let A be a residuated semilattice. We shall say that e

is weakly join-irreducible provided that the following is true for all negative
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elements a, b ∈ A: If e is the lub of γ, γ′ for every iterated conjugate γ of a

and every iterated conjugate γ′ of b, then a or b is e.

Recall that an algebra A is said to be finitely subdirectly irreducible

(briefly, FSI ) if the identity relation is meet-irreducible in the congruence

lattice of A. Consequently, an RS A is FSI iff [ e ) is meet-irreducible in

the lattice of deductive filters of A.

Theorem 5. A residuated semilattice A is FSI iff its identity element

is weakly join-irreducible.

In this case, for any positive integer k and negative elements a1, . . . , ak ∈

A, if e is the lub of γ1, . . . , γk whenever each γi is an iterated conjugate of

ai, then e = ai for some i.

Proof. (⇐) Assume that e is weakly join-irreducible and let F,G be

deductive filters of A with F ∩ G = [ e ). We must show that F = [ e ) or

G = [ e ). Suppose, on the contrary, that a ∈ F and b ∈ G, where e 6≤ a and

e 6≤ b, i.e., a∧ e < e and b∧ e < e. Of course, a∧ e ∈ F and b∧ e ∈ G. Let

γ and γ′ be iterated conjugates of a∧ e and b∧ e, respectively, so γ, γ′ ≤ e.

If γ, γ′ ≤ u ∈ A, then u ∈ F ∩G = [ e ), so e ≤ u. Thus, e is the lub of γ, γ′

for all such iterated conjugates. Since e is weakly join-irreducible, a∧ e = e

or b ∧ e = e, a contradiction.

(⇒) Let A be FSI. It suffices to prove the second claim in the theorem’s

statement. So let a1, . . . , ak ≤ e, and assume that e is the lub of γ1, . . . , γk

whenever each γi is an iterated conjugate of ai. If f ∈ Fg(a1)∩ . . . ∩Fg(ak)

then, by Theorem 2, there exist p1, . . . , pk ≤ f such that each pi is a product

of iterated conjugates of ai. Using the assumption and Lemma 3, we deduce

that e is the lub of p1, . . . , pk, so f ∈ [ e ). Consequently, Fg(a1) ∩ . . . ∩

Fg(ak) = [ e ). Since A is FSI, Fg(ai) = [ e ) for some i ∈ {1, . . . , k}, that

is, ai = e. �

Recall that a class of similar structures is said to be elementary if it

can be axiomatized by a set of first order sentences. It is called strictly

elementary if it can be axiomatized by a finite set of first order sentences

(or equivalently, by one such sentence).

Problem 1. Do the FSI residuated semilattices form an elementary

class?
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Theorem 5 suggests that a negative answer is more likely, but we have

not proved this. The corresponding problem for RLs is also open. The

following finite basis theorem is due to Jónsson [13] (cf. [4, Thm. V.4.17]).

For any class of algebras K, we use KFSI to denote the class of all FSI

members of K.

Theorem 6. (Jónsson) If V is a congruence distributive variety of

finite type and VFSI is a strictly elementary class then V has a finite equa-

tional basis.

Jónsson’s more famous ‘lemma’ has the consequence that in the varietal

join V1 + V2 of two subvarieties of a congruence distributive variety V, every

FSI algebra belongs to one of the two subvarieties [12, Lem. 4.1]. Thus, if

both subvarieties are finitely based and VFSI is strictly elementary then

(V1 + V2)FSI = (V1 ∪ V2)FSI is strictly elementary. In this case V1 + V2

is finitely based, by Theorem 6, provided the type is finite. Since RS is

congruence distributive, we obtain

Theorem 7. For any variety V of residuated semilattices, if VFSI

is strictly elementary, then the finitely based subvarieties of V are closed

under finite joins.

We shall see later that the adverb ‘strictly’ can be dropped from this

statement (Corollary 31). Consequently, the open problem below would be

solved affirmatively if Problem 1 has an affirmative solution (and similarly

for RLs).

Problem 2. Are the finitely based varieties of residuated semilattices

closed under finite joins?

In the next section we shall identify a large class of residuated semilat-

tices within which the FSI algebras form a strictly elementary class.

.4 Stability and Subcommutativity

An RS is said to be commutative if its monoid operation · is commutative.

In this case, a\b = b/a for all elements a, b, and it is customary to omit /

from the type, writing a\b as a → b. We shall see presently that for any
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variety V of commutative RSs, the class VFSI is strictly elementary. But

here the demand of commutativity is unnecessarily strong. In this section

we consider some weak variants of commutativity.

In an RS A, we define a0 : = e and am+1 : = am
· a for all a ∈ A and

m ∈ ω.

Definition 8. A negative element a of an RS A will be called stable if

the following is true: for each c ∈ A there exist m,n ∈ ω such that

c · am ≤ a · c and an
· c ≤ c · a.

Theorem 9. In a residuated semilattice A, a negative element a is

stable iff for each iterated conjugate γ of a, there exists m ∈ ω such that

γ ≥ am.

Proof. (⇒) Assuming that a is stable, we can prove the following

claim by induction on k.

For each c ∈ A and each k ∈ ω, there exist r(c, k), l(c, k) ∈ ω

such that c · al(c,k) ≤ ak
· c and ar(c,k)

· c ≤ c · ak.

