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Abstract. It is proved that any lattice-ordered pregroup that satisfies an identity of
the form xll...l = x has a lattice reduct that is distributive. It follows that every such

ℓ-pregroup is embedded in an ℓ-pregroup of residuated and dually residuated maps
on a chain.

Lambek [9] defined pregroups as partially ordered monoids (A, ·, 1,≤) with

two additional unary operations l, r that satisfy the inequations

xlx ≤ 1 ≤ xxl and xxr ≤ 1 ≤ xrx.

These algebras were introduced to model some aspects of grammars, and have

been studied from algebraic and proof-theoretic points of view in several papers

by W. Buskowski [2, 3, 4, 5].

A lattice-ordered pregroup, or ℓ-pregroup, is of the form (L,∧,∨, ·, 1, l, r)

where (L,∧,∨) is a lattice and (L, ·, 1, l, r,≤) is a pregroup with respect to

the lattice order. Alternatively, an ℓ-pregroup is a residuated lattice that

satisfies the identities xlr = x = xrl and (xy)l = ylxl where xl = 1/x and

xr = x\1. Another equivalent definition of ℓ-pregroups is that they coincide

with involutive FL-algebras in which x · y = x + y and 0 = 1. In particular,

the following identities are easy to derive for (ℓ-)pregroups:

xlr = x = xrl 1l = 1 = 1r

(xy)l = ylxl (xy)r = yrxr

xxlx = x xxrx = x

x(y ∨ z)w = xyw ∨ xzw x(y ∧ z)w = xyw ∧ xzw

(x ∨ y)l = xl ∧ yl (x ∨ y)r = xr ∧ yr

xl = xr ⇐⇒ xlx = 1 = xxl ⇐⇒ xxr = 1 = xrx

Lattice-ordered groups are a special case of ℓ-pregroups where the identity

xl = xr holds, in which case xl is is the inverse of x. It is well-known that ℓ-

groups have distributive lattice reducts. Other examples of ℓ-pregroups occur

as subalgebras of the set of finite-to-one order-preserving functions on Z (where

finite-to-one means the preimage of any element is a finite set). These functions

clearly form a lattice-ordered monoid, and if a is such a function then al(y) =
∧

{x ∈ Z|a(x) ≥ y} and ar =
∨

{x ∈ Z|a(x) ≤ y}.

The notation xl
n

is defined by xl
0

= x and xl
n+1

= (xl
n

)l for n ≥ 0, and

similarly for xr
n

. We say that an ℓ-pregroup is periodic if it satisfies the

identity xl
n

= xr
n

for some positive integer n. The aim of this note is to

prove that if an ℓ-pregroup is periodic then the lattice reduct must also be
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b = a ∨ ā

A = {abn, bn, ābn : n ∈ Z}

bl = br = b−1, bmbn = bm+n

aa = a, āā = ā

aā = ab, āa = āb

bna =

{

abn if n is even

ābn if n is odd

bnā =

{

ābn if n is even

abn if n is odd

...
b2

ab āb

b

a ā = all = arr

1

ar = ab−1 āb−1 = al

b−1

ab−2 āb−2

b−2
...

Figure 1. The ℓ-pregroup of period 2

distributive. For n = 1 this identity defines ℓ-groups, but for n = 2 it defines

a strictly bigger subvariety of ℓ-pregroups since it contains the ℓ-pregroup

generated by the function a : Z → Z defined by a(2m) = a(2m − 1) = 2m for

m ∈ Z. A diagram of this algebra is given in Figure 1. Note that all functions

in this algebra have period 2. Similarly the function an : Z → Z defined by

an(nm) = an(nm−1) = · · · = an(nm−(m−1)) = nm generates an ℓ-pregroup

that satisfies xl
n

= xr
n

, and all functions in it have period n.

The proof was initially found with the help of the WaldmeisterII equational

theorem prover [11] and contained 274 lemmas (about 1900 equational steps).

The proof below was extracted by hand from the automated proof.

The first lemma is true for any binary operation that distributes over ∧,∨

and has an identity element.

Lemma 1. (1 ∨ x)(1 ∧ x) = x = (1 ∧ x)(1 ∨ x)
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Proof. (1∨x)(1∧x) = (1∧x)∨(x∧xx) ≤ x ≤ (1∨x)∧(x∨xx) = (1∨x)(1∧x). �

The next few lemmas are true for ℓ-pregroups in general.

