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Abstract. We develop a general algebraic and proof-theoretic study of sub-

structural logics that may lack associativity, along with other structural rules.
Our study extends existing work on (associative) substructural logics over the

full Lambek Calculus FL (see e.g. [36, 19, 18]). We present a Gentzen-style

sequent system GL that lacks the structural rules of contraction, weakening,
exchange and associativity, and can be considered a non-associative formula-

tion of FL. Moreover, we introduce an equivalent Hilbert-style system HL and

show that the logic associated with GL and HL is algebraizable, with the va-
riety of residuated lattice-ordered groupoids with unit serving as its equivalent

algebraic semantics.

Overcoming technical complications arising from the lack of associativity,
we introduce a generalized version of a logical matrix and apply the method of

quasicompletions to obtain an algebra and a quasiembedding from the matrix
to the algebra. By applying the general result to specific cases, we obtain

important logical and algebraic properties, including the cut elimination of GL

and various extensions, the strong separation of HL, and the finite generation
of the variety of residuated lattice-ordered groupoids with unit.

1. Introduction

Substructural logics are generally understood as extensions of logics obtained by
removing some structural rules from intuitionistic logic in its sequent formulation
LJ, and thus they are extensions of full Lambek calculus FL—the calculus defining
the basic substructural logic without the rules of exchange, weakening and contrac-
tion. In algebraic terms, they are logics determined by subvarieties of the variety
of FL-algebras, i.e., residuated lattices with a constant 0. More precisely, in terms
of abstract algebraic logic: the variety of FL-algebras is an equivalent algebraic se-
mantics for the deducibility relation determined by FL. Substructural logics over
FL and residuated lattices have been extensively studied in recent years both from
algebraic and proof-theoretic view points. For general information, see [18].

One main purpose of the present paper is to extend the current study to sub-
structural logics that may lack associativity, and in particular to explore to what
extent algebraic methods—already developed for substructural logics over FL—
are applicable. Obvious modifications include, moving from monoids to groupoids
with unit, for the algebraic structures, and considering a non-associative version of
comma in sequents, for the syntactic objects. However, we will show that although
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many results, requiring more involved proofs, generalize to the non-associative set-
ting, some facts fail in the general case.

The second, equally important, aim of the paper is to provide a setting, con-
sistent with the theory of abstract algebraic logic, that unifies many constructions
in the literature. In particular, we show that logical matrices, appropriately gener-
alized, serve as a unifying object for the comprehensive study of (non-associative)
substructural logics and admit quasicompletions that yield important logical and
algebraic properties for the corresponding logics.

Throughout the paper, we assume a some familiarity with substructural logics
over FL and residuated lattices (see e.g. [18]), as well as with basic notions from
universal algebra (see e.g. [9] for more information). To avoid disrupting the flow
of the paper, the proofs of some of technical results are given in the appendices.
To facilitate navigation through the paper, we give a table of contents before the
bibliography.

1.1. Main results. In Section 2.1, we introduce the Gentzen-style system GL.
The rules of the system are specified in terms of metarules (rule schemes); see
Figure 1 in Section 2.1. This presentation has the advantage that the same set of
metarules, by appropriate interpretations, can specify, for example, the system FL
of full Lambek calculus, FLe (FL with the rule of exchange), or even Gentzen’s
original system LJ for intutionistic logic. Sequents, the main syntactic object of
GL, involve non-associative sequences of formulas, while in the cases of FL, FLe

or LJ, they involve sequences, multisets or sets, respectively. By considering these
different data types for sequents the same set of metarules serves as a definition for
all of the above systems.

Alternatively, these systems can be defined by adding structural rules (see Fig-
ure 2) to GL. If we add associativity we obtain (a system equivalent to) FL; if we
add all basic structural rules of associativity, exchange, weakening and contraction
we obtain (a system equivalent to) LJ.

It is easily seen that it is decidable whether a sequent is provable in cut-free
GL (GL without the cut rule). The cut elimination property states that the cut
rule does not contribute at all to the provable (without assumptions) sequents
of the system. Therefore the proof of this property (Theorem 4.8) implies the
decidability of GL. The basic structural rules are among the ones (simple structural
rules) that can be added to GL without affecting the cut elimination property (see
Section 4.3). Therefore, the property holds for all the systems mentioned above (see
Corollary 4.14), with the understanding that the rule of contraction is forulated for
sequences of formulas. In Section 4.4, we prove that GL, as well as its extensions
with simple structural rules, has the finite model property.

We introduce the Hilbert-style systems HL (Figure 6) and sHL (Figure 5), and
prove that both are equivalent (Theorems 2.1 and 2.3), in the sense of [22], to GL;
the equivalence holds also for extensions of the systems with simple structural rules
(Theorem 2.3). The strong separation property for HL (Theorem 4.19) states that
every proof in HL can be rewritten in a way that it only uses the connectives already
in the assumptions and conclusion of the proof plus maybe the basic connective \
of left implication. As a consequence, the system is a strong conservative exten-
sion of each of its fragments. [The adjective ‘strong’ here refers to the existence
of assumptions in the derivation.] We prove that HL, as well as its expansions
that correspond to simple structural rules, enjoy the strong separation property
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(Theorem 4.19). The system HL is not finitely axiomatized (Theorem 2.5) and
enjoys the strong separation property. On the other hand its equivalent version
sHL is finitely axiomatized, but enjoys a restricted version of the strong separation
property for the case where the set of basic connectives is {\,∧}. [More generally,
sHL has the strong separation property (Theorem 2.2) under the understanding
that the connective ∧ needs to be included when we include the connective ∨.] The
associative version HLa of HL(see Section 2.2.4) can be simplified to a system (HL
plus associativity) equivalent to FL that has the strong separation property with
respect to the set of basic connectives {\, /} (see Corollary 4.19 and Lemma 4.20).
Given the separation property for HL, the general algebraization theory yields
axiomatizations for the classes of subreducts of the algebraic semantics.

Having developed the necessary algebraic background in the beginning of Sec-
tion 3, we proceed to show that the algebraic semantics (Theorem 4.23) of GL (and
HL) are residuated lattice-ordered groupoids with unit (see Section 3.1) and they
form a variety RLUG. We prove that RLUG has a decidable equational theory and
is actually generated by its finite members (Theorem 4.24). We also give a list of
subvarieties, corrsponding to simple structural rules, that have the same properties
(Corollary 4.23 and Theorem 4.24).

Most of Section 3 is devoted to introducing generalized logical matrices, the
main and unifying object to which the quasicompletion will be performed, and
to developing, in the non-associative setting, the necessary background theory for
these matrices. The type of logical matrix that we consider generalizes the notion
of a matrix from abstract algebraic logic—a pair of an algebra A and a subset F of
A—to allow for A to be a partial algebra and for F to be a set of sequents over A.

In Section 4, the quasicompletion method is applied to an arbitrary generalized
logical matrix A to yield a residuated lattice-ordered groupoid with unit R(A)
(Theorem 4.1) and is followed by the construction of a quasiembedding into R(A)
(Lemma 4.4). This is the main technical part of the paper and is applied to obtain
all the main results by instantiating the generalized logical matrix according to the
particular application. In particular, the cut elimination theorem for the Gentzen
system GL, the strong separation theorem for the corresponding Hilbert system
HL, the finite model property and the finite embeddability property for various
systems (see Section 4.6) are all obtained by means of the quasicompletion theorem.

We mention that the notion of a nucleus is the main tool in the quasicompletion
construction. A nucleus on a residuated lattice is a closure operator on the underly-
ing lattice that is compatible with multiplication and the division operations. The
concept has its origins in topological frames and Heyting algebras (e.g., see [40]),
but has been also extended in the context of quantales [39]. Moreover, it has been
used in many different and diverse applications (see [21], [22], [20]). En route to
our goal (see Appendix B), we present natural systems, which we call (residuated)
action systems and which produce a residuated lattice-ordered groupoid with unit
when a nucleus is applied to them.

1.2. Background of the main idea. To place the paper in context, we review
briefly some of the relevant literature. In particular, we show how our work sub-
sumes and generalizes diverse and seemingly unrelated results.

Okada and Terui [31]—relying on ideas of Maehara [29] and Okada [30], who de-
scribes a method for proving cut elimination for various logics using phase semantics
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for linear logic intoduced by Girard [23] (and expanded by Abrusci [1])—prove the
finite model property (FMP) for certain fragments of intuitionistic linear logic.

Blok and van Alten, in a series of papers [4, 5, 6], further extend the method
of Okada and Terui to prove stronger results like the finite embeddability property
(FEP) for various varieties and quasivarieties of residuated structures. In particular,
they describe a construction for embedding a partial subalgebra B of an algebra A
into an algebra D(A,B), which remains in the variety in certain cases; also, if B
is finite, then D is also finite, in particular situations, hence the construction then
yields the FEP. By modifying the construction of D, Kowalski and Ono [28] obtain
the FEP for certain fuzzy logics. Also, Buszkowski [10, 11, 12] obtains the FMP
for BCI logics and action logic.

In connection to residuated lattices (models of FL), Bernadineli, Jipsen and
Ono [2], introduce quasi-residuated lattices (essentially models of cut-free FL) and
give an algebraic proof of the cut elimination theorem for various Gentzen systems
related to FL. More precisely, given a sequent that is not provable in cut-free
FL, and hence fails in a quasi-residuated lattice, it is shown that the sequent also
fails in a residuated lattice, obtained from the quasi-residuated lattice via a quasi-
completion construction (that resembles the constructions of Blok and van Alten,
and of Okada and Terui); thus the sequent is not provable even using the cut rule.

Raftery and van Alten [43] present a Hilbert-style system that has the strong
separation property and is equivalent to FLe; in other words it applies to the asso-
ciative, commutative case and its algebraic semantics is the variety of commutative
residuated lattices. In order to prove the strong separation property the authors
assume that a formula is not provable from a given set of assumptions in the ap-
propriate fragment and they show that it is not provable in the whole system. To
achieve this, they construct a commutative residuated lattice associated with the
set of assumptions into which the formula fails. The construction is again based
on the quasi-completion idea. The result in [43] is preceded by work of Ono and
Komori [37], who obtain a (weak) separation theorem (which refers only to proofs
without assumptions) for the associative, integral case (equivalent to FLw), for a
system that may involve only one of the division (implication) connectives. The
(weak) separation property is obtained from the equivalence to the corresponding
Genzen system and the fact that the latter has the subformula property. Also,
K. Došen [14] discusses the non-associative case with one division operation, and
proves cut elimination using proof-theoretic argunemts, but the proposed system
fails even the (weak) separation property.

As mentioned before, the constructions in the above papers make use of the
quasi-completion/quasi-embedding idea to construct a residuated lattice and quasi-
embed a certain structure to it. Nevertheless, the constructions apply to different
objects/ingredients: to a set of sequents in [31], to a partial subalgebra of a resid-
uated lattice in [4, 5, 6], to a quasi-residuated lattice in [2] and to a set of formulas
in [43]. We show that a logical matrix serves as a single unifying object to which
the construction applies in a way that it instantiates to the examples above. It
should be stressed that we develop this general construction in the absence of all
the basic structural rules of contraction, weakening, exchange and associativity. At
the same time these rules, as well as any other simple structural rule, can be added
in a modular way, hence the construction becomes applicable to a wide range of
situations.
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2. Syntactic consequence relations

In this section, we define four consequence relations, all presented syntactically;
one by a Gentzen-style system, two by Hilbert-style systems and one by an algebraic
system. They all turn out to be equivalent in the sense of [22].

Recall that a consequence relation ` on a set S is a subset of P(S)×S such that
for all X ∪ Y ∪ {x, y, z} ⊆ S, (we write X ` x for (X, x) ∈ `)

(1) if x ∈ X, then X ` x, and
(2) if X ` y, for all y ∈ Y , and Y ` z, then X ` z.

2.1. The non-associative Gentzen system GL. Sequent calculi were intro-
duced by Gentzen [24], who proved the decidability of intuitionistic logic. This is
done via a proof search algorithm in the cut free system (after having shown cut
elimination).

A sequent, for the purposes of intuitionistic logic, is made up of formulas, com-
mas and the separator ⇒ . More precisely, a sequent is a (non-associative) possibly
empty sequence of formulas (separated by commas), concatenated with the sepa-
rator symbol ⇒ and concatenated with another formula. For example,

(p, p → (q ∧ r)), q ⇒ p ∨ r

is a sequent, where p, q, r are propositional variables; note the double role of the
parentheses in the formula and the sequent level. In the original formulation the
left-hand side of a sequent (what comes before ⇒) was just a set of formulas, but
it can be taken to be a multiset, or a sequence or a groupoid word (non-associative
sequence) of formulas. This freedom in the choice of the syntactic type of a sequent
is due to the fact that intuitionistic logic has all of the structural rules; the latter
are responsible for the the left-hand side of a sequent behaving like a set, even in
the case when it is formulated under a different syntactic type.

In order to consider substructural systems one needs to identify the structural
rules and separate them both from the syntax of a sequent and from the logical
rules. Depending on the degree of substructurality that one wants to achieve there
is some flexibility in the choice. We will consider the system without any of the
four structural rules of (contraction, weakening, exchange and associativity), so the
left-hand sides of the sequents will be groupoid words (non-associative sequents).
Our approach works also if we consider systems with some structural rules, by
modifying the data type of the sequents.