This is clear for k ≤ 1. And if the claim holds for some k ≥ 1 then, defining

l(c, k + 1) = l(c, k) + l(c, 1) and r(c, k + 1) = r(c, k) + r(c, 1), we get

c · al(c,k+1) = c · al(c,k)
· al(c,1) ≤ ak

· c · al(c,1) ≤ ak
· a · c = ak+1

· c,

and similarly, ar(c,k+1)
· c ≤ c · ak+1. Note that every power of a is negative,

since a is negative. Thus, the conclusion of the claim can be restated as

al(c,k) ≤ (c\(ak
· c)) ∧ e and ar(c,k) ≤ ((c · ak)/c) ∧ e. (2)

Setting k = 1 in (2), we see that every ‘depth 1’ conjugate of a dominates

a power of a. Assume now that for some iterated conjugate γ of a, there

exists m ∈ ω such that am ≤ γ. For all c, the function x 7→ (c\(x · c)) ∧ e

is clearly order preserving, so from (2) we get al(c,m) ≤ (c\(am
· c)) ∧ e ≤

(c\(γ · c)) ∧ e. Likewise, ar(c,m) ≤ ((c · γ)/c) ∧ e, and the result follows by

induction.

(⇐) Conversely, given c ∈ A, the condition on iterated conjugates

implies that (c\(a · c))∧e dominates am for some m ∈ ω. So am ≤ c\(a · c),

i.e., c · am ≤ a · c. Similarly, an
· c ≤ c · a for some n ∈ ω. �

The next result generalizes observations in [5] and [9].
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Corollary 10. For any residuated semilattice A, the following are

equivalent.

(i) Every negative element of A is stable.

(ii) For any a, b ∈ A, we have b ∈ Fg(a) iff b ≥ (a ∧ e)m for some

m ∈ ω.

(iii) The deductive filters of A are just the submonoids of 〈A; ·, e〉 that

are filters of the semilattice 〈A;∧〉.

Proof. (i) ⇒ (ii) follows from Theorems 2 and 9. Also, (ii) ⇒ (i)

follows from Theorem 9, because iterated conjugates of a negative element

a belong to Fg(a).

(ii) ⇒ (iii): Let H be a submonoid of 〈A; ·, e〉 that is a filter of 〈A;∧〉.

For all a, b ∈ A, we have Fg(a) ∪ Fg(b) ⊆ Fg(a ∧ b), and when a, b ∈ H

then a ∧ b ∈ H. It follows that
⋃

a∈H Fg(a) is a deductive filter of A,

so Fg(H) =
⋃

a∈H Fg(a). But
⋃

a∈H Fg(a) ⊆ H, by (ii). Thus, H is a

deductive filter.

(iii) ⇒ (ii) is straightforward and just like the commutative case. �

Lemma 11. Let A be a residuated semilattice in which every negative

element is stable. Then e is weakly join-irreducible iff it is join-irreducible.

Consequently, A is FSI iff e is join-irreducible.

Proof. Suppose e is the lub of a, b ∈ A. By Lemma 3, e is also the lub

of am, bn for all m,n ∈ ω. So, since negative elements are stable, Theorem 9

shows that e is the lub of γ, γ′ whenever γ, γ′ are iterated conjugates of a, b,

respectively. Thus, e will be join-irreducible if it is weakly join-irreducible.

The second claim follows from the first, by Theorem 5. �

The stability of negative elements does not seem to be a first order

property, but it holds in many simply defined varieties of RSs. In particular,

Definition 12. For any positive integer n, an RS will be called n–

subcommutative if it satisfies x ≤ e =⇒ xn
· y ≈ y · xn, or equivalently,

(x ∧ e)n
· y ≈ y · (x ∧ e)n.

A class of RSs is said to be n–subcommutative if its members are. It is said

to be subcommutative if it is n–subcommutative for some fixed finite n.
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Obviously, n–subcommutative implies kn–subcommutative for every

positive integer k, so the union of two subcommutative classes of RSs is

subcommutative. In particular, 1–subcommutative is equivalent to ‘n–

subcommutative for all finite n’.

For any negative element a of an RS A, if 0 < n ∈ ω then a ≥ an, and so

a · c ≥ an
· c. If, in addition, A is n–subcommutative, then an

· c = c · an,

whence a · c ≥ c · an, and similarly c · a ≥ an
· c. Thus,

Lemma 13. In a subcommutative residuated semilattice, every negative

element is stable.

From Lemmas 11 and 13, we infer

Corollary 14. A subcommutative residuated semilattice is FSI iff its

identity element is join-irreducible.

For commutative RSs, the implication from left to right was proved

in [16], and it has antecedents in the theory of BCK-algebras: see [18].

(BCK–algebras are the pure {→, e}–subreducts of integral commutative

RLs, where integral means that e is the greatest element.) An example

of a commutative RS that is FSI but not subdirectly irreducible is the

reduct of the Heyting chain with order type ω + 1, where · and ∧ are both

interpreted as minimum, → is relative pseudo-complementation, and e is

the top element. The next example shows that in Corollary 14, we cannot

drop the hypothesis of subcommutativity. The algebra in this example is

taken from [19, p. 436].