Lemma 2.

(i) x(1 ∧ xly) = xxl(x ∧ y)

(ii) x(1 ∨ xry) = xxr(x ∨ y)

(iii) 1 ∨ xly = 1 ∨ xl(x ∨ y)

(iv) 1 ∧ xry = 1 ∧ xr(x ∧ y)

Proof. (i) x(1∧xly) = x∧xxly = xxlx∧xxly = xxl(x∧ y), and (ii) is similar.

(iii) 1 ∨ xly = 1 ∨ xlx ∨ xly = 1 ∨ xl(x ∨ y), and again (iv) is similar. �

Lemma 3. If x ∧ y = x ∧ z and x ∨ y = x ∨ z then xly = xlz, xry = xrz,

yxl = zxl and yxr = zxr.

Proof. Assume x ∧ y = x ∧ z and x ∨ y = x ∨ z.

By Lemma 2 (i) we have x(1∧ xly) = xxl(x∧ y) = xxl(x∧ z) = x(1∧ xlz),

and similarly from (ii)-(iv) we get x(1 ∨ xry) = x(1 ∨ xrz), 1 ∨ xly = 1 ∨ xlz

and 1 ∧ xry = 1 ∧ xrz.

Using Lemma 1 xxly = x(1 ∧ xly)(1 ∨ xly) = x(1 ∧ xlz)(1 ∨ xlz) = xxlz,

hence xly = xlxxly = xlxxlz = xlz

Similarly xry = xrz, yxl = zxl and yxr = zxr. �

Lemma 4. If xll = xrr then xl ∨ xr and xl ∧ xr are invertible.

Proof. If xll = xrr then (xl ∨ xr)l = xll ∧ x = xrr ∧ x = (xl ∨ xr)r, hence

(xl ∨ xr)l(xl ∨ xr) = 1, i.e. xl ∨ xr is invertible, and similarly for xl ∧ xr. �

Theorem 5. If the identity xll = xrr holds in an ℓ-pregroup then the lattice

reduct is distributive.

Proof. It is well-known that a lattice is distributive if every element has a

unique relative complement. Hence we assume a, b, c ∈ L satisfy a∧ b = a∧ c,

a ∨ b = a ∨ c and we have to prove that b = c.

By Lemma 3 we have alb = alc and arb = arc, so (al ∨ ar)b = alb ∨ arb =

alc ∨ arc = (al ∨ ar)c. By Lemma 4 it follows that b = c. �

Note that the converse of Lemma 4 also holds, since if xl∨xr and xl∧xr are

invertible then xll ∧x = (xl ∨xr)l = (xl ∨xr)r = xrr ∧x and xll ∨x = xrr ∨x,

so as in the proof of Theorem 5 xll = xrr.

To extend the proof to subvarieties of ℓ-pregroups defined by xl
n

= xr
n

we

first prove a few more lemmas.

Lemma 6. x ∨ (xr ∧ 1) = x ∨ 1

Proof. It suffices to show that x∨ (xr ∧ 1) ≥ 1. We have 1 ≤ (x∨ 1)r(x∨ 1) =

(x ∨ 1)rx ∨ (x ∨ 1)r ≤ x ∨ (xr ∧ 1) since (x ∨ 1)r ≤ 1. �

Lemma 7. x ∨ (yxr ∧ 1)y = x ∨ y
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Proof. x ∨ (yxr ∧ 1)y = x ∨ xyly ∨ ((xyl)r ∧ 1)y = x ∨ (xyl ∨ ((xyl)r ∧ 1))y =

x∨ (xyl ∨ 1)y by the preceding lemma. Hence we get x∨ xyly ∨ y = x∨ y. �

Lemma 8. If x ∧ y = x ∧ z and x ∨ y = x ∨ z then yxly ∧ y = zxlz ∧ z,

yxly ∨ y = zxlz ∨ z, xll ∨ y = xll ∨ z and xll ∧ y = xll ∧ z.

Proof. Assume x ∧ y = x ∧ z and x ∨ y = x ∨ z.

By Lemma 3 yxly∧y = zxly∧y ≤ zxly∧zzly = z(xl ∧zl)y = z(xl ∧yl)y =

zxly ∧ zyly ≤ zxlz ∧ z, and the reverse inequality is proved by interchanging

y, z. The second equation has a dual proof.