Another complication introduced by considering sequent calculi is related to the
rule schemes. In Hilbert style systems, one can usually consider a finite number
of axiom and rule schemes expressed over an alphabet of metavariables, for which
formulas can be substituted. Alternatively, the axiom and rule schemes can be
expressed over the propositional variables, and substitution can be encoded in the
definition of a proof. In the Gentzen systems we will consider, the second approach
cannot be applied and even the first one needs modifications. The rule schemes
considered require more types of metavariables (one for formulas, one for non-
associative sequences of formulas, and one for non-associative sequences of formulas
with an extra place-holder). For example, we will differentiate between rules and
metarules (or rule schemes) in the deductive systems. Therefore, we will have
an alphabet P for propositional variables and an alphabet F of metavariables (for
formulas), as well as other alphabets for sequences of formulas etc.



6 NIKOLAOS GALATOS AND HIROAKIRA ONO

We start by specifying the appropriate syntax for the general substructural case.

2.1.1. Groupoid words and sequents. Consider a set Q and distinct symbols ε and
not in Q. We define the set Qγ of groupoid words over the set Q, relative to ε, as

the smallest set such that

• Q ∪ {ε} ⊆ Qγ and
• if x, y ∈ Qγ − {ε}, then (x, y) ∈ Qγ .

Alternatively, we consider the free groupoid 〈FG(Q), ◦〉 over Q and we expand it
by a new element ε subject to the conditions x ◦ ε = ε ◦ x = x, for all x ∈ FG(Q),
in order to obtain the free groupoid with unit 〈FG(Q) ∪ {ε}, ◦, ε〉. We identify
FG(Q) ∪ {ε} with Qγ , and set Qγ = 〈Qγ , ◦, ε〉 becomes the free groupoid with
unit. For example, if Q = {a, b, c}, then

((a, c), ((a, b), a)) = (a ◦ c) ◦ ((a ◦ b) ◦ a) ∈ Qγ ,

but ((a, c), (a, b), a) 6∈ Qγ , since it is a triple. Note that comma and ◦ are almost in-
terchangeable; we simply omit the external parentheses when using ◦ and note that
elements like (a, ε) do not exist. Therefore, Qγ is the set of possibly empty (ori-
ented) binary trees with leaves from Q, or the set of possibly-empty non-associative
sequents of elements from Q. The element ε is called the empty groupoid word.

The set Qα of augmented groupoid words over Q, relative to , is defined to
be the set of all groupoid words over Q ∪ { } with exactly one occurrence of the
element . More precisely, Qα is defined recursively by the clauses

• ∈ Qα and
• if u ∈ Qα, x ∈ Qγ , then u ◦ x, x ◦ u ∈ Qα.

For example, ((a, c), (( , b), a)) ∈ Qα, but ((a, c), (( , b), )) 6∈ Qα.
For u ∈ (Qγ−{ε})∪Qα and x ∈ Qγ−{ε}, we define x◦u = (x, u), u◦x = (u, x)

and u ◦ ε = ε ◦ u = u; we use the same symbol ◦, since it extends the operation in
Qγ . For example, if x = (a, b) and u = (a, ( , a)), then x ◦ u = ((a, b), (a, ( , a)))
and u ◦ x = ((a, ( , a)), (a, b)). Also, x ◦ x = ((a, b), (a, b)).

If u ∈ Qα and v ∈ Qγ ∪Qα, we denote by u[v] the element of Qγ ∪Qα obtained
from u by substituting v for . For example, if x = (a, b) and u = (a, ( , a)), then

u[x] = (a, ((a, b), a)) and u[u] = (a, ((a, ( , a)), a)).

Obviously, u = u[ ] for all u ∈ Qα. Note that for v = ε, u[ε] is evaluated after
all commas in u have been replaced by ◦. So, if u = (a, ( , a)) = a ◦ ( ◦ a), then
u[ε] = a ◦ (ε ◦ a) = (a, a). We set |u| = u[ε]. Essentially, the absolute value of
an element in Qα is the same element (now in Qγ) but without . To make the
operation more explicit we allow ourselves to denote the element u[x] also by u ? x
and x ? u.

An (intuitionistic or single conclusion) sequent over Q or a Q-sequent is an ele-
ment of Qγ×Q. We write the sequent (x, a) as x⇒ a. For example, ((a, c), ((a, b), a))⇒ c
is a sequent. We usually drop the external parentheses of a groupoid word in a se-
quent, so the last sequent will be usually written as (a, c), ((a, b), a)⇒ c.

An inference rule (instance) is a pair r = (S, s), where S ∪ s is a set of sequents.
We usually denote r in fractional notation S

s (r), and put the name of the rule in
parentheses next to the fraction. If S = {s1, s2, . . . , sn}, then we write

s1 s2 · · · sn

s
(r).



SUBSTRUCTURAL LOGICS 7

If S is empty, then r is called axiomatic or an axiom; in fractional notation we leave
the numerator empty.

2.1.2. Propositional formulas. By a propositional (or algebraic) language we under-
stand a pair L = (L, α), where L is a set of connectives and α : L → ω is the arity
function. When α is understood, we often identify L and L. Given a propositional
language L and a countable set P of propositional variables, the set FmL(P), or
simply FmL, of (propositional) formulas over L (and over P) is defined in the usual
way and will play the role of the set Q above in the sequent calculus discussed
below; the set FmL is also called the set of all terms in the context of algebra.
We will be interested in formulas over sublanguages of L = {∧,∨, ·, \, /, 1, 0}; 1
and 0 are constants and all other connectives are binary. In writing formulas, we
abbreviate a ·b to ab, and assume that the priority order of the connectives is as fol-
lows: multiplication (·) is performed first, followed by the division (or implication)
connectives (\ and /) and by the lattice connectives (∧ and ∨). Thus, pq ∧ pr/q is
short for (p · q) ∧ ((p · r)/q), if p, q, r ∈ P.

In the following, we will refer to an FmL-sequent, simply as an L-sequent.

2.1.3. Metasequents and metarules. In the presentation of our sequent calculus,
we need to specify the axioms and the rules of inference. As mentioned before,
the system will have infinitely many rules of inference organized in sets (called
metarules) of rules. Alternatively, a metarule is a syntactic object, of a different
level than that of a rule, that describes all the rules in the set by specifying their
common form. As an example, we mention that (\L)

x⇒ a u[b]⇒ c

u[x ◦ (a\b)]⇒ c
(\L)

in Figure 1 is a metarule for the system GL that includes all the rules of the same
‘form’ as (\L), where a, b, c ∈ FmL, x ∈ (FmL)γ and u ∈ (FmL)α.

To formally define metarules, a necessary complication as we need to syntac-
tically manipulate metarules, we need to define metasequents and metagroupoid
words. The latter are made up from three different sorts of metavariables A (of sort
SA), X (of sort SX) and U (of sort SU), where SA ⊆ SX, the constant ε (of sort SX)
and the operators ◦ : SX × SX → SX and ? : SU × SX → SX (we denote u ? x simply
by u[x]); we assume that the sets A, X and U are pairwise disjoint. In our systems,
we will take the elements of A to have some internal structure; in particular, A
will be the set FmL(F) of L-formulas over a set F (different and disjoint from the
set P of propositional variables). Metagroupoid words are defined as the terms of
sort SX of the above multi-sorted language. For example, u[v[ε] ◦ x] ◦ u[a\b] is a
metagroupoid word, if u, v ∈ U, x ∈ X and a, b ∈ F, but u is not (because it is a
term of sort SU) and u[v] is not even defined. Metasequents are simply sequences of
the form g ⇒ a, where g is a metagroupoid word and a ∈ A. The fact that we used
the same symbols (◦, ? and ε) for the different operators in defining metasequents
and sequents should create no confusion.

A metarule is a pair r = (S, s), where S ∪ s is a set of metasequents. The
same fractional notation conventions used for rules, apply also to metarules. A
rule is said to be an instance of a metarule, if all metavariables from F, X and
U are instantiated to elements of FmL, (FmL)γ and (FmL)α, respectively, and
the metasequent operators ◦, ? and ε are replaced by the corresponding sequent
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operators. For example, if p, q, r are propositional variables, then

p ∧ q, q ⇒ p q, p ∨ r⇒ q ∨ r

q, ((p ∧ q, q), (p\(p ∨ r)))⇒ q ∨ r

is an instance of (\L) for a = p, b = p ∨ r, c = q ∨ r, x = (p ∧ q, q) and u = (q, ).
It should be clear that to express (\L) formally, we need to allow metavariables

a, b in F (to be evaluated as formulas in FmL), while a\b is a formal object in
A = FmL(F) (also eventually to be evaluated in FmL).

2.1.4. The Gentzen system GL. The sequent calculus GL over the language L =
{∧,∨, ·, \, /, 1, 0} is specified by the metarules of Figure 1. Instances of the metarules
are obtained by replacing the metavariables a, b, c by formulas over L, the metavari-
ables x, y by groupoid words in (FmL)γ and u by an augmented groupoid word in
(FmL)α; recall that |u| = u[ε]. In what follows we will use GL to refer to both
the set of metarules specifying it and to the actual set of rules (instances of the
metarules).

With the exception of the first two rules of the system GL, every rule introduces
a connective to the left or right-hand side of a sequent; depending on the side on
which the connective is introduced, we distinguish between left and right rules.
Note that the left rules of GL can be simplified in the presence of cut, but we loose
the cut elimination property. For example, u[a] in (∨L) can be replaced by groupoid
words, where a is a (left or right) outermost formula; to prove the equivalence we
use (\R) and (/R).

If R is a set of metarules, not to be confused with the notation used for right
rules, then GLR denotes the expansion of GL by the metarules from R. The system
GLf

R, called cut-free GLR, is obtained from GLR by removing the metarule (CUT).

2.1.5. Proofs. We define proofs (from assumptions) in GLR, their conclusions and
their (set of) assumptions by mutual induction.

• A sequent is a proof, whose conclusion and assumption is itself.
• A rule s1 s2 ··· sn

s (r) in GLR is a proof, whose conclusion is s and whose
assumptions are s1, s2, . . . sn (more precisely, whose set of assumptions is
{s1, s2, . . . sn}).

• Let Π1,Π2, . . . ,Πn be proofs in GLR with conclusions s1, . . . sn, respec-
tively, and sets of assumptions S1, S2, . . . , Sn, respectively. If s1 s2 ··· sn

s (r)
is a rule in GLR, then Π1 Π2 ··· Πn

s (r) is a proof whose conclusion is s and
whose set of assumptions is S1 ∪ · · · ∪ Sn.

Metaproofs are defined in a similar way, using the obvious notion for schematic
substitution for expressions like u[x]. The following notions have analogues for
metaproofs and metasequents, as well.

We say that a sequent s is provable or derivable in GLR from a set S of sequents,
in symbols S `GLR s, if there is a proof whose conclusion is s and whose set of
assumptions is contained in S. It is easy to see that `GLR is a consequence relation
on the set of sequents; we will call it the deducibility or provability relation of the
Gentzen system.

If s is provable in GLR from an empty set of assumptions, then we simply say
that s is provable in GLR. Proofs from assumptions that have an empty set of
assumptions are simply called proofs.
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x⇒ a u[a]⇒ c

u[x]⇒ c
(CUT)

a⇒ a (Id)

x⇒ a u[b]⇒ c

u[x ◦ (a\b)]⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a u[b]⇒ c

u[(b/a) ◦ x]⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

u[a ◦ b]⇒ c

u[a · b]⇒ c
(·L)

x⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)

u[a]⇒ c

u[a ∧ b]⇒ c
(∧L`)

u[b]⇒ c

u[a ∧ b]⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

u[a]⇒ c u[b]⇒ c

u[a ∨ b]⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨R`) x⇒ b

x⇒ a ∨ b
(∨Rr)

|u| ⇒ a

u[1]⇒ a
(1L)

ε⇒ 1 (1R)

Figure 1. The system GL.

Depending on whether a, b, c are formulas (in FmL) or metavariables for formulas
(in F), the following is an example of a proof or a metaproof in GL.

a⇒ a (Id) b⇒ b
(Id)

a, b⇒ ab
(·R)

a, b⇒ ab ∨ ac
(∨R`)

a⇒ a (Id) c⇒ c
(Id)

a, c⇒ ac
(·R)

a, c⇒ ab ∨ ac
(∨Rr)

a, b ∨ c⇒ ab ∨ ac
(∨L)

a(b ∨ c)⇒ ab ∨ ac
(·L)

2.1.6. Structural rules. The Gentzen system FL is defined in a way similar to GL.
The essential difference is that the left-hand side of an associative sequent is not a
groupoid word, but a sequence (a monoid word) of formulas. Augmented associative
sequences are associative versions of augmented groupoid words, as well, and the
operation ◦ in the definition of metasequents is taken to be associative for associative
metasequents; see [36] for more on FL. With the understanding that they are
defined over different syntactic objects (sequents), the metarules of the systems GL
and FL are the same; the difference lies in the instances of the metarules. Obviously,
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GL is more expressive than FL and it can be shown that FL is equivalent to a
restricted version of GL.

u[(x ◦ y) ◦ z]⇒ a

u[x ◦ (y ◦ z)]⇒ a
(a)

u[y ◦ x]⇒ a

u[x ◦ y]⇒ a
(e)

u[x ◦ x]⇒ a

u[x]⇒ a
(c)

|u| ⇒ a

u[x]⇒ a
(i)

0⇒ a
(o) (w) = (i) + (o)

Figure 2. The basic metarules

Let GLa denote the expansion of GL by the rule (a) of Figure 2; the double
line in (a) means that the metarule can be applied in both directions. Given a
sequent, an associative sequent can be obtained by ignoring the parentheses. It
can be shown that a sequent is provable in GLa iff the corresponding associative
sequent is provable in FL. Actually, GLa is equivalent to FL in the sense of [22].