Example 15. Consider the integral ordered monoid 〈A; ·,∧, e〉 whose

Hasse diagram and binary operation · are indicated below. Since ≤ is com-

patible with ·, and since max {z : x · z ≤ y} and max {z : z · x ≤ y} both

exist for all x, y ∈ A, this structure is the reduct of a unique RS A.

s

s@
@@
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s�
��

s

@
@@

a

c d

b

e · a b c d e

a a a a a a

b a a b a b

c a a c a c

d a b b d d

e a b c d e
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Now c and d are negative non-commuting idempotents, so A is not sub-

commutative. Note that d\(c · d) = d\a = a and (c · d)/c = a/c = a. Since

deductive filters are upward closed and closed under conjugation, this shows

that Fg(c) = Fg(d) = A, whence A is simple (and therefore FSI), but e is

not join-irreducible. Notice that c and d are not stable, since the conjugate

a does not dominate any of their powers.

Notation. Let n–RS denote the class of all n–subcommutative RSs.

Since n–RS is a finitely based variety and the join-irreducibility of e

can be expressed as a first order sentence about e and meets, Corollary 14

implies that the FSI algebras in n–RS form a strictly elementary class, for

each n > 0. These are not universal classes, since join-irreducibility of e

may be lost in subalgebras (unlike the case of subcommutative RLs). Still,

Theorem 7 yields

Theorem 16. The varietal join of any two finitely based subcommuta-

tive varieties of residuated semilattices is finitely based.

An RS is said to be idempotent if a2 = a for all elements a. It is well

known that every idempotent integral RS is commutative; these are the

Brouwerian semilattices of [14]. The next result partially generalizes this

fact to the non-integral case. Here an RS is called (e–) conical if, for all

elements a, we have e ≤ a or a ≤ e.

Theorem 17. For any idempotent conical residuated semilattice A, the

following conditions are equivalent.

(i) Every negative element of A is stable.

(ii) A satisfies x\e ≈ e/x.

(iii) A satisfies x · y ≤ e ⇐⇒ y · x ≤ e.

(iv) A is commutative.

Proof. (i) ⇒ (ii): Let b = a\e, where a ∈ A. Then a · b ≤ e, so we

cannot have a, b > e, as that would imply a · b ≥ a, b. So a ≤ e or b ≤ e,

by conicity. If a ≤ e then, by (i), there exists m ∈ ω such that a · b ≥

b · am ≥ b · a, where the last inequality follows from idempotence (or from

the negativity of a when m = 0). Similarly, if b ≤ e then a · b ≥ bn
· a ≥ b · a
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for some n ∈ ω. In both cases, b · a ≤ e, i.e., b ≤ e/a. We have shown that

A satisfies x\e ≤ e/x, so by symmetry, it satisfies x\e ≈ e/x.

(ii) ⇒ (iii) follows from the definition of residuation.

(iii) ⇒ (iv): Idempotence alone ensures that when a, b ≥ e then a · b is

the lub of a, b. For in this case a · b ≥ a, b, and if u ≥ a, b then u = u2 ≥ a · b.

Thus, elements above e commute. A dual argument shows that elements

below e commute, the product of a and b being a ∧ b.

By conicity and symmetry, it remains only to consider the case a < e < b.

In this case, a ≤ a · b ≤ b and a ≤ b · a ≤ b. Suppose first that a · b > e.

Then b · a > e, by (iii) and conicity. By idempotence, a · b = a · b2 =

(a · b) · b ≥ b, hence a · b = b. Similarly, b · a = b, so a and b commute. By

conicity, we may now assume that a · b ≤ e. Then a dual argument gives

a · b = a = b · a, completing the proof of commutativity.

(iv) ⇒ (i) is obvious. �

In the light of the above proof, it is easy to see that the conical idempo-

tent RLs are just the RLs satisfying ∀x∀y (x · y ≈ x ∧ y or x · y ≈ x ∨ y).

Some noncommutative totally ordered idempotent RLs are exhibited in [7].

.5 Constructive Axiomatization

Theorems 7 and 16 do not give us a practical method of axiomatizing the

join of two subcommutative varieties of RSs for which finite equational bases

are known, because Jónsson’s finite basis theorem has a non-constructive

proof that invokes the Compactness Theorem of first order logic. For vari-

eties with equationally definable principal congruences, a constructive proof

can be given: see [1]. But n–RS lacks even first order-definable principal

congruences, since an ultraproduct of simple commutative (integral) RSs

need not be simple. Indeed, the additive monoid of non-positive integers

with the conventional total order is a simple commutative RS with no sim-

ple non-principal ultrapower: see [2].

Galatos [6] proved constructively that the varietal join of any two recur-

sively axiomatized varieties of RLs is recursively axiomatized, and that the

joins of certain finitely based varieties of RLs are finitely based—including

the case of subcommutative varieties. The arguments made use of both

lattice operations. Using the theory developed above, we shall obtain the
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corresponding results for RSs constructively.

Lemma 18. Let A be a residuated semilattice and a1, . . . , ak ∈ A.

Then e is the lub of a1, . . . , ak iff (a1\b) ∧ · · · ∧ (ak\b) = b for all b ∈ A.

Proof. Suppose e is the lub of a1, . . . , ak, and let b ∈ A. Then for each i,

we have ai ≤ e, hence ai · b ≤ b, i.e., b ≤ ai\b. Thus, b ≤ (a1\b)∧· · ·∧(ak\b).