From these two equations and Lemma 7 we obtain xll∨y = xll∨(yxllr∧1)y =

xll ∨ (yxly ∧ y) = xll ∨ (zxlz ∧ z) = xll ∨ (zxllr ∧ 1)z = xll ∨ z, and the fourth

equation is proved dually. �

Using the preceding lemma repeatedly, it follows that if x ∧ y = x ∧ z and

x∨ y = x∨ z then xl
2n

∨ y = xl
2n

∨ z and xl
2n

∧ y = xl
2n

∧ z. As in Lemma 3,

it follows that xl
2n+1

y = xl
2n+1

z and xr
2n+1

y = xr
2n+1

z. Now the identity

xl
n

= xr
n

implies that the term t(x) = xl ∨ xlll ∨ · · · ∨ xl
2n−1

produces an

invertible element. As in the proof of Theorem 5, if we assume a ∧ b = a ∧ c

and a∨ b = a∨ c then we have t(a)b = t(a)c, hence b = c. Thus we obtain the

following result.

Theorem 9. If the identity xl
n

= xr
n

holds in an ℓ-pregroup then the lattice

reduct is distributive.

However, it is not known whether the lattice reducts of all ℓ-pregroups are

distributive. It is currently also not known if the identity (x∨ 1)∧ (xl ∨ 1) = 1

holds in every ℓ-pregroup (it is implied by distributivity). Recently M. Kinyon

[8] has shown with the help of Prover9 that if an ℓ-pregroup is modular then

it is distributive. The following result has been proved in [1] and [10].

Theorem 10. An ℓ-monoid can be embedded in the endomorphism ℓ-monoid

of a chain if and only if ·,∨ distribute over ∧.

Recal that a map f from a poset P to a poset Q is called residuated if

there is a map f∗ : Q → P such that f(p) ≤ q ⇔ p ≤ f∗(q), for all p ∈ P

and q ∈ Q. Then f∗ is unique and is called the residual of f , while f is

called the dual residual of f∗. The map (f∗)∗, if it exists, is called the second-

order residual of f , and likewise we define higher-order residuals and dual

residuals of f . In [7] (page 206) it is mentioned, using different terminology,

that the set RDR∞(C) of all maps on a chain C that have residuals and dual

residuals of all orders forms a (distributive) ℓ-pregroup, under pointwise order

and functional composition. Hence we obtain our final result, which was first

noted in [6].

Corollary 11. Every periodic ℓ-pregroup can be embedded in RDR∞(C), for

some chain C.
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Proof. Let A be a periodic ℓ-pregroup. By the two preceding theorems there

is a chain C and an ℓ-monoid embedding h : A → End(C). Since A satisfies

xxr ≤ 1 ≤ xrx we have h(x) ◦ h(xr) ≤ idC ≤ h(xr) ◦ h(x). The functions h(x)

and h(xr) are order-preserving, so h(xr) is the residual of h(x). Therefore

h(xr) = h(x)r, and similarly h(xℓ) = h(x)ℓ. Since this also holds for xr
n

and

xl
n

in place of x, we finally obtain that h(x) ∈ RDR∞(C). Thus, h : A →

RDR∞(C) is an ℓ-pregroup embedding. �
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[6] N. Galatos and R. Horč́ık, Cayley and Holland-type theorems for idempotent semirings

and their applications to residuated lattices, preprint.

[7] N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: an algebraic

glimpse at substructural logics, Studies in Logics and the Foundations of Mathematics,
Elsevier, 2007.

[8] M. Kinyon, personal communication.

[9] J. Lambek, Type grammar revisited, In A. Lecomte, F. Lamarche and G. Perrier,
editors, Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1999, 1–27.

[10] F. Paoli and C. Tsinakis, On Birkhoff’s “common abstraction” problem, preprint.
[11] Waldmeister, http://www.mpi-inf.mpg.de/∼hillen/waldmeister/

Nikolaos Galatos

Department of Mathematics, University of Denver, 2360 S. Gaylord St., Denver, CO
80208, USA

e-mail : ngalatos@du.edu

Peter Jipsen

Chapman University, Faculty of Mathematics, School of Computational Sciences, One
University Drive, Orange, CA 92866, USA

e-mail : jipsen@chapman.edu