We refer to the rules of Figure 2 as (global) associativity, exchange, contraction,
integrality or right weakening, and left weakening ; we also refer to the combination
of (i) and (o) as weakening and we denote it by (w). We call these metarules basic.
Note that our basic metarules are different than the ones usually considered. For
example exchange is usually written with the metagroupoid words x, y ∈ X replaced
by b, c ∈ F, respectively. This means that in its application only formulas can be
commuted while commutation of groupoid words is not assumed; we use boldface
(e) for this restricted version of the ‘global’ metarule (e). These rules can also be
applied to FL, yielding the systems FLe and FLe. It can be shown that these two
systems have exactly the same deducibility relation; the same holds for FLf

e and
FLf

e. Nevertheless, even though FLc and FLc have the same deducibility relation,
the systems FLf

c and FLf
c do not. Therefore, it matters whether the metarules

refer to groupoid words or formula metavariables. As for the case of GLa and FL,
the systems GLR∪{a} and FLR are equivalent, for every set R of metarules. In
particular, GLaecw is equivalent to Gentzen’s original system LJ for intuitionistic
logic.

Observe that the basic metarules do not involve any connectives; metarules with
this property are called structural. Basic metarules are special cases of what we will
call simple structural metarules. Recall the formal definition of a metarule from
Section 2.1.3, as well as the special meaning of the sets F,A,X,U. A metagroupoid
word (a term of sort SX) t that involves only ◦ (and not ?) and only metavariables
from X (not from A) will be called simple. In other words, simple metagroupoid
words are groupoid words over the set X of metavariables. For example, (x ◦ y) ◦ x
is such a term, for x, y ∈ X. Fix metavariables u ∈ U and a ∈ F. If t0, t1, . . . , tn are
simple metagroupoid words and t0 is linear (every metavariable occurs once), the
metarule

u[t1]⇒ a · · · u[tn]⇒ a

u[t0]⇒ a
(r)

is called simple.

2.1.7. Decidability and cut elimination. As mentioned above, a is a theorem of intu-
itionistic logic iff `GLaecw ε⇒ a. Therefore, deciding theoremhood in intuitionistic
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logic reduces to deciding provability in GLaecw. Note that with the exception of
(a), (e), (c) and (CUT), all the rules reduce the complexity of a sequent as we
search upwards for a proof. Rules (a) and (e) rearrange the formulas in the se-
quent and can be responsible for an infinite loop in the proof search, but with their
careful application this effect can be controlled without changing provability. The
same can be done, with much more care, for the rule (c) that otherwise increases
the complexity as we search upwards; see [34] for details. The rule (CUT) causes
considerably more complications as it introduces a new formula. Nevertheless, the
system obtained from GLaecw by removing (CUT) has the same provable sequents
as the original one (this holds only for provability without assumptions) and this is
the content of the cut-elimination property originally established by Gentzen. Cut
elimination has been established by proof-theoretic methods for all the systems
GLR, where R is a set of basic rules, see [34], [14]; it is important that we select
the global versions of the simple structural rules, as for example FLc enjoys cut
elimination, but FLc does not. We will present a semantical (algebraic) proof of
this fact in Section 4.2.

2.1.8. The external consequence relation. If B ∪ {c} is a set of formulas, and R is
a set of metarules, we write B `GLR c if {ε⇒ b | b ∈ B} `GLR ε⇒ c. Note the
difference in the position of GLR (superscript or subscript) in the two relations. It
is not hard to see that `GLR is a consequence relation on FmL, called the external
consequence relation of `GLR . We will show that the consequence relations `GLR

and `GLR are actually equivalent in the sense of [22] (see Section 2.2.5 and Appen-
dix A) thus the former can actually be defined in terms of the latter. Moreover, in
the next section we will introduce a Hilbert system and prove that the consequence
relation associated with it is equal to `GL.

2.1.9. Solvability. Given a deductive system D (for example GL) and a sublanguage
K (for example, {∧,∨}) of the language L used in D, we can consider subsystems
of D associated with K. A natural choice for such a subsystem is the set of all the
rules of inference of S that involve connectives only from K plus possibly a fixed set
(for example {\, /}) of basic connectives. Traditionally, implication is such a basic
connective for Hilbert-style systems, since otherwise we would not allow modus
ponens. As long as the set of basic connectives contains · and at least one of \ or
/, then this notion of subsystem behaves well for GL. For example, the external
consequence relation of such a subsystem is equivalent to the consequence relation
of the subsystem. Although, such a definition works well for FL, for a smaller set
of basic connectives (just {\} or {/}), it needs some fine tuning for GL, so as to
yield the desired results (equivalence with the external relation and the associated
Hilbert system) for such a small set of basic connectives.

To motivate the definition of a subsystem of GL, we mention the following. In
order to prove the equivalence between the deducibility relation of a subsystem of
GL and its external consequence relation, or the deducibility relation of the corre-
sponding subsystem of the Hilbert system to be introduced, it is necessary to be able
to translate (transform) a sequent into a formula. In the presence of · and at least
one of \ or /, we can translate a sequent x⇒ a into the formula φ(x)\a, or a/φ(x),
where φ(x) is the formula obtained from the groupoid word x by replacing all oc-
currences of ◦ by ·; this works essentially because the sequents x⇒ a, ε⇒ φ(x)\a
and ε⇒ a/φ(x) are mutually derivable in (the {·, \, /} subsystem of) GL. If we
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lack multiplication, the translation is still possible in the case of FL; we simply
translate the sequent a1, a2, . . . an ⇒ a to the formula an\ . . . (a2\(a1\a)); note that
the order is reversed. Again this works because the sequents a1, a2, . . . an ⇒ a and
ε⇒ an\ . . . (a2\(a1\a)) are mutually derivable in (the {\} subsystem of) FL. Un-
fortunately, because of the lack of associativity, the same is not possible for GL.
For example, there is no sequent of the form ε⇒ f that is mutually derivable with
the sequent (a, b), (c, d)⇒ e in the multiplication-free subsystem of GL. It is, there-
fore, necessary to identify the actual subsystem of GL whose deducibility relation
is equivalent to its external consequence relation.

We define the set of solvable groupoid words inductively:

(1) Every element in Q ∪ {ε} is a solvable groupoid word.
(2) If x is a solvable groupoid word and a ∈ Q, then x◦a and a◦x are solvable

groupoid words.

For example the groupoid word (a, (((a, b), c), d)) is solvable, but (((a, b), c), (a, b))
is not. Thus, solvable groupoid words over formulas are exactly the ones that
can be translated into a formula, namely they are exactly the right hand-sides
of sequents that can be solved [by means of the rules (\R) and (/R)] for ε on
the left hand side without using multiplication. Note that a, (((a, b), c), d)⇒ e is
solvable into (i.e., mutually derivable in the multiplication-free subsystem of GL
with) ε⇒ ((((a\e)/d)/c)/b)/a. The ‘solution’ is not unique;

ε⇒ a\((((a\e)/d)/c)/b) and ε⇒ (a\(((a\e)/d)/c))/b

are solutions, as well, obtained by a different order of application of the rules
(\R) and (/R). Nevertheless, ε⇒ (a\(c\((a\e)/d)))/b is not a solution, as the only
freedom is given after the step a, b⇒ ((a\e)/d)/c. Note that the term tree (the tree
associated with a term) corresponding to a solvable groupoid word has a distinct
shape; there is a main branch such that only leaves stem out of it.

We define the set of solvable augmented groupoid words over a set Q inductively:

(1) The constant is a solvable augmented groupoid word.
(2) If u is a solvable augmented groupoid word and a ∈ Q, then u ◦ a and a ◦ u

are solvable augmented groupoid words.

For example, the augmented groupoid words (a, ((( , a), c), d)) and (a, (((b, ), c), d))
are solvable, but (a, (((a, b), ), d)) and (((a, ), c), (a, b)) are not. Thus, solvable
augmented groupoid words over formulas are exactly the right hand-sides of (aug-
mented) sequents that can be solved for on the left hand side without using mul-
tiplication. Here the solution is unique; for example the unique solution to the aug-
mented sequent (a, (((b, ), c), d))⇒ e is the augmented sequent ⇒ b\(((a\e)/d)/c).
Here we used the term augmented sequent for a sequent that allows on the left-
hand side.

Left solvable (augmented) groupoid words are defined in a similar way, if in
(2) we allow only a ◦ x (a ◦ u) to be left solvable. A groupoid word is left solv-
able iff it is completely associated to the right. For example the groupoid word
(a, (a, (a, a))) is left solvable, but ((a, (b, a)), a) is not. The augmented groupoid
word (a, (a, (b, ))) is left solvable, but (a, (a, ( , a))) is not. Note that left solv-
able (augmented) groupoid words are exactly the ones that are solvable by using
only the left division operation \. For example, (a, (a, (b, a)))⇒ c is left-solvable
into ε⇒ a\(b\(a\(a\c))) and (a, (a, (b, )))⇒ c is left-solvable into ⇒ b\(a\(a\c)).
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Obviously, every left solvable groupoid word is solvable. Likewise, we define right
solvable (augmented) groupoid words.

According to the connectives needed for solving a groupoid word, the latter is
called fit with respect to the corresponding connectives. More precisely, let K be
a sublanguage of L that contains at least one of the connectives \ and /. An
(augmented) groupoid word x is called fit for K or an (augmented) K-groupoid
word, if it involves only connectives contained in K and the following conditions are
satisfied:

(1) If K does not contain ·, then x is solvable.
(2) If K contains neither · nor /, then x is left solvable.
(3) If K contains neither · nor \, then x is right solvable.

For example, ((((p∧ q\p, p), q∧ p), p), q) is fit for {\,∧, /}, but not for {\,∧}. Also,
(((p ∧ q\p, p), q ∧ p), (p, q)) is fit for {\,∧, ·}, but not for {\,∧, /}.

We denote by QγK and QαK the sets of groupoid and augmented groupoid words
over Q fit for K. A sequent x⇒ a is called fit for K or a K-sequent, if x is a
K-groupoid word and a is a K-formula.

As explained above a sequent calculus can be specified by a set of metarules
together with a way to obtain their instances; to define the subsystems of GL,
we restrict the instances of the metarules of GL. If K is a sublanguage of L that
contains at least one of the connectives \ and /, then the K-subsystem KGL of GL
is specified by the metarules of GL that do not involve connectives outside of K;
the allowed instances of those metarules are ones in which all the resulting sequents
are fit for K. For example, the instance

(c, d), (a, f) ⇒ e

(c, d), (a ∧ b, f) ⇒ e

of the rule (∧L`) is not included in {∧, \, /}GL, because the sequents involved are
not solvable and multiplication is not included in the language.

The consequence relations `KGL and `KGL, for different choices of K, are defined
in the obvious way. Recall that if R is a set of metarules, then GLR denotes the
system obtained from GL by adding the set R. If K is a sublanguage of L that
contains \, the system KGLR, is obtained by adding to the rules of KGL all rules
that are instances of the metarules in R so that all the resulting sequents are fit for
K.

In the case of FL the K-subsystem KFL does not put any restrictions on the
instances of the metarules, since in all instances the resulting sequents are fit for a
sublanguage K that contains at least one of the connectives \ and /.

2.2. Hilbert systems. In this section we will define a Hilbert-style system HL
with deducibility relation equivalent to the relation `GL. The system contains
(infinitely) many rules (schemes) of inference, but it enjoys the strong separation
property (with respect to {\}), which states that for every proof only the rules
that involve the connectives in the assumptions and the conclusion (and possibly
\) are needed in the derivation. In Section 4.5, we present extensions of HL (to the
associative, commutative and other cases) which also enjoy the strong separation
property; see also Lemma 4.20. We first present simplified versions HL′ae (Figure 3)
and HL′a (Figure 4) of HL that correspond to FL and FLe, but do not have the
strong separation property.
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(id) α → α (identity)
(pf) (α → β) → [(δ → α) → (δ → β)] (prefixing)

(per) [α → (β → δ)] → [β → (α → δ)] (permutation)
(·∧) [(α ∧ 1)(β ∧ 1)] → (α ∧ β) (fusion conjunction)

(∧ →) (α ∧ β) → α (conjunction implication)
(∧ →) (α ∧ β) → β (conjunction implication)
(→ ∧) [(α → β) ∧ (α → δ)] → [α → (β ∧ δ)] (implication conjunction)
(→ ∨) α → (α ∨ β) (implication disjunction)
(→ ∨) β → (α ∨ β) (implication disjunction)
(∨ →) [(α → δ) ∧ (β → δ)] → [(α ∨ β) → δ] (disjunction implication)
(→ ·) β → (α → αβ) (implication fusion)
(· →) [β → (α → δ)] → (αβ → δ) (fusion implication)

(1) 1 (unit)
(1→) 1 → (α → α) (unit implication)

α α → β

β
(mp)

(modus ponens)

α
α ∧ 1 (adju)

(adjunction unit)

Figure 3. The system HL′ae.