On the other hand, since ai · ((a1\b) ∧ · · · ∧ (ak\b)) ≤ ai · (ai\b) ≤ b,

we have ai ≤ b/((a1\b) ∧ · · · ∧ (ak\b)). Since i was arbitrary and e is

the lub of a1, . . . , ak, it follows that e ≤ b/((a1\b) ∧ · · · ∧ (ak\b)), i.e.,

(a1\b) ∧ · · · ∧ (ak\b) ≤ b. Thus, (a1\b) ∧ · · · ∧ (ak\b) = b.

Conversely, suppose (a1\b)∧· · ·∧(ak\b) = b for all b ∈ A. In particular,

(a1\e)∧ · · · ∧ (ak\e) = e, so for each i, we have e ≤ ai\e, i.e., ai ≤ e. Thus,

e is an upper bound of a1, . . . , ak. Suppose b is another upper bound. For

each i, we infer from ai ≤ b that e ≤ ai\b, hence e ≤ (a1\b) ∧ · · · ∧ (ak\b).

The right hand side of this inequality is b, by assumption, so e ≤ b. This

shows that e is the lub of a1, . . . , ak. �

We need to recall the following lemma from [6].

Lemma 19. Let α be any universal positive sentence in the first order

language with equality determined by ·, \, /,∧, e. Then α can be transformed

systematically into the universal closure α′ of a disjunction of atomic for-

mulas e ≤ r, r an RS–term, where α and α′ are logically equivalent over

RS and all variables occurring in the terms r already occur in α.

Proof. Since RS |= x ≤ y ⇐⇒ e ≤ x\y, each equation p ≈ q is

logically equivalent over RS to e ≤ p\q & e ≤ q\p . Also, a conjunction

e ≤ r1 & · · · & e ≤ rk is clearly equivalent to e ≤ r1 ∧ · · · ∧ rk. Now the

result follows because any universal positive sentence can be transformed

systematically into the logically equivalent universal closure of a disjunction

of conjunctions of equations, without introducing new variables. �

Notation. For each RS–term r, for any set of variables V ar, and for

each m ∈ ω, we define the following sets of terms.

Γ0
V ar(r) = {r ∧ e} ;

Γm+1
V ar (r) = { [ v\(s · v) ] ∧ e : v ∈ V ar and s ∈ Γm

V ar(r) }

∪ { [ (v · s)/v ] ∧ e : v ∈ V ar and s ∈ Γm
V ar(r) } ;

ΓV ar(r) =
⋃

n∈ω Γn
V ar(r) .
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Definition 20. Let Ψ be a set of universal positive sentences in the

language of RS. Expanding the set of variables if necessary, we choose a

denumerable set of variables Y and a variable z /∈ Y such that no variable

in Y ∪ {z} occurs in any sentence from Ψ. Suppose that α ∈ Ψ and that

the transformation of α, according to Lemma 19, is

∀x ( e ≤ r1 or · · · or e ≤ rk ), (3)

so no variable in Y ∪ {z} occurs in any of the terms ri. Then α̃0 shall

denote the singleton consisting of the equation

[ (r1 ∧ e)\z ] ∧ · · · ∧ [ (rk ∧ e)\z ] ≈ z.

For each integer m > 0, let α̃m be the set of all equations of the form

(γ1\z) ∧ · · · ∧ (γk\z) ≈ z

such that γi ∈ Γm
Y (ri) for each i ∈ {1, . . . , k}. Let α̃ =

⋃
n∈ω α̃n. Finally,

for each m ∈ ω, we define

Ψ̃m =
⋃

α∈Ψ α̃m and Ψ̃ =
⋃

α∈Ψ α̃ ( =
⋃

n∈ω Ψ̃n).

Theorem 21. Let α be a universal positive sentence in the language

of RS, and let A be a residuated semilattice that is FSI. Then

(i) A |= α iff A |= α̃.

If every negative element of A is stable, then

(ii) A |= α iff A |= α̃0.

Proof. (i) The implication from left to right does not depend on finite

subdirect irreducibility. Suppose that A |= α. By Lemma 19, we may

assume that α has the form displayed in (3). Consider an interpretation

in A of the variables x, and for each term t, let t∗ denote the induced

interpretation of t. As A |= α, we can choose an i ∈ {1, . . . , k} such that

e ≤ r∗i , i.e., r∗i ∧ e = e. Since e is the only iterated conjugate of itself, we

have γ∗

i = e for every γi ∈ ΓY (ri). On the other hand, if γj ∈ ΓY (rj) for

each j ∈ {1, . . . , k}, then γ∗

j ≤ e for all j, so e is the lub of γ∗

1 , . . . , γ∗

k . Then

A |= α̃, by Lemma 18.
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For the converse, note first that e is weakly join-irreducible, by The-

orem 5, because A is FSI. Suppose A 6|= α. Then in A, there is an in-

terpretation of the variables of r1, . . . , rk which simultaneously falsifies all

of the disjuncts e ≤ ri. Fixing one such interpretation, we adopt the t∗

notation as before. For each i, we have r∗i ∧ e < e. So, because e is weakly

join-irreducible, Theorem 5 shows that under a suitable extension to Y of

our interpretation v 7→ v∗, e fails to be the least upper bound of some

γ∗

1 , . . . , γ∗

k ∈ A, where γi ∈ ΓY (ri) for each i. (We use here the fact that

no variable in Y occurs in any of the ri.) Then by Lemma 18, there exists

b ∈ A such that

(γ∗

1\b) ∧ · · · ∧ (γ∗

k\b) 6= b. (4)

Since z /∈ Y and z does not occur in any of the terms ri, we may again

extend our interpretation so that b interprets z. Thus, (4) witnesses that

A 6|= α̃.