2.2.1. The Hilbert system sHL. The Hilbert-style system sHL is an equivalent
variant of HL with finitely many rules. It enjoys the strong separation property for
signatures that contain ∧ whenever they contain ∨ (Corollary 2.4), but does not
have the property for other signatures. We introduce the systems HL′ae, HL′a and
sHL before HL, as the latter is more complicated.

The system sHL is specified by the metarules of Figure 5. To define (Hilbert-
style) metarules formally, as before let F be the set (disjoint from the set P of
propositional variables) of formula metavariables and let A be the set of all L-
formulas over F. A Hilbert-style metarule is a pair (S, s), where S ∪{s} is a subset
of A. An instance of a metarule is obtained by replacing elements of F by formulas
in FmL(P ).

If (r) is a simple structural metarule involving the simple metagroupoid words
t0, t1, . . . , tn (see Section 2.1.6) then we define the axiom tFmL

0 \(tFmL
1 ∨· · ·∨ tFmL

n );
here tFmL denotes the formula resulting from t by replacing ◦ by ·. If R is a set
of simple structural metarules, then sHLR denotes the expansion of sHL by the
axioms corresponding to R.

Given a sequent x⇒ b, we define the formula φ(x⇒ b) = φ(x)\b, where φ(x) is
the formula obtained by replacing ◦ by · in x. If S is a set of sequents we define
φ[S] = {φ(s) | s ∈ S}. If a ∈ FmL, we define the sequent s(a) = (ε⇒ a) and if B
is a set of formulas, we define s[B] = {s(b) | b ∈ B}.

Theorem 2.1. Let S ∪ {s} be a set of sequents, let B ∪ {c} be a set of formulas
and let R be a set of simple structural rules. Then

(1) S `GLR s iff φ[S] `sHLR φ(s).
(2) B `sHLR c iff s[B] `GLR s(c).
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(id`) α\α (identity)
(pf`) (α\β)\[(δ\α)\(δ\β)] (prefixing)

(as``) α\[(β/α)\β] (assertion)
(a) [(β\δ)/α]\[β\(δ/α)] (associativity)

(·\/) [(β(β\α))/β]\(α/β) (fusion divisions)
(·∧) [(α ∧ 1)(β ∧ 1)]\(α ∧ β) (fusion conjunction)
(∧\) (α ∧ β)\α (conjunction division)
(∧\) (α ∧ β)\β (conjunction division)
(\∧) [(α\β) ∧ (α\δ)]\[α\(β ∧ δ)] (division conjunction)
(\∨) α\(α ∨ β) (division disjunction)
(\∨) β\(α ∨ β) (division disjunction)
(∨\) [(α\δ) ∧ (β\δ)]\[(α ∨ β)\δ] (disjunction division)
(\·) β\(α\αβ) (division fusion)
(·\) [β\(α\δ)]\(αβ\δ) (fusion division)
(1) 1 (unit)

(1\) 1\(α\α) (unit division)
(\1) α\(1\α) (division unit)

α α\β
β

(mp`)
α

α ∧ 1
(adju)

α

β\αβ
(pn`)

α

βα/β
(pnr)

(modus ponens) (adjunction unit) (product normality)

Figure 4. The system HL′a.

a\a (I`)
a a\b

b
(MP`)

a\b
(c\a)\(c\b) (Rd\) a\b

(b\c)\(a\c) (Rn\) a

(a\b)\b (N`)

a\[(b/a)\b] (As``)
a\(b\c)
b\(c/a)

(RAr`)
b\a
a/b

(RCr)

(a ∧ b)\a (ME`)
(a ∧ b)\b (MEr)

a b

a ∧ b
(RM)

[(a\b) ∧ (a\c)]\[a\(b ∧ c)]
(M\)

a\(a ∨ b)
(JI`)

b\(a ∨ b)
(JIr)

[(a\c) ∧ (b\c)]\[(a ∨ b)\c] (J\)
[(c/a) ∧ (c/b)]\[c/(a ∨ b)]

(J/)

b\(a\ab)
(PI)

b\(a\c)
ab\c (RPI)

1
(1)

1\(a\a)
(I1`)

a\(1\a)
(I1r)

Figure 5. The system sHL

(3) s(φ(s)) a`GLR s.
(4) φ(s(c)) a`sHLR c.
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Theorem 2.2. The strong separation property holds for the system sHL, provided
that if the language contains ∨, it also contains ∧.

The proofs of Theorems 2.1 and 2.2 are similar to the proofs of Theorem 2.3
(see Appendix A) and Corollary 4.19, and are left to the reader. A result related
to Theorem 2.1 on the (weak) separation property was shown in [37] for a Hilbert
system equivalent to FLw.

We mention that the rules (MP`) and (N`) are in the current forms because of
the presence of 1. The same applies to (RCr). (As``) is a non-commutative version
of the assertion axiom. Non-commutativity dictates the existence of the rules (N`)
and (RCr). (RAr`) is needed because of the absense of associativity. (Rd\) needs
to be stated in a non-axiom form because the corresponding axiom of prefixing
implies associativity.

2.2.2. Definable connectives. Since we want the strong separation property to hold
(see Section 4.5) for the Hilbert-style system HL we need enough rules for each
connective. A main difficulty is presented when a set of connectives under consid-
eration contains ∨, but not ∧. In order for the strong separation property to work
for this case we need an infinite set of rules organized in two metarules (RJ\) and
(RJ/) (see Figure 6). To express these metarules, we need to introduce a definable
connective  K, for each set of connectives K. We will introduce the necessary
notation for the definition of HL in this section.

Recall from the discussion on the subsystems of GL that we have a choice on
representing the sequent x⇒ a by either one of the formulas φ(x)\a and a/φ(x).
In case that we have exactly one of the division connectives in our sublanguage
K together with multiplication, then there is no choice, but if we have both con-
nectives, then we need to be consistent which of the two formulas to consider.
Moreover, if x is a solvable groupoid word there are multiple ‘solutions’ involving
the division operations in addition to the two formulas mentioned above. Therefore,
we fix a representation φK(x⇒ b) for the sequent x⇒ b, relative to the different
sublanguages K, and this will be exactly what we will define x K b as follows.

Let Q be the set of all L formulas over an alphabet that can be either the set P
of propositional variables, or the set F of formula metavariables; so Q = FmL(P)
or Q = FmL(F) (we will need both cases for discussing rules and metarules). First
we define the depth d(x) of a groupoid word x ∈ Qγ by induction:

• d(ε) = −1, d(a) = 0, for a ∈ Q, and
• d(x ◦ y) = 1 + max{d(x), d(y)}, for x, y ∈ Qγ .

Now, given a sublanguage K of L that contains \, and a (meta)sequent x⇒ b
(x ∈ Qγ and b ∈ Q) fit for K, we define x K b as follows. Here we assume that if
x⇒ b is a metasequent, then x is simple.

If K contains multiplication, then x  K b = φ(x)\b, where φ(x) is the formula
obtained from the groupoid word x by replacing all occurrences of ◦ by ·. For
example, ((a, (b, c)), ((d, e), f)) {\,·,∧} g = ((a(bc))((de)f))\g.

If K does not contain multiplication (and hence x is solvable), then x  K b is
defined by induction on x:

• ε K b = b;
• for a ∈ Q, a K b = a\b;
• for x, y ∈ Qγ , (x ◦ y)  K b = y  K (φ(x)\b) when d(x) ≤ d(y), and

(x ◦ y) K b = x K (b/φ(y)) otherwise.
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Note that in the last case at least one of x, y is in Q. By this definition we give pref-
erence to \ relative to /. For example, (a, ((d, e), f)) {\,/,∧} g = e\(d\((a\g)/f)),
not (d\((a\g)/f))/e.

Note that x K b is always a ‘solution’ of the sequent x⇒ b. Also, the outermost
element of Q in x  K b is the rightmost of all occurrences of subformulas of x of
maximum depth. Moreover, if K contains neither multiplication nor / (and hence
x is left solvable), then x  K b contains neither multiplication nor /. In general,
x K b is always a K-formula.

2.2.3. Hilbert-style metarules. In order to introduce a new type of metarules, in-
cluding (RJ\) and (RJ/), we need to modify the definition of metarules for a Hilbert
system. As before, let F be the set (disjoint from the set P of propositional vari-
ables) of formula metavariables and let A be the set of all L-formulas over F. Also,
let A′ be the set A together with all formal expressions of the form x M b, where
x and  M are new symbols and b ∈ A. A Hilbert-style metarule is a pair (S, s),
where S ∪ {s} is a subset of A′. An instance of a metarule is obtained by replacing
elements of F by formulas in FmL(P), and all expressions of the form z  M b by
the formulas obtained by replacing M by a sublanguage of L that contains \, and
z by a solvable element of (FmL(P))γ that is fit for M.

2.2.4. The Hilbert system HL. The Hilbert system HL consists of the following
metarules, where a, b, c denote formulas; for the rules (RJ\) and (RJ/), M ranges
over all sublanguages of L that contain \, and z ranges over all solvable groupoid
words over formulas fit for M.

a\a (I`)
a a\b

b
(MP`)

a\b
(c\a)\(c\b) (Rd\) a\b

(b\c)\(a\c) (Rn\) a

(a\b)\b (N`)

a\[(b/a)\b] (As``)
a\(b\c)
b\(c/a)

(RAr`)
b\a
a/b

(RCr)

(a ∧ b)\a (ME`)
(a ∧ b)\b (MEr)

a b

a ∧ b
(RM)

[(a\b) ∧ (a\c)]\[a\(b ∧ c)]
(M\)

a\(a ∨ b)
(JI`)

b\(a ∨ b)
(JIr)

z  M (a\c) z  M (b\c)
z  M [(a ∨ b)\c] (RJ\) z  M (c/a) z  M (c/b)

z  M [c/(a ∨ b)]
(RJ/)

b\(a\ab)
(PI)

b\(a\c)
ab\c (RPI)

1
(1)

1\(a\a)
(I1`)

a\(1\a)
(I1r)

Figure 6. The system HL

The de Morgan style axioms (J\) and (J/) of sHL are replaced in HL by the
rules (RJ\) and (RJ/), which are important to the proof of the strong separation
property (Theorem 2.3).

Also, note that for every sublanguage K of L that contains the connective \ and
for every formula a, a a`K−HL (a\a)\a; (N`) justifies one direction, and (I`) and
(MP`) justify the other.
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It is possible to replace some of the rules by the following
c

ab\a(cb)
(N1)

c

a\[(ab)c/b]
(N2)

c

[a\(ab)c]/b
(N3)

However, this simplification destroys the strong separation property, as multiplica-
tion is needed for these rules.

Given a sublanguage K of L that contains the connective \ , the the K-subsystem
KHL of HL is defined to be the Hilbert system containing only the rules of HL
that involve connectives over K.

The notion of a (meta)proof with assumptions in a Hilbert system is similar to
that in a sequent calculus. The only difference is that instead of (meta)sequents,
we have (meta)formulas. If a formula c is provable in KHL from assumptions B,
then we write B `KHL v.

A simple structural metarule (r) is called fit for K, if ti is fit for K for every i.
If (r) is fit for K, then we define the Hilbert rule (for a fixed b ∈ F)

t1  K b . . . tn  K b

t0  K b
h(r)

If R is a set of simple structural metarules, then KHLR denotes the extension of
HL by the rules h(r).

2.2.5. Equivalence. Given a sublanguage K of L that contains the connective \ and
a sequent x⇒ b fit for K, we define the formula φK(x⇒ b) = x K b. If S is a set
of sequents we set φK[S] = {φK(s) | s ∈ S}.

Recall that if a ∈ FmL, we define the sequent s(a) = (ε⇒ a) and if B is a set
of formulas, we define s[B] = {s(b) | b ∈ B}.

Theorem 2.3. Let S∪{s} be a set of sequents, K a sublanguage of L that contains
\, B ∪{c} a set of K-formulas and R a set of simple structural metarules fit for K.
Then

(1) S `KGLR s iff φK[S] `KHLR φK(s).
(2) B `KHLR c iff s[B] `KGLR s(c).
(3) s(φK(s)) a`KGLR s.
(4) φK(s(c)) a`KHLR c.

In the terminology of [22], the theorem states that the two consequence relations
are equivalent under the above transformations.

As the proof of Theorem 2.3 is long and would interrupt the flow of the paper we
include it, together with the necessary lemmas, in Appendix A (see Corollary A.5).

Corollary 2.4. The results of Theorem 2.3 hold also for sHL in place of HL, for
signatures K that contain ∧ whenever they contain ∨.

Proof. It suffices to show that, for signatures that contain ∧ whenever they contain
∨, the rules (RJ\) and (RJ/) can be replaced by the axioms (J\) and (J/).

It is clear that in the presence of ∧ in the signature the rules imply the axioms,
by instantiating z = (a\c) ∧ (b\c). For the converse, starting from the axioms and
using repeatedly (Rd\) and its companion version (Rd/), which is shown to be
derivable (Lemma A.2 in Appendix A), we can obtain

{z  K [(a\c) ∧ (b\c)]}\{z  K [(a ∨ b)\c]}.
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Note that
{[z  K (a\c)] ∧ [z  K (b\c)]}\{z  K [(a\c) ∧ (b\c)]}

is provable by using (RM K), (ME`), (MEr) and (MP`), so by (T`) we get

{[z  K (a\c)] ∧ [z  K (b\c)]}\{z  K [(a ∨ b)\c]}.
Rules (RM K) and (T`) are derived in Lemma A.2 in Appendix A. By a combi-
nation of (ME`), (MEr) and (MP`) we obtain (RJ\). �

Theorem 2.5. There is no Hilbert-style system with finitely many rule schemes
that is equivalent to HL and has the strong separation property.

Proof. By way of contradiction assume that there is a Hilbert-style system H with
finitely many rule schemes that is equivalent to HL and has the strong separation
property. Then the same holds for the extension Hi of H by the axiom a\(b\a).
Put differently, the consequence relation `Hi is finitely axiomatizable. In particular,
the {\,∨}-fragment of `Hi

is finitely axiomatizable. However, Corollary 3.6 of [42]
shows that this fragment is not finitely axiomatizable. �

It is obvious that in HL the role of \ is different than that of /. Nevertheless, if we
interchange the roles of the two division operation, by interchanging all occurrences
of a\b with b/a, then we obtain rules that are derivable in HL; these rules are
called opposite. Recall that a rule is called derivable if the deducibility relation
of the system expanded by the rule is the same as the original one. If we include
these opposite rules (and axioms) we obtain an equivalent Hilbert system that is
symmetric with respect to the two division operations. All the statements, like
Theorem 2.3, that we have made for HL and \ hold for the new system with
respect to either of the division operations.

2.3. Algebraic presentations of sequent systems. Sequent systems that do
not contain ◦ and do not allow an empty left hand side (in other words the left-
hand side is always a single formula) are called algebraic. Usually, we write ≤ for
⇒ and we refer to sequents as inequalities. These systems have the advantage that
groupoid words can be avoided and they deal only with formulas, so the syntax is
much easier to handle.

In the following we introduce the algebraic systems PL (Figure 7) and ML
(Figure 8) considered in [27] and [26], respectively. Both of them are equivalent
to GL and enjoy the cut elimination property. The cut elimination property was
established semantically for PL in [27] and using proof theoretic methods for ML
in [26]. For more on these systems, see [17]. Computation in PL closely parallels
that of GL. On the other hand, ML has two bidirectional rules and is reminiscent
of display calculi. The system ML is very convenient for algebraic calculations.

If s is a sequent, we denote by s• the sequent (inequality) resulting from s by
replacing ◦ by · and ε by 1. Also, we denote by s◦ the sequent resulting from
s by replacing all external occurrences of · in the left-hand side of S by ◦; here
an occurrence of · in a formula is called external if all connectives in the formula
tree above the particular occurrence of · are also ·. For example, we replace the
inequality (p · q) · [(p · q) ∨ r)] ≤ p · q by the sequent (p ◦ q) ◦ [(p · q) ∨ r)]⇒ p · q.

Theorem 2.6. The systems GL and PL are equivalent. In particular, for every
set of sequents S ∪ {s},

• S `GL s iff S• `PL s•.
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a ≤ b u[b] ≤ c

u[a] ≤ c
(cut)

a ≤ a
(id)

a ≤ b c ≤ d

ac ≤ bd
(·r)

a ≤ b u[c] ≤ d

u[a(b\c)] ≤ d
(\l) ab ≤ c

b ≤ a\c
(\r)

a ≤ b u[c] ≤ d

u[(c/b)a] ≤ d
(/l)

ab ≤ c

a ≤ c/b
(/r)

u[a] ≤ c

u[a ∧ b] ≤ c
(∧l`)

u[b] ≤ c

u[a ∧ b] ≤ c
(∧lr) a ≤ b a ≤ c

a ≤ b ∧ c
(∧r)

u[a] ≤ c u[b] ≤ c

u[a ∨ b] ≤ c
(∨l) a ≤ b

a ≤ b ∨ c
(∨r`)

a ≤ c

a ≤ b ∨ c
(∨rr)

|u| ≤ a

u[1] ≤ a
(1l) a ≤ b

a ≤ 1b
(1r`)

a ≤ b

a ≤ b1
(1rr)

Figure 7. The system PL.

• s a`PL s◦• (actually, s = s◦•).
The same holds for the systems involving fragments of the language that contain
multiplication and 1, where the rule instance are restricted appropriately.

Proof. If we are given a proof of s in GL from assumptions S, we replace every
sequent t by the inequality t• and contract all applications of (·L). Also, the axiom
(1R) by an instance of (id). The resulting proof figure is obviously a proof in PL.

Conversely, given a a proof of s in PL from assumptions S, we first replace
every inequality t by t◦ in the proof. The resulting proof figure might not be a
proof in GL. For example, if an application of the rule (\r) in the original proof
has assumption (ab)c ≤ d and conclusion c ≤ (ab)\d, then the translation will
yield a rule step with assumption (a ◦ b) ◦ c⇒ d and conclusion c⇒ (ab)\d; this
is not an instance of the rule (\R), but it is the combination of (·L), which yields
(a · b) ◦ c⇒ d, and of (\R). Therefore, in the proof figure, we insert applications
of (·L) before applications of the rules (\R) and (/R), so that x (in these rules)
becomes a formula. Likewise, for (1r`) and (1r`), we use (1R) and (·R). Also, for
the axioms in the original proof we provide proofs in GL from axioms of the form
(Id) applied to formulas. It is not difficult to verify that the resulting proof figure
is a proof of s◦ in GL from S◦.

Finally, by using (cut) it is easy to see that s a`GL s•◦. �

Moreover, the following relation holds between the cut-free systems: `GLf s iff
`PLf s•. The idea is, by moving from bottom upward, in every occurrence of (\r)
and (/r) to replace ab with a ◦ b and propagate this change all the way up in the
proof. Moreover, we replace every occurrence of (\l) by an application of (\L) to
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a ≤ b b ≤ c
a ≤ c

(tr)
a ≤ a

(id)
a ≤ b c ≤ d

ac ≤ bd
(·)

a ≤ b c ≤ d

b\c ≤ a\d
(\o)

ab ≤ c

b ≤ a\c
(\res)

a ≤ b c ≤ d

c/b ≤ d/a
(/o)

ab ≤ c

a ≤ c/b
(/res)

a ≤ c

a ∧ b ≤ c
(∧lt`)

b ≤ c

a ∧ b ≤ c
(∧ltr)

a ≤ b a ≤ c

a ≤ b ∧ c
(∧rt)

a ≤ c b ≤ c

a ∨ b ≤ c
(∨lt)

a ≤ b

a ≤ b ∨ c
(∨rt`)

a ≤ c

a ≤ b ∨ c
(∨rtr)

a ≤ c b ≤ 1
ab ≤ c

(1r`)
a ≤ 1 b ≤ c

ab ≤ c
(1rr)

a ≤ b 1 ≤ c

a ≤ bc
(1r`)

1 ≤ b a ≤ c

a ≤ bc
(1rr)

Figure 8. The system ML.

get u[a ◦ (b\c)]⇒ d and an application of (·L) to get u[a · (b\c)]⇒ d; likewise, we
modify the occurrences of (/l). Similarly, every application of (·r) is replaced by
an application of (·R), followed by an application of (·l). Finally, we replace every
occurrence of (1l) by an application of (1L) to get u◦[1]⇒ d and an application of
(·L) to get u[1]⇒ d; here u◦ is the same as u, except that the · next to is replaced
by ◦.

3. Semantical consequence relations

3.1. Residuated lattice-ordered groupoids with unit. A residuated lattice-
ordered groupoid with unit or r`u-groupoid, is an algebra L = 〈L,∧,∨, ·, \, /, 1〉
such that

• 〈L,∧,∨〉 is a lattice,
• 〈L, ·, 1〉 is a groupoid with unit, and
• a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c, for all a, b, c ∈ L.

We will often assume that the language contains an additional constant 0, of
which nothing is assumed. Here ≤ is the order relation associated with the lat-
tice 〈L,∧,∨, 〉; so, a ≤ b stands for a = a ∧ b. Note that x/y = max{z | zy ≤ x}
and y\x = max{z | yz ≤ x}. The class RLUG of all r`u-groupoids is an equational
class; i.e., the class of models of a set of equations. In particular, the identities

x ≈ x ∧ ((xy ∨ z)/y), x(y ∨ z) ≈ xy ∨ xz, (x/y)y ∨ x ≈ x,
y ≈ y ∧ (x\(yx ∨ z)), (y ∨ z)x ≈ yx ∨ zx, y(y\x) ∨ x ≈ x.
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together with the lattice and the unit identities form an axiomatization for it.
Consequently, RLUG is a variety ; i.e., a class of algebras closed under taking subal-
gebras, homomorphic images and direct products of the algebras in the class. For
basic results and terminology in universal algebra, see [9].

Lemma 3.1. If x, y, yi, where i ∈ I, are elements of a r`u-groupoid and
∨

yi,
∧

yi

exist, then
(1) x(

∨
yi) =

∨
(xyi) and (

∨
yi)x =

∨
(yix)

(2) (
∧

yi)/x =
∧

(yi/x) and x\(
∧

yi) =
∧

(x\yi)
(3) x/(

∨
yi) =

∧
(x/yi) and (

∨
yi)\x =

∧
(yi\x)

(4) (x/y)y ≤ x and y(y\x) ≤ x
(5) x/1 = x = 1\x
(6) 1 ≤ x/x and 1 ≤ x\x.

A residuated lattice, or residuated lattice-ordered monoid, is an associative r`u-
groupoid. A residuated lattice is called commutative, if its underlying monoid is
commutative. We denote by RL and CRL the varieties of residuated lattices and
commutative residuated lattices, respectively. A residuated lattice is commutative
iff x\y = y/x for all elements x, y; we denote the common value by x → y.

Lemma 3.2. If x, y, z are elements of a residuated lattice, then
(1) x(y/z) ≤ xy/z and (z\y)x ≤ z\yx
(2) (x/y)/z = x/zy and z\(y\x) = yz\x
(3) x\(y/z) = x\(y/z)

For more on residuated lattices and r`u-groupoids, see [7], [27] and [18].

3.2. Logical matrices. Logical matrices are pairs of an algebra and a set and
can been used to define logics in the setting of algebraic logic. Here we generalize
the standard matrices in two directions. We will generalize the notion of a logical
matrix to allow for pairs of a partial algebras and a sets. Also, together with the
algebra, we will consider a set that is not a subset of the underlying set of the
(partial) algebra, but a set of more complex objects.

3.2.1. Multidimensional matrices. We start by reviewing the standard notion of
a logical matrix. Recall that if L is a propositional (or algebraic) language, as
considered in Section 2.1.2, then an L-algebra is a structure A = 〈A, (fA)f∈L〉,
where A is a set and for every f ∈ L of arity α(f), fA is an operation on A of
arity α(f); we also write LA or LA for (fA)f∈L, and A = 〈A,LA〉. Sometimes,
we omit the superscript A from fA and write A = 〈A,L〉. If L = {f1, . . . , fn}, we
usually write A = 〈A, f1, . . . , fn〉. Also, recall that if A and B are L-algebras, then a
homomorphism from A to B, in symbols h : A → B, is a map h : A → B, such that
for every f ∈ L and a ∈ Aα(f), h(fA(a)) = fB(h(a)), where f(a) = (f(ai))1≤i≤α(f)

and h(a) = (h(ai))1≤i≤α(f), for a = (ai)1≤i≤α(f).
If P is the set of propositional variables, usually taken to be infinitely countable,

then FmL(P) = 〈FmL(P), L〉 is an L-algebra, called the absolutely free L-algebra
over P or the L-formula algebra over P; we often write simply FmL. An assignment
(from FmL(P)) to an L-algebra A is an arbitrary map f : P → A. Such a map
extends uniquely to a homomorphism f : FmL → A.

A (1-dimensional) L-matrix is a pair A = (A, S), where A is an L-algebra and
S ⊆ A. The elements of S are called designated or true elements of A. For every
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subset B ∪ {c} of FmL, we write B |=〈A,S〉 c (or (B, c) ∈ |=〈A,S〉) if, for every
homomorphism f : FmL → A, h[B] ⊆ S implies h(c) ∈ S, where h[B] = {h(b) | b ∈
B}. If M is a class of L-matrices, then |=M is defined to be the intersection of all
relations |=A, over all A ∈ M. It is easy to see that |=M is a consequence relation
on FmL.

The L-matrix A = 〈A, S〉, is called a matrix model of a consequence relation
` on FmL, if ` ⊆ |=A; in this case S is called a deductive filter for ` (or a `-
filter) of A. A class M of matrices is called a matrix semantics for a consequence
relation `, if ` = |=M. For example, if B is a Boolean algebra and `CPL is the
deducibility relation of Classical Propositional Logic, then 〈B, {1B}〉 is a matrix
model of `CPL. It is well known that `CPL = |=〈2,{}〉, where 2 is the two-element
Boolean algebra. So, {〈2, {1}〉} and {〈B, {1B}〉 |b ∈ BA}, where BA is the class of
all Boolean algebras, are matrix semantics for `CPL. See [16] for more on matrices.

Generalizations of 1-dimensional matrices include n-dimensional ones. An n-
dimensional L-matrix is a pair A = 〈A, S〉, where A is an L-algebra and S⊆An.
For every subset B∪{c} of (FmL)n, we define B |=A c iff, for every homomorphism
h : FmL → A, h[B]⊆S implies h(c)∈S; here h(c) is defined coordinatewise. It
is clear that the 1-dimensional L-matrix 〈An, S〉 has exactly the same information
content with A. If M is a class of n-dimensional L-matrices, the relation |=M is
defined in the obvious way. Clearly, |=M is a consequence relation on (FmL)n, or
an n-dimensional consequence relation on FmL.