(ii) The implication from left to right follows from (i). For the converse,

note that e is join-irreducible, by Lemma 11, and we can simply replace

each γ∗

i by r∗i ∧ e in the argument. �

Theorem 22. Let K be the class of all RSs that satisfy a given set Ψ of

universal positive sentences. Then HSP(K) is axiomatized, relative to RS,

by Ψ̃.

If negative elements are stable in all members of HSP(K), e.g., if K is

subcommutative, then HSP(K) is axiomatized, relative to RS, by Ψ̃0.

Proof. Let A ∈ HSP(K) be subdirectly irreducible. Since RS is con-

gruence distributive, Jónsson’s Lemma [12, Cor. 3.2] implies that A ∈

HSPU(K). 1 As universal positive sentences persist under the class oper-

ators H, S, and PU, it follows that A |= Ψ. By Theorem 21, A |= Ψ̃. But

Theorem 21 also shows that every subdirectly irreducible RS which satis-

fies Ψ̃ satisfies Ψ, and so is in K already, hence in HSP(K). The second

statement follows similarly. �

Recall that Ψ̃0 and Ψ have the same cardinality. In particular, if K is

subcommutative and axiomatized by a given finite set of universal posi-

tive sentences, we may construct a finite equational basis for HSP(K). For

instance,

1 The proof of Jónsson’s Lemma shows that only finite subdirect irreducibility is

needed, hence we could replace ‘subdirectly irreducible’ by ‘FSI’ throughout the present

proof.
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Example 23. Let K be the class of all RSs A with a least element ⊥

such that A = {⊥} ∪ [ e ). Then K is 1–subcommutative, so we may apply

the second statement of Theorem 22. Now K is axiomatized relative to RS

by ∀x∀y (e ≤ x or x ≤ y). The second disjunct becomes e ≤ x\y. Then

the algorithm presented above produces the identity

[ (x ∧ e)\z ] ∧ [ ((x\y) ∧ e)\z ] ≈ z.

So this identity axiomatizes the variety generated by K, relative to RS.

Remark 24. For residuated lattices, variants of Definition 20 and the

last two theorems appear in [6], where equations of the form γ1∨· · ·∨γk ≈ e

were used instead of (γ1\z)∧· · ·∧(γk\z) ≈ z. Despite Lemma 18, we could

not have presented Theorems 21 and 22 as corollaries of the corresponding

results for RLs, as there is no evidence that an arbitrary FSI RS can be

embedded into an RL satisfying all the same join-free identities. Our proof

of Theorem 21 made use of Theorem 5, which has no analogue in [6]. We

could instead have adapted the proof in [6]. But the present approach

reveals what that proof has in common with the treatment of commutative

RSs in [16], where the commutative case of Corollary 14 was used to get

restricted versions of Theorems 21 and 22.

Remark 25. Suppose V1 and V2 are varieties of RSs, where V1 is

axiomatized by equations δi and V2 by equations εj , and no variable occurs

both in some δi and in some εj . Then the universal positive class V1 ∪ V2 is

axiomatized by the universal closure of (( &i δi ) or ( &j εj )). This is not

generally a first order sentence, but it is equivalent in infinitary logic to the

set Ψ of all universally quantified first order formulas of the form ( δi or εj ).

So Theorem 22 shows that the varietal join V1 + V2 is axiomatized by Ψ̃.

It also shows that if both varieties were subcommutative then V1 + V2 is

axiomatized by Ψ̃0. If we start with only finitely many equations δi, εj then

Ψ̃0 is finite, so this constructively proves Theorem 16.

In any variety, the set of finitely based subvarieties is obviously closed

under finite intersections. So the finitely based subvarieties of n–RS form

a sublattice of the lattice of all varieties of RSs. The commutative RSs

algebraize the disjunction-free fragment of the system FL+
e , discussed for

instance in [9], which is itself a fragment of linear logic. Thus we infer
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Corollary 26. Over the disjunction-free fragment of FL+
e , the finitely

based axiomatic extensions form a sublattice of the lattice of all axiomatic

extensions.

.6 Elementarity of VFSI

In this section we shall characterize the demand ‘VFSI is an elementary

class’, where V is any variety of RSs. We also show that when V satisfies

this condition, then its finitely based subvarieties are closed under varietal

joins. This result covers many cases in which V is not subcommutative (see

Section 7). We shall need the following abbreviations.

Notation. λa(b) := [ a\(b · a) ] ∧ e, and ρa(b) := [ (a · b)/a ] ∧ e.

We make the convention that λa and ρa bind more strongly than the basic

operations, e.g., λa(b ∧ c)\d abbreviates (λa(b ∧ c))\d.

In Definition 20, the sets Ψ̃m are infinite for all m ≥ 1, even when Ψ

is a finite set of sentences. Nevertheless, adapting [6], we may replace each

Ψ̃m by a finite set of equations that serves the same purpose. Indeed, let

α be a universal positive sentence in the form

∀x ( e ≤ r1 or · · · or e ≤ rk ),

and choose a denumerable set of variables Y = {y1, y2, . . . } and a variable

z /∈ Y , where no variable in Y ∪ {z} occurs in any of the terms ri. The set

α̃m consists of equations (γ1\z) ∧ · · · ∧ (γk\z) ≈ z where, for instance, γ1

is an expression of the form µ1µ2 . . . µm(r1 ∧ e) in which each µj is either

λy or ρy for some conjugating variable y ∈ Y .

¿From now on, let us insist that the indices of the conjugating variables

in µ1, . . . , µm are y1, . . . , ym, respectively, and similarly that the conjugating

variables in γ2 are ym+1, . . . , y2m, etc., so that the conjugating variables in

γ1, . . . , γk (in that order) are y1, . . . , ykm. This re-definition of α̃m makes

α̃m a finite set with 2km elements. For instance, when k = 1 then α̃2

consists of

λy1
λy2

(r1 ∧ e)\z ≈ z , λy1
ρy2

(r1 ∧ e)\z ≈ z ,

ρy1
λy2

(r1 ∧ e)\z ≈ z , ρy1
ρy2

(r1 ∧ e)\z ≈ z ,
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and when k = 2 then α̃1 consists of

[ λy1
(r1 ∧ e)\z ] ∧ [ λy2

(r2 ∧ e)\z ] ≈ z ,

[ λy1
(r1 ∧ e)\z ] ∧ [ ρy2

(r2 ∧ e)\z ] ≈ z ,

[ ρy1
(r1 ∧ e)\z ] ∧ [ λy2

(r2 ∧ e)\z ] ≈ z ,

[ ρy1
(r1 ∧ e)\z ] ∧ [ ρy2

(r2 ∧ e)\z ] ≈ z .

We define α̃, Ψ̃m and Ψ̃ in terms of the sets α̃m, as in Definition 20.

Thus, if Ψ is a finite set of sentences then Ψ̃m is finite for each m ∈ ω.

It is clear that a residuated semilattice satisfies Ψ̃m in its new sense iff it

satisfies Ψ̃m in the original sense, and similarly for Ψ̃.

Notation. Let β denote the first order sentence

∀x1 ∀x2 (e ≤ x1 or e ≤ x2).

In view of Lemma 18, the demand that e is the lub of γ1, γ2 for all

iterated conjugates γ1 of x1∧e and γ2 of x2∧e is captured by the infinitary

formula

∀ y ∀z &
⋃

n∈ω β̃n,

where y abbreviates y1, y2, . . . . The free variables of this formula are just

x1, x2. Since xi ∧ e ≈ e may be rewritten as e ≤ xi, Theorem 5 may be

paraphrased as

Proposition 27. A residuated semilattice is FSI iff it satisfies the in-

finitary sentence

∀x1 ∀x2 [ (∀ y ∀z &
⋃

n∈ω β̃n ) =⇒ ( e ≤ x1 or e ≤ x2 ) ].

The converse of the implication in Proposition 27 is always true, as

was essentially shown in the proof of Theorem 21(i). Note that every RS

satisfies

∀x1 ∀x2 [ (∀ y ∀z & β̃m+1 ) =⇒ (∀ y ∀z & β̃m ) ] (5)

for all m ∈ ω, because it satisfies x ≤ e =⇒ λe(x) ≈ x ≈ ρe(x).

Theorem 28. For any variety V of residuated semilattices, the follow-

ing conditions are equivalent.
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(i) VFSI is an elementary class.

(ii) VFSI is closed under ultraproducts.

(iii) There exists m ∈ ω such that VFSI satisfies

∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ ( e ≤ x1 or e ≤ x2 ) ].

(iv) There exists m ∈ ω such that V satisfies

∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ (∀ y ∀z & β̃m+1 ) ].

In this case, VFSI is strictly elementary iff V is finitely axiomatized.

Proof. (i) ⇒ (ii) is an instance of  Los’ Theorem.

(ii) ⇒ (iii) is proved by contradiction, using a standard argument. Sup-

pose that for each m ∈ ω, we can find elements xm
1 and xm

2 which witness

failure of the sentence in (iii) in some FSI algebra Am ∈ V. Then for

any non-principal ultrafilter U over ω, the elements (x0
1, x

1
1, x

2
1, . . . )/U and

(x0
2, x

1
2, x

2
2, . . . )/U witness failure of the sentence in Proposition 27 in the

ultraproduct
∏

m∈ω Am/U (in view of (5)), whence this ultraproduct is not

FSI. This contradicts (ii).

(iii) ⇒ (iv): It follows from (iii) and the converse of the bracketed im-

plication in Proposition 27 that for some m ∈ ω,

VFSI |= ∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ (∀ y ∀z & β̃m+1 ) ]. (6)

Note that ∀ y ∀z & β̃m is a positive formula and β̃m+1 consists of atomic

formulas, viz. equations. So (6) is logically equivalent to a special Horn

sentence in the sense of Lyndon [15], whence it persists in subdirect prod-

ucts. Then (iv) follows because every algebra in V is a subdirect product

of ones in VFSI .