If A is an L-algebra, then the 2-dimensional L-matrix 〈A,=A〉, where =A de-
notes the equality relation on A, plays a special role and we simply write |=A for
|=〈A,=A〉; we refer to elements of (FmL)2 as L-equations and to the elements of =A

as true equalities. In detail, if A is an L-algebra and E∪{ε0} is a set of L-equations,
then we write E |=A ε0 iff for every homomorphism f : FmL → A, if f(ε) is true
for all ε ∈ E, then f(ε0) is true, as well. Similarly, if K is a class of L-algebras, we
write |=K for the relation defined relative to the corresponding class of matrices.

Another example of 2-dimensional L-matrices are ordered algebras 〈A,≤A〉. The
elements of ≤A are called true inequalities.

3.2.2. Sequent matrices. We, now, want to capture the notion of a true sequent
over an algebra. The way to do this is to define as a sequent matrix a pair of an
algebra A and a set of sequents over A, namely a subset of Aγ × A, designated
as true sequents. We mention that this notion of a matrix does not fit into the
definition of an n-dimensional matrix, because we have an unbounded number of
different dimensions and because n-dimensional matrices presuppose the presence
of associativity.

Although this definition completely captures the intented meaning of the terms,
we will need it to be more general for technical reasons. For example, we will want to
concentrate on only some of all possible sequents, when we discuss a K-subsystem of
GL; in this case we will allow only sequents fit for K to be considered. In a different
direction, to prove the strong separation property for HL, which will be discussed
in Section 4.5, we will need to considerer the set of subformulas of a set of formulas
and view it as a partial subalgebra of FmL. The notion of partial subalgebra also
appears naturally, when we consider the application of our results to the finite
embeddability property, which will be discussed in Section 4.6.2. Therefore, our
definition will need to allow for partial algebras.
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Recall that a partial L-algebra is a structure A = 〈A, (fA)f∈L〉, where A is a
set and for every f ∈ L of arity α(f), fA is a partial operation on A of arity α(f).
A partial map from A to B is a relation f ⊆ A × B, that is functional, i.e. if
(x, y), (x, z) ∈ f , then y = z. As usual we write f(x) = y for (x, y) ∈ f ; when there
exists a y ∈ B such that (x, y) ∈ f , we say that f(x) is defined and write f(x) ∈ B
or x ∈ f−1[B]; if f(x) is not defined, we say that it is undefined. Also, we write
f : A ⇀ B for a partial map from A to B. A partial operation on A is partial map
from from a power of A to A.

Let K be a sublanguage of L. A (partial) assignment from FmK to a partial
K-algebra A is a map f : Y → A, where Y is a subset of the set P of propositional
variables. We extend such a map as much as possible to a partial map f : FmK ⇀
A, also called a (partial) assignment. In detail, f is extended by the following
clause:

• if ti ∈ FmK(Y ), where 1 ≤ i ≤ n, t ∈ FmK(P ) has arity n and all of
f(t1), . . . , f(tn), tA(f(t1), . . . , f(tn)) are elements of A, then we define
f(t(t1, . . . , tn)) = tA(f(t1), . . . , f(tn)). Else, f(t(t1, . . . , tn)) is undefined.

Moreover, f extends to a partial map from the set of groupoid and augmented
groupoid words fit for K, by the clauses:

• f(ε) = ε and f( ) = ;
• if x1, x2 ∈ FmγK

K ∪FmαK
K and all of f(x1), f(x2), f(x1)◦f(x2) are in AγK ∪

AαK , then f(x1 ◦ x2) = f(x1) ◦ f(x2). Otherwise, f(x1 ◦ x2) is undefined.
Finally, f naturally extends to a partial map from the set FmγK

K × FmK of K-
sequents to the set AγK × A of A-sequents (fit for K), by f(x, a) = (f(x), f(a))
whenever a ∈ f−1[A] and x ∈ f−1[AγK ].

For every sublanguage K of L, a sequent K-matrix is a pair A = 〈A,�〉, where
A is a partial K-algebra and � is a set of A-sequents fit for K. We often write
x � a for (x, a) ∈ � and say that the A-sequent x⇒ a is true. The set � is called
the set of true (or designated) A-sequents of A.

If A = 〈A,�〉 is a sequent K-matrix, for every set of K-sequents S ∪ {s}, we
define S |=〈A,�〉 s iff, for every partial assignment f : FmL ⇀ A such that S∪{s} ⊆
f−1[Aγ ×A], f [S] ⊆ � implies f(s) ∈ �; namely, if all A-sequents in f [S] are true,
then the A-sequent f [s] is true.

We say that an L-sequent s holds or that it is valid in A, if |=A s. A sequent
K-matrix A = 〈A,�〉 is a matrix model of a K-sequent consequence relation `,
if ` ⊆ |=A. We define a K-sequent consequence relation to be a consequence
relation on the set of K-sequents. A sequent K-matrix can be a matrix model of a
sequent consequence relation ` in a trivial way; for example if all operations in the
underlying algebra are nowhere-defined. Note that, unless all operations in A are
full, |=A may fail to be a sequent consequence relation. The relation |=M associated
with a class M of sequent matrices is defined in the usual way. The class M is called
a matrix semantics for a sequent consequence relation `, if ` = |=M.

3.2.3. Algebraic semantics. A class of L-algebras K is called an algebraic semantics
(in the sense of Blok and Pigozzi [3]) for an (1-dimensional) L-consequence relation
`, if there are L-equations εi(p), where 1 ≤ i ≤ n, on one variable such that for all
B ∪ {c} ⊆ FmL and for all 1 ≤ j ≤ n,

B ` c iff {εi(b) | 1 ≤ i ≤ n, b ∈ B} |=K εj(c).
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If K is a class of L-algebras and E is set of L-equations on one variable, define
M(K, E) as the class of all 1-dimensional L-matrices of the form (A, EA), where
A ∈ K and EA = {a ∈ A | ε(a) is true in A}. It is easy to observe that K is an
algebraic semantics for ` iff there exists a finite set E of equations on one variable
such that M(K, E) is a matrix semantics for `. Therefore, algebraic semantics can
be thought of as a special case of matrix semantics.

The class K is called an equivalent algebraic semantics for `, if it is an algebraic
semantics for ` and there are binary terms ∆j(p, q), where 1 ≤ j ≤ m, such that

u ≈ v =| |=K {εi(∆j(u, v)) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The equations εi are called the defining equations and ∆j are called the equivalence
formulas.

The class BA is an equivalent algebraic semantics for `CPL, for ε(p) = (p ≈ 1)
and ∆(p, q) = (p ↔ q).

The notion of (equivalent) algebraic semantics is also defined for sequent conse-
quence relations in a natural way. The definition given in [38] for associative-sequent
consequence relations does not apply to our case, as we work in the non-associative
setting. The definition we give here as well as the previous two are a special case of
the definition of (finitary) equivalence between two consequence relations given in
[22], which also instantiates to the equivalence of the syntactic consequence relations
of the previous section.

To specialize the definition in [22] to our case we need to enter into technicalities.
We fix an enumeration p1, p2, . . . of the set P of propositional variables. For every
Q-sequent s (Q is any set) we define its type tp(s) to be the sequent obtained from
s by replacing (all occurrences of) the elements of Q in s from left to right by the
variables from P in order. In detail, we start by defining the n-type tpn(x) for every
x ∈ Qγ inductively:

• tpn(ε) = ε; tpn(a) = pn, for every a ∈ Q;
• if pm is the first variable not in tpn(x) with m ≥ n, then tpn(x ◦ y) =

(tpn(x), tpn+m(y)).

We define the type of a sequent x⇒ a to be the sequent tp(x⇒ a) = (tp1(x)⇒ pm),
where pm is the first variable not in tp1(x). For example, tp((a, b), (b, a)⇒ b) =
((p1, p2), (p3, p4)⇒ p5). We denote by Tp the set of all types. It is clear that
given a sequent s of type t, there exists a map σs from Tp to Qγ × Q such that
σs(t) = s; note that σs is not unique. If Q is the set FmL, then σs is essentially an
L-substitution.

An L-equation of type t ∈ Tp is an equation on the variables appearing in t.
Obviously, an equation may have many types: p1 ∧ p2 ≈ p1 ∨ (p3 ∨ p4) has types
((p1, p2), p3 ⇒ p4), (p1, (p2, p3)⇒ p4), (p2, (p4, p3)⇒ p1) etc. If ε is an equation
(here we use the same symbol as for the the empty groupoid word, as ε is also
traditional for equations) and s a sequent of the same type, then we define the
equation ε(s) = σs(ε); i.e., the equation obtained by replacing the variables in ε by
the corresponding formulas in s. For example, if s is (a, b)⇒ b and ε is (x·y)∨y = y,
then σs(ε) = (a · b)∨ b = b. A typed equation is a pair (ε, t), where ε is an equation
of type t. If E is a set of typed equations and S a set of sequents, we define
E[S] = {ε(s) | (ε, tp(s)) ∈ E, s ∈ S}; note that even if ε and s are of the same type,
ε(s) will not be in E[S] if (ε, tp(s)) 6∈ E. For example, the equation (x · y)∨ y = y,
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call it ε, has both type (p1, p2)⇒ p2 and type (p1, p2)⇒ p1, call these types t1 and
t2, but maybe only the typed equation (ε, t1) is in the set E. Considering typed
equation is a way of knowing which variables of ε to replace by which variables of
s in the expression ε(s).

A class of L-algebras K is called an algebraic semantics for a sequent consequence
relation `, if there exists a finite set E of typed L-equations, such that for all sets
S ∪ {s} of L-sequents

S ` s iff E[S] |=K E(s).

The class K is called an equivalent algebraic semantics for `, if it is an algebraic
semantics for ` and there is a finite set S(p, q) of L-sequents in two variables, such
that

u ≈ v =| |=K E[S(u, v)].

The classHA of Heyting algebras is an equivalent algebraic semantics for Gentzen’s
original system LJ, for E(x⇒ a) = (xFmL ≤ a) and S(p, q) = {(p⇒ q), (q ⇒ p)}.

3.3. Matrix models of GL. The class KGL (KGLf) is defined to contain all
sequent K-matrices A = 〈A,�〉, that are models of KGL (KGLf, respectively). If
R is a set of structural metarules, we denote the matrix models of KGLR by KGLR

and of KGLf
R by KGLf

R. We will provide a condition for checking if a matrix is in
KGLR or KGLf

R.
Given a sequent K-matrix A = 〈A,�〉 and a non-structural metarule (r) of KGL

that involves metavariables among {a, b, c, x, u} and concerns the connective • ∈ K,
we define the interpretation (r)A of (r) in A to be the following statement:

∀a, b, c ∈ A, x ∈ AγK , u ∈ AαK , if a •A b is defined, then the
conjunction of the assumptions of the metarule (with the metavari-
ables evaluated and ⇒ replaced by �) implies the conclusion of
the metarule.

For example, (\L)A is

∀a, b, c ∈ A, x ∈ AγK , u ∈ AαK , if a\Ab is defined, then
x � a and u[b] � c implies u[x ◦ (a\b)] � c.

If (r) is a structural metarule, then (r)A is defined by a clause like the above but
without any mention to a connective.

Lemma 3.3. For a sublanguage K that contains \ and for a set R of structural
metarules, a K-sequent matrix A = 〈A,�〉 is in KGLR (KGLf

R) iff the interpreta-
tion (r)A of every metarule (r) of KGLR (KGLf

R, respectively) holds.

Proof. We first mention that if the metavariables {a′, b′, c′, x′, u′} of (r) are eval-
uated appropriately in the sets A, AγK and AαK , and a •A b is defined, then the
assignments of the expressions in (r) are in the appropriate sets, for the different
possibilities for K. For example, for (∨L), if u is in AαK and K = {∨, \, /}, then
u is a solvable augmented groupoid word over A, since A is a sequent K-matrix.
Also, if a, b ∈ A, then a, b, a ∨ b are in A. It is easy to see that then u[a], u[b]
and u[a ∨ b] are all solvable groupoid words over A and are, therefore, in AγK . As
another example, we consider the case of (\L) for K = {∨, \}. If a, b, a\b ∈ A,
x ∈ AγK and u ∈ AαK , then x is a left-solvable groupoid word over A and u is a
left-solvable augmented groupoid word over A, since A is a sequent K-matrix. It
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is easy to observe that then u[x ◦ (a\b)] is a left-solvable groupoid word over A and
is therefore in AγK .