(iv) ⇒ (i): Let m ∈ ω and assume that

∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ (∀ y ∀z & β̃m+1 ) ] (7)

is true in V. Here y may be taken to abbreviate y1, . . . , y2m+2, of which only

y1, . . . , y2m occur in the premise of the implication. Consider the sentence

∀x1 ∀x2 [ (∀ y ∀z & β̃m+1 ) =⇒ (∀ y ∀z & β̃m+2 ) ], (8)
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in which y now abbreviates y1, . . . , y2m+4. Observe that (8) is equivalent

to a finite conjunction of instances of (7), each of which is got by first

re-labeling ym+1, . . . , y2m+2 as ym+2, . . . , y2m+3 (respectively), and then

replacing x1 by λym+1
(x1) or by ρym+1

(x1), and x2 by λy2m+4
(x2) or by

ρy2m+4
(x2). So (8) is also true in V. By induction, and in view of (5), V

satisfies

∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ (∀ y ∀z &
⋃

n∈ω β̃n ) ],

where y is again the full enumeration of Y . Then by Proposition 27, VFSI

is axiomatized, relative to V, by the first order sentence

∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ ( e ≤ x1 or e ≤ x2 ) ],

where y is y1, . . . , y2m. Consequently, VFSI is an elementary class, and it

is strictly elementary if V is finitely axiomatized. The converse of this last

assertion follows from Jónsson’s finite basis theorem (Theorem 6), because

RS is congruence distributive. �

An analysis of the above proof shows that the smallest m witnessing

condition (iii) is also the smallest m witnessing (iv).

Notation. From now on, we use the expression β̃m ⇒ β̃m+1 to abbreviate

∀x1 ∀x2 [ (∀ y ∀z & β̃m ) =⇒ (∀ y ∀z & β̃m+1 ) ].

In particular, β̃0 ⇒ β̃1 amounts to the demand that when e is the lub of

x1, x2, then e is also the lub of γ1, γ2, provided that each γi is an iterated

conjugate of xi (of arbitrary depth). Using Theorem 5 and the fact that e

is the only conjugate of itself, we infer

Proposition 29. For any variety V of residuated semilattices, the fol-

lowing conditions are equivalent.

(i) V satisfies β̃0 ⇒ β̃1.

(ii) VFSI is the class of all members of V in which e is join-irreducible.

(iii) e is join-irreducible in every member of VFSI .

In Remark 25, the sets Ψ̃m involved in the axiomatization of the varietal

join V1 + V2 are finite, provided the equational bases for V1 and V2 were

finite. We can now give a sufficient condition for the varietal join to be

axiomatized by Ψ̃m, for a given m, together with a finite set of equations.
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Theorem 30. Let V1 and V2 be two varieties of residuated semilattices

that satisfy β̃m ⇒ β̃m+1. Then:

(i) The varietal join V1 + V2 is axiomatized by a finite set of equations

together with Ψ̃m, where Ψ is the set defined in Remark 25.

(ii) If V1 and V2 are finitely axiomatized then so is V1 + V2.

Proof. (i) By the congruence distributivity of RS and Jónsson’s Lemma,

the FSI members of V1 + V2 belong to V1 ∪ V2, hence they satisfy

β̃m ⇒ β̃m+1. It follows, as in the proof of Theorem 28 [(iii) ⇒ (iv)], that

V1 +V2 satisfies β̃m ⇒ β̃m+1. Then by the Compactness Theorem of first

order logic, there is a finite set B of equations, valid in V1 +V2, from which

the sentence β̃m ⇒ β̃m+1 already follows. By Remark 25, V1 + V2 is ax-

iomatized by Ψ̃ and, with the help of β̃m ⇒ β̃m+1, Ψ̃m implies Ψ̃n for all

finite n > m, just as in the proof of Theorem 28 [(iv) ⇒ (i)]. Consequently,

V1 +V2 is axiomatized by Ψ̃m ∪B. This proves (i), and (ii) follows because

Ψ̃m can be made finite when V1 and V2 are finitely based. �

Theorems 28 and 30 combine to give the following stronger version of

Theorem 7.

Corollary 31. For any variety V of residuated semilattices, if VFSI

is an elementary class, then the finitely based subvarieties of V are closed

under finite joins.

.7 Examples

We have seen that the varieties characterized in Proposition 29 include

all those in which negative elements are stable (e.g., all subcommutative

varieties). An independent instance of Proposition 29 is:

Example 32. An RS is said to be representable (or semilinear) if it is a

subdirect product of totally ordered RSs. In this case, it is lattice-ordered,

since joins can be defined by

x ∨ y = [ x/((x\x) ∧ (y\x)) ] ∧ [ y/((x\y) ∧ (y\y)) ].

(A proof of this claim in the commutative case can be found in [17]; the

noncommutative case is similar.) Because joins are definable, we can infer
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from [3] that the representable RSs form a finitely based variety V, and then

from [6] that they satisfy β̃0 ⇒ β̃1. Alternatively, since V is a congruence

distributive variety generated by algebras with an equationally definable

total order, its FSI members are totally ordered, by Jónsson’s Lemma.

Thus, their identity elements are join-irreducible and Proposition 29 ap-

plies. The negative elements of a representable RS need not be stable, in

view of Theorem 17 and noncommutative examples in [7].

Example 33. Lattice-ordered groups form a finitely based variety of

RLs in which x\y = x−1
· y and y/x = y · x−1. In these algebras, joins are

eliminable from the signature, because x 7→ x−1 is an involution. Conju-

gates of negative elements are just conjugates in the group-theoretic sense,

because y−1
· x · y ≤ e whenever x ≤ e. Lattice-ordered groups are not gen-

erally subcommutative or representable, but they satisfy β̃1 ⇒ β̃2, because

any iterated conjugate of x is already a conjugate of x.

Example 34. Let A be the algebra in Example 15. The variety V =

HSP(A) satisfies β̃1 ⇒ β̃2 but not β̃0 ⇒ β̃1 (and the cardinality of A is

minimal in this respect). Failure of β̃0 ⇒ β̃1 follows from Proposition 29,

as A is FSI but e is not join-irreducible. Recall that a is a common (depth

1) conjugate of the only pair of incomparable elements whose lub is e. Since

every element is a conjugate of itself, it follows that for each x1, x2 ∈ A\{e},

there are respective conjugates γ1, γ2 of x1, x2 such that e is not the lub of

γ1, γ2. So A satisfies β̃1 ⇒ β̃2 because the premise holds only when x1 or

x2 is e (and because e is the only iterated conjugate of itself). Then VFSI

satisfies β̃1 ⇒ β̃2, by an easy application of Jónsson’s Lemma. It follows,

as in the proof of Theorem 28 [(iii) ⇒ (iv)], that V satisfies β̃1 ⇒ β̃2.

We exhibit a variety satisfying β̃0 ⇒ β̃1, which is not encompassed by

the above examples.

Example 35. Given n, k ∈ ω and variables x, y, let p1, . . . , p2n be all

2n possible products of the form s1 · . . . · sn, where each si is x or y. We

interpret p1, . . . , p2n as e when n = 0. We denote by tn(x, y, z) the term

(p1\z) ∧ . . . ∧ (p2n\z)

and by ϕn,k the first order formula

∀x∀y ( e ≤ tn(x, y, x) or e ≤ tk(x, y, y) ),
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where k ∈ ω. For RLs, ϕn,k is equivalent to the formula

∀x∀y ( (x ∨ y)n ≤ x or (x ∨ y)k ≤ y ).

We denote by Vn,k the variety generated by the RSs that satisfy ϕn,k.

Note that V0,1 is the variety of RSs in Example 23 and V1,1 is the variety

of representable RSs.

Theorem 36. For each n, k ∈ ω, Vn,k is axiomatized, relative to RS,

by

[ λv(tn(x, y, x))\z ] ∧ [ ρw(tk(x, y, y))\z ] ≈ z. (9)

Proof. By Theorem 22, Vn,k is axiomatized by the set of all equations

(γ1\z) ∧ (γ2\z) ≈ z, (10)

where γ1 and γ2 range over all iterated conjugates of tn(x, y, x) ∧ e and of

tk(x, y, y) ∧ e, respectively. In particular, Vn,k satisfies the equation

[ λv(tn(x, y, x) ∧ e)\z ] ∧ [ ρw(tk(x, y, y) ∧ e)\z ] ≈ z. (11)

So, because RSs satisfy λv(u∧ e) ≤ λv(u) and ρw(u∧ e) ≤ ρw(u), it follows

that Vn,k satisfies [ λv(tn(x, y, x))\z ] ∧ [ ρw(tk(x, y, y))\z ] ≤ z. The reverse

inequality is also true, because λv and ρw are negative-valued: in particular,

RSs satisfy λv(u) · z ≤ e · z ≈ z, i.e., z ≤ λv(u)\z, and similarly, z ≤

ρw(u)\z. So Vn,k satisfies (9).

Conversely, replacing v and w by e in (9), we get

[ (tn(x, y, x) ∧ e)\z ] ∧ [ (tk(x, y, y)) ∧ e)\z ] ≈ z. (12)

Also, the variety axiomatized by (9) satisfies the implication

[∀z ((x\z) ∧ (y\z) ≈ z) ] =⇒ ∀z ((λv(x)\z) ∧ (ρw(y)\z) ≈ z). (13)

Indeed, for any x, y, if (x\z)∧ (y\z) = z holds for all z, then e is the lub of

x, y, by Lemma 18. In this case, e is also the lub of p1, . . . , p2n , by Lemma 3,

so tn(x, y, z) = z for all z, by Lemma 18 again. Thus, ∀z ((x\z)∧(y\z) ≈ z)

entails tn(x, y, x) ≈ x and tk(x, y, y) ≈ y, whence by (9), it entails the right

hand side of (13), as claimed.

Now all of the equations schematized in (10) can be derived from (12)

by repeated judicious application of (13). (We replace v or w by e in (13)
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whenever we want conjugation to have no effect.) This completes the proof.

�

The implication (13) and Theorem 30(ii) give the following result, which

generalizes Example 32.

Corollary 37. For all n, k ∈ ω, the variety Vn,k satisfies β̃0 ⇒ β̃1.

Consequently, the varietal join of any two finitely based subvarieties of Vn,k

is also finitely based.

In view of Theorem 30, the second claim in Corollary 37 remains true if

we replace Vn,k by its join with any variety of RSs that is known to satisfy

β̃m ⇒ β̃m+1 for some finite m.
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