Assume that A ∈ KGL and (r) is a metarule of KGL; we will show that (r)A

holds. We proceed in the proof by considering the representative case where (r)
is (\L). To show that (\L)A holds, let a, b, c ∈ A, x ∈ AγK , u ∈ AαK and as-
sume that a\Ab is defined, x � a and u[b] � c. We want to show that u[x ◦
(a\b)] � c. Assume that x is a groupoid word on the elements d1, . . . , dn of A,
x = x(d1, . . . , dn) in short, and that u = u(e1, . . . , em). Pick propositional variables
a′, b′, c′, d′1, . . . , d

′
n, e′1, . . . , e

′
m in P and define a partial assignment f into A that

maps the propositional variables to the corresponding elements in A. There exists
a groupoid word x′ = x′(d′1, . . . , d

′
n) in FmγK

K and an augmented groupoid word
u′ = u′(e′1, . . . , e

′
m) in FmαK

K such that f(x′) = x and f(u′) = u under the associ-
ated partial assignment. Now, we have (f(x′), f(a′)) ∈ � and (f(u′[b′]), f(c′)) ∈ �,
so (f(u′[x′ ◦ (a′\b′)]), f(c′)) ∈ �, since A ∈ KGL. Hence u[x ◦ (a\b)] � c holds.

Conversely, assume that the interpretation (r)A of every metarule (r) of KGL
holds for a sequent K-matrix A = 〈A,�〉; we will prove that A is in KGL. Consider
a metarule (r) of KGL that involves (possibly) the connective • ∈ K and an instance
(r′) = (S, s) of it; we will show that S |=〈A,�〉 s. To this end, consider a partial
assignment f : FmK ⇀ A such that S ∪ {s} ⊆ f−1[AγK × A] and f [S] ⊆ �; we
need to verify that f(s) ∈ �. For the sake of concreteness, let (r) be the metarule
(∨L) and (r′) = ({u′[a′]⇒ c′, u′[b′]⇒ c′}, u′[a′ ∨ b′]⇒ c′), where a′, b′, c′ ∈ FmK
and u′ ∈ FmαK

K . Also, let a = f(a′), b = f(b′), c = f(c′) be the elements of A and
u = f(u′) be the element of AαK , in the image of f . From f [S] ∈ �, we obtain
u[a] � c and u[b] � c. Also, from s ∈ f−1[AγK ×A] we have that the join a ∨A b is
defined in A. Therefore, (r)A yields u[a ∨ b] � c; i.e., f(s) ∈ �.

The argument for structural metarules is similar. �

Lemma 3.4. KGLR (KGLf
R) is a matrix semantics for KGLR (KGLf

R, respec-
tively); i.e. |=KGLR = `KGLR and |=KGLf

R
= `KGLf

R
.

Proof. Let S∪s be a set of K-sequents. By definition, S `KGLR s implies S |=KGLR

s, and S `KGLf
R

s implies S |=KGLf
R

s. To show the converse implications (we will
do only the first one) assume that S 6`KGLR s. We define the sequent K-matrix
A = 〈FmK,�〉, where s ∈ � iff S `KGLR s. The set � is called the sequent-theory
generated by S.

Obviously, S 6|=A s (for the identity partial assignment) and it can be easily
checked that A ∈ KGLR, by using Lemma 3.3. As an example, we check that
(\L)A holds. Let a, b, c ∈ FmK, x ∈ FmγK

K and u ∈ FmαK
K . Since K contains

\, the formula a\b is in FmγK
K . If x � a and u[b] � c, then S `KGLR x⇒ a and

S `KGLR u[b]⇒ c; note that x⇒ a is both an K-sequent and an FmK-sequent. If
Π1 is a proof of x⇒ a from S and Π2 is a proof of u[b]⇒ c from S, then

Π1 Π2

u[x ◦ (a\b)]⇒ c
(\L)

is a proof of u[x ◦ (a\b)] from S. Consequently, we have S `KGLR u[x ◦ (a\b)]⇒ c,
so u[x ◦ (a\b)] � c. As a second example consider (∨L)A for the case where K does
not contain ∨. If a, b ∈ FmK, then the formula a ∨ b is not in FmK, hence (∨L)A

is vacuously true. �
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If A is an r`u-groupoid, we define the sequent K-matrix AK = 〈A,�AK〉, where
x �AK a iff xA ≤A a; here xA denotes the element of A obtained from x by
replacing ◦ by ·A. We say that an A-sequent s is true in A, if it is true in AL.
Also, a K-sequent s is valid (or holds) in A, if it is valid in AK. If s is a K-sequent,
we define the equation ε(x⇒ a) = (xFmL ≤ a). The next lemma implies that the
sequent s is valid in AK iff the equation ε(s) is valid in A.

Lemma 3.5. If S ∪ {s} is a set of K-sequents and A is an r`u-groupoid, then
S |=AK s iff ε[S] |=A ε(s).

Proof. The proof follows from the definitions. In detail, S |=AK s iff for all
partial assignments f : FmK ⇀ A, f [S] ∈ �AK implies f(s) ∈ �AK . If s =
(x⇒ a), then f(s) = (f(x)⇒ f(a)); assume that x = x(a1, . . . , an). Now, f(s) ∈
�AK iff f(x)�AKf(a) iff x(f(a1), . . . , f(an))�AKf(a) iff xA(f(a1), . . . , f(an)) ≤A

f(a) iff (xFmL)A(f(a1), . . . , f(an)) ≤A f(a) iff εA(f(a1), . . . , f(an), f(a)) holds iff
εA(a1(f(p̄)), . . . , an(f(p̄)), a(f(p̄))), where p̄ is the list of all propositional variables
from P that appear in S∪{s}. We will abbreviate the last expression by εA(s(f(p̄))).
Therefore, we obtain the equivalent statement:

for all maps f : Y → A, where Y is a subset of the set P of proposi-
tional variables containing p̄, εA[S(f(p̄))] holds implies εA(s(f(p̄)))
holds.

It is clear that in this statement the range of the set Y can be replaced by just p̄
or by just P. For the latter choice, in the resulting statement the map f : P → A
extends uniquely to a homomorphism f : FmL → A, since A is a total L-algebra,
and the expression εA(s(f(p̄))) can be replaced by f(ε(s(p̄))) or simply f(ε(s)).
This is precisely the definition of ε[S] |=A ε(s). �

Theorem 3.6. If A is an r`u-groupoid, then AK is a matrix model of KGL.

Proof. It is routine to check that ε[S] |=A ε(s), for all the rules (S, s) in KGL. �

Without further discussion we mention that we can define (partial) two-dimensional
L-matrix models A = 〈A,≤〉 of PL.

4. Quasicompletion and applications

After developing the main theorem of the paper, we will apply it to various cases.
The logical property of cut elimination, the finite model property and the strong
separation property will follow as particular applications of the main result.

4.1. Quasicompletion. We will first develop the main tools for the quasicomple-
tion method, which we will apply in the following sections.

4.1.1. The r`u-groupoid of a sequent matrix. Given a sequent matrix, we will con-
struct a residuated lattice associated with it that will play a key role the proofs in
this section.

Let K be a sublanguage of L that contains \ and let 〈A,�〉 be a sequent K-
matrix. We define the algebra

R(A) = 〈P(AγK)g,∩,∨g, ·g, \, /, εg〉,
where for X ⊆ AγK ,

g(X) = {y ∈ AγK |for all u ∈ AαK , a ∈ A, if u[x] � a, for all x ∈ X, then u[y] � a},
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P(AγK)g = g[P(AγK)] is the image of the powerset P(AγK) under the map g,
εg = g({ε}) and for X, Y ⊆ AγK , (we set X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y }; x ◦ y is
not always defined)

X ∨g Y = g(X ∪ Y ), X ·g Y = g(X ◦ Y ),

X\Y = {z ∈ AγK |X ◦ {z} ⊆ Y }, Y/X = {z ∈ AγK | {z} ◦X ⊆ Y }.
We note that g(X) is the set of all groupoid words that fit in the same contexts
that all elements of X fit; here by x fits in the context (u, a) we mean u[x] � a. It
is easy to see that g is a closure operator on P(AγK).

Theorem 4.1. If 〈A,�〉 is a sequent K-matrix, then R(A) is a residuated `-
groupoid with unit.

Theorem 4.1 can be proved directly, but its proof relies on many fundamental
notions and constructions, including that of a nucleus. Since a discussion on these
topics would disrupt the flow of the paper, we include the background and the proof
of the theorem in Appendix B; see Corollary B.7.

For every a ∈ A and u ∈ AαK , we define

[u, a] = {x ∈ AγK | u[x] � a}
and ↓ a = [ , a] = {x ∈ AγK | x � a}. Using this notation, for X ⊆ AγK , we can
express g(X) as follows:

g(X) =
⋂
{[u, a] | a ∈ A, u ∈ AαK and X ⊆ [u, a]}.

In particular, we have [u, a] ∈ R(A), so the assignment q(a) =↓ a defines a map
q : A → R(A). The following lemma follows directly form the above expression for
g.

Lemma 4.2. If k ∈ R(A) and x ∈ AγK , then x ∈ k iff x ∈ [u, a], for all u ∈ AαK

and a ∈ A such that k ⊆ [u, a].

The following lemma follows from Corollary B.6 in Appendix B (see also Lemma B.2).

Lemma 4.3. Let A be a sequent K-matrix. Then the map g is a {∨, ·, 1} homo-
morphism from P(Aγ) = 〈P(Aγ),∩,∪, ◦, \, /, {ε}〉 to R(A).

4.1.2. Quasiembedding. We are now ready to present the main technical result of
the paper.

Lemma 4.4. Assume that K is a subset of L that contains the connective \, A =
〈A,�〉 is a sequent matrix in KGLf, a, b ∈ A and k, l ∈ R(A). Also, assume that •
is one of the connectives in K, a •A b is defined, a ∈ k ⊆↓ a and b ∈ l ⊆↓ b. Then

(1) 1A ∈ εg ⊆↓ 1A (1A is defined, for • = 1) and
(2) a •A b ∈ k •R(A) l ⊆↓ (a •A b).
(3) In particular, a •A b ∈↓ a•R(A) ↓ b ⊆↓ (a •A b).
(4) If, additionally, A is in KGL, then k =↓ a and ↓ a•R(A) ↓ b =↓ (a •A b).

Proof. (1) By (1R)A, we have εAγK ∈↓ 1A, so εg = g(εAγK ) ⊆↓ 1A. On the other
hand, if εg = g(εAγK ) ⊆ [u, c], then ε ∈ [u, c] and |u| = u[ε] � c; so u[1A] � c, by
(1L)A, hence 1A ∈ [u, c]. Thus, 1A ∈ εg, by Lemma 4.3.

(2) We will give the proof for the connectives ∨, · and \. The proof for the
remaining two connectives follows the same ideas.
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Let • = ∨. If x ∈ k, then x ∈↓ a; so x � a and x � a ∨ b, by (∨R`)A (see
Lemma 3.3); hence x ∈↓ (a ∨ b). Consequently, k ⊆↓ (a ∨ b). Similarly, we obtain
l ⊆↓ (a ∨ b) using (∨Rr)A; so k ∪ l ⊆↓ (a ∨ b), hence k ∨ l = g(k ∪ l) ⊆↓ (a ∨ b).

On the other hand, let k ∨ l ⊆ [u, c], for some u ∈ AαK and b ∈ A. Then,
a ∈ k ⊆ k ∨ l ⊆ [u, c], so u[a] � c. Similarly, u[b] � c, so u[a ∨ b] � c, by (∨L)A,
hence a ∨ b ∈ [u, b]. Thus, a ∨ b ∈ k ∨ l, by Lemma 4.2.

Let • = ·. If x ∈ k and y ∈ l, then x ∈↓ a and y ∈↓ b; i.e. x � a and y � b.
So x ◦ y � a · b, by (·R)A; hence x ◦ y ∈↓ (a · b). Consequently, k ◦ l ⊆↓ (a · b) and
k ·R(A) l = g(k ◦ l) ⊆↓ (a · b).

On the other hand, let k ·R(A) l ⊆ [u, c], for some u ∈ AαK and c ∈ A. Since
a◦ b ∈ k ◦ l ⊆ g(k ◦ l) = k ·R(A) l, we have a◦ b ∈ [u, c], so u[a◦ b] � c. Consequently,
u[a · b] � c, by (·L)A, hence a · b ∈ [u, b]. Thus, a · b ∈ k · l.

Let • = \. If x ∈ k\R(A)l then k ◦ {x} ⊆ l. Since a ∈ k and l ⊆↓ b, we have
a ◦ x ∈↓ b; i.e., a ◦ x � b. By (\R)A we obtain x � a\b; hence x ∈↓ (a\b).

On the other hand, if l ⊆ [u, c], then b ∈ [u, c], so u[b] � c. For all x ∈↓ a, x � a,
so u[x ◦ (a\b)] � c, by (\L)A; i.e., x ◦ (a\b) ∈ [u, c], for all x ∈↓ a. Consequently,
↓ a ◦ {a\b} ⊆ [u, c], for all [u, c] that contain l, so ↓ a ◦ {a\b} ⊆ l. Since k ⊆↓ a, we
have k ◦ {a\b} ∈ l, so a\b ∈ k\R(A)l.

Statement (3) is a direct consequence of (2) for k =↓ a and l =↓ b.
(4) We will show that ↓ a ⊆ k. If x ∈↓ a, then x � a. To show that x ∈ k,

let k ⊆ [u, b], for some u ∈ AαK and b ∈ A. Since a ∈ k, by assumption, we
get a ∈ [u, b], that is u[a] � b. By (CUT) we obtain u[x] � b, namely x ∈ [u, b].
Consequently, x ∈ k, by Lemma 4.2.

In the last paragraph, we have shown that if c ∈ m ⊆↓ c, for some c ∈ A and
m ∈ R(A), then m =↓ c. For c = a•b and m =↓ a• ↓ b, we obtain ↓ a• ↓ b =↓ (a•b)
from (2). �

It follows from Lemma 4.4(2) that if A ∈ KGL, then the map q : A → R(A)
is an homomorphism from the partial L-algebra A into the r`u-groupoid R(A).
In certain cases, q is actually an embedding. If A ∈ KGLf, then q comes close to
being an homomorphism, but it is not in general. Therefore, we call it a quasi-
homomorphism.

For every partial assignment f : FmK ⇀ A, we let H(f) be the set of all L-
homomorphisms f̄ : FmL → R(A) that extend the assignment f̄(p) =↓ f(p), for
all variables p of FmL in f−1[A].

Lemma 4.5. If A = 〈A,�〉 is a sequent matrix in KGLf , then for every partial
assignment f : FmK ⇀ A, we have f(a) ∈ f̄(a) ⊆↓ f(a), for every a ∈ f−1[A] and
every f̄ ∈ H(f). If A is in KGL, then f̄(a) =↓ f(a).

Proof. Let f : FmL ⇀ A be partial assignment and f̄ ∈ H(f). By definition of
H(f) and (id)A, the statement holds for the propositional variables in f−1[A]. For
a = 1, by Lemma 4.4(1), we have f(1) = 1A ∈ εg = 1R(A) ⊆↓ 1A =↓ f(1), if
1A is defined. We proceed by induction; this is possible because f−1[A] is closed
under subformulas. Let a, b ∈ f−1[A]. Also, assume that f(a) ∈ f̄(a) ⊆↓ f(a),
f(b) ∈ f̄(b) ⊆↓ f(b), • ∈ K and a • b ∈ f−1[A]. By Lemma 4.4(2), we have
f(a)•Af(b) ∈ f̄(a)•R(A) f̄(b) ⊆↓ (f(a)•Af(b)). Since f and f̄ are homomorphisms,
we have f(a • b) ∈ f̄(a • b) ⊆↓ f(a • b). Finally, if A is in KGL, then f̄(a) =↓ f(a),
by Lemma 4.4(4). �
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We will use Lemma 4.5 to transform a failure of a property in sequent matrices
to a failure of the property in r`u-groupoids.

4.2. Cut elimination. Here we prove the cut elimination property for GL and
its subsystems. Recall the definition of validity of a sequent in a r`u-groupoid
preceding Lemma 3.5.

Theorem 4.6. Assume that K is a subset of L that contains the connective \, s is
a sequent fit for K and A ∈ KGLf. If s is valid in R(A) then it is valid in A.

Proof. Assume that s is (x⇒ a) and that it holds in R(A). Also, let f : FmK ⇀ A
be a partial assignment such that f(s) ∈ AγK×A. We will show that f(x) �A f(a).
Since s is valid in R(A), for every homomorphism f̄ : FmL → R(A) (which is total
assignment) with f̄ ∈ H(f), we have (f̄(x))R(A) ⊆ f̄(a). If x = xFmγ

L(b1, . . . , bn),
then f̄(x) = f̄(xFmγ

L(b1, . . . , bn)) = xR(A)γ

(f̄(b1), . . . , f̄(bn)) and (f̄(x))R(A) =
xR(A)(f̄(b1), . . . , f̄(bn)), since f̄ is an assignment. We assumed that f(s) ∈ AγK×A,
so a, b1, . . . , bn ∈ f−1[A] and, by Lemma 4.5, f̄(a) ⊆↓ f(a) and f(b) ∈ f̄(b), for all
subformulas b of x. So,

f(x) = f(xFmγ
L(b1, . . . , bn))

= xAγK (f(b1), . . . , f(bn)) (f is a partial assignment)
∈ xP(AγK )(f̄(b1), . . . , f̄(bn)) (◦ in P(AγK) is element-wise)
⊆ xR(A)(f̄(b1), . . . , f̄(bn)) (g is a closure operator)
= (f̄(x))R(A)

Consequently, f(x) ∈ (f̄(x))R(A) ⊆ f̄(a) ⊆↓ f(a). Thus, f(x) ∈↓ f(a) and
f(x) �A f(a). �

Theorem 4.7. For every subset K of L that contains the connective \ and for
every sequent s fit for K, s is valid in KGLf iff s (equivalently, ε(s)) is valid in
RLUG iff s is valid in KGL.

Proof. If s is valid in KGL, then it is valid in KGLf, since KGLf ⊆ KGL, by
Lemma 3.3. Conversely, if s is valid in KGL, then it is valid in R(A), for all
A ∈ KGLf. By Theorem 4.6, s is valid in all sequent matrices A in KGLf, so it
is valid in KGLf. Finally, the validity in RLUG of s is equivalent to the validity of
ε(s), by Lemma 3.5. �

The following result was proved in [14], using syntactical methods, in the special
case where K is the full language L.

Corollary 4.8. The Gentzen system KGL enjoys the cut elimination property, for
all sublanguages K of L that include the connective \.

Proof. The corollary is a direct consequence of Theorem 4.7 and Lemma 3.4. �

Corollary 4.8 states that every sequent provable in GL without assumptions can
be proved without the use of (CUT). The corresponding statement about sequents
provable from assumptions is, however, not true. For example, (CUT) itself is not
a derivable rule in GLf. This can be shown either syntactically, by performing a
proof search, or semantically by exhibiting a matrix in KGL but not in KGLf.

A sequent calculus is said to have the subformula property if in any proof without
assumptions all the formulas in the numerator of a rule are subformulas of formulas
appearing in the denominator.
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Corollary 4.9. The system GL enjoys the subformula property.

4.3. Adding structural rules. It is well known that for example FL and FLe

also enjoy the cut elimination property (see [32, 33]). As discussed in Section 2.1.6,
these systems are equivalent to GLa and GLae, respectively. Using our previous
results, we show in this section that, among others, the basic systems GLR, where
R ⊆ {a, e, c, i, o}, have the cut elimination property. (The result for (o) follows by
an easy modification to the right-hand sides of the sequents.

Recall that a simple metarule is of the form

u[t1]⇒ a · · · u[tn]⇒ a

u[t0]⇒ a
(r)

for fixed elements u ∈ U and a ∈ F, where t0, t1, . . . , tn are simple metagroupoid
words and t0 is linear. For example the rules of exchange, weakening, contraction
and associativity are simple. If t is a simple metagroupoid word, we write tFmL

for the formula obtained from t by replacing ◦ with · and the metavariables from
X with propositional variables from P; we assume that there is a fixed bijection
between X and P. Clearly, t and tFmL are interdefinable. Clearly, the metarule (r)
and the inequality ε = (tFmL

0 ≤ tFmL
1 ∨ · · · ∨ tFmL

n ) are interdefinable, as well. We
denote by ε(r) the inequality corresponding to the above rule and by R(ε) the rule
corresponding to the above inequality.

Recall that if R is a set of metarules, then GLR denotes the system obtained
from GL by adding the set R. If K is a sublanguage of L that contains \, the
metarule (r) is called fit for K if the metagroupoid words ti are fit for K, for all i.
The system KGLR, is obtained by adding to the rules of KGL all rules that are
instances of the metarules in R and u, a evaluate so that all the resulting sequents
are fit for K. We denote the matrix models of KGLR by KGLR.

In RLUG, every equation ε over {∨, ·, 1} is equivalent to a conjunction of inequal-
ities of the form above. To do this we distribute all products over all joins to reach
a form s1 ∨ · · · ∨ sm ≈ t1 ∨ · · · ∨ tn, where si, tj are groupoid words with unit terms.
Such an equation is in turn equivalent to the conjunction of the two inequalities
s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm. Finally, the fist one
is equivalent to the conjunctions of the inequalities sj ≤ t1 ∨ · · · ∨ tn; likewise, the
second inequality is written as a conjunction, as well. If ε is an equation, by R(ε)
we understand the set of rules associated with each of the conjuncts (inequalities)
associated with ε.

Lemma 4.10. Every equation ε over {∨, ·, 1} is equivalent, relative to RLUG, to
R(ε). More precisely, for every A ∈ RLUG, A satisfies ε iff AL satisfies R(ε).

Proof. It suffices to show the lemma for the case where ε is of the form tFmL
0 ≤

tFmL
1 ∨· · ·∨tFmL

n . Clearly, AL satisfies R(ε) iff A satisfies the following implication:
if u[tFmL

i ] ≤ a for all i ∈ {1, . . . , n}, then u[tFmL
0 ] ≤ a, for all propositional variables

a and all augmented groupoid words u over the set of propositional variables where
◦ is replaced by ·. Now, u[tFmL

i ] ≤ a is equivalent to ti ≤ u  L a, for all i, so
the implication becomes: if tFmL

i ≤ b for all i ∈ {1, . . . , n}, then tFmL
0 ≤ b, for all

propositional variables b. By lattice-theoretic considerations this is equivalent to
ε. �
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Theorem 4.11. Let A be a matrix in KGLf and let ε be an equation over {∨, ·, 1}
such that all rules in R(ε) are fit for K. Then, A satisfies R(ε) iff R(A) satisfies
ε.

Proof. Clearly, it suffices to show the lemma for the case where ε is of the form
tFmL
0 ≤ tFmL

1 ∨ · · · ∨ tFmL
n .

Assume that A satisfies R(ε). Let k̄ = (kj)j∈J be a sequence of elements in
R(A). We will show that εR(A)(k̄) holds; i.e., t

R(A)
0 (k̄) ⊆ t

R(A)
1 (k̄)∨· · ·∨ t

R(A)
n (k̄).

Assume that t
R(A)
1 (k̄)∨· · ·∨t

R(A)
n (k̄) ⊆ [u, a], for some a ∈ A, u ∈ AαK ; we will show

that t
R(A)
0 (k̄) ⊆ [u, a]. We have t

R(A)
1 (k̄)∪· · ·∪t

R(A)
n (k̄) ⊆ t

R(A)
1 (k̄)∨· · ·∨t

R(A)
n (k̄),

so for every i ∈ {1, . . . n}, we have t
R(A)
i (k̄) ⊆ [u, a]. If xj ∈ kj , for all j ∈ J , (we

abbreviate this by x̄ ∈ k̄) and x̄ = (xj)j∈J , then

tA
γK

i (x̄) = tA
γK

i ((xj)j∈J)
∈ t
P(AγK )
i (({xj})j∈J) (by the definition of ◦ in P(AγK))

⊆ t
P(AγK )
i (k̄) (operations are elementwise)

⊆ g(tP(AγK )
i (k̄)) (g is a closure operator)

= t
R(A)
i (k̄) ⊆ [u, a] (Lemma 4.3)

So, u[tA
γK

i (x̄)] � a, for all i ∈ {1, . . . n}; hence u[tA
γK

0 (x̄)] � a, by r(ε)A, and
tA

γK
0 (x̄) ∈ [u, a], for all x̄ ∈ k̄. Since t0 is a linear term and since the variables

of t0 are among the ones in {t1, . . . tn}, we obtain t
P(AγK )
0 (k̄) ⊆ [u, a]; hence, by

Lemma 4.3, t
R(A)
0 (k̄) = g(tP(AγK )

0 (k̄)) ⊆ [u, a].
Conversely, assume that R(A) satisfies ε. For every sequence k̄ = (kj)j∈J of

elements in R(A), we have t
R(A)
0 (k̄) ⊆ t

R(A)
1 (k̄)∨ · · · ∨ t

R(A)
n (k̄). In particular, for

kj = g({xj}), where xj ∈ AγK , we have

t
R(A)
0 ((g({xj}))j∈J) ⊆ t

R(A)
1 ((g({xj}))j∈J) ∨ · · · ∨ tR(A)

n ((g({xj}))j∈J).

By Lemma 4.3

g(tP(AγK )
0 (({xj})j∈J)) ⊆ g(tP(AγK )

1 (({xj})j∈J) ∪ · · · ∪ tP(AγK )
n (({xj})j∈J)),

hence
g({tA

γK
0 (x̄)}) ⊆ g({tA

γK
1 (x̄), . . . , tA

γK
n (x̄)}).

Therefore, for all [u, a], where a ∈ A and u ∈ Aα, g({tAγK
1 (x̄), . . . , tA

γK
n (x̄)}) ⊆

[u, a] implies g({tAγK
0 (x̄)}) ⊆ [u, a]; i.e., {tAγK

1 (x̄), . . . , tA
γK

n (x̄)} ⊆ [u, a] implies
tA

γK
0 (x̄) ∈ [u, a]. Consequently, (u[tA

γK
1 (x̄)] � a and . . . u[tA

γK
n (x̄)] � a) implies

u[tA
γK

0 (x̄)] � a; i.e., r(ε)A holds. �

It follows from Lemma 4.10 and Theorem 4.11 that if A is a sequent K matrix,
then R(A) satisfies ε iff R(A)K satisfies R(ε). Recall that we have agreed to say
that in this case R(A) satisfies R(ε).

We say that a set R of metarules is preserved by R with respect to K, if for every
sequent matrix A in KGLf, if A satisfies R then R(A) satisfies R; we naturally
extend this definition for sets of metarules. The following corollary follows directly
from Theorem 4.11.

Corollary 4.12. All simple metarules are preserved by R. In particular, the
metarules of exchange, weakening, contraction and associativity are preserved by
R.
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The following theorem, for the case where K = L and R contains at least asso-
ciativity (a), was obtained independently in [41]. (Delays in the submission of the
current paper are responsible for the time discrepancy.) Extensions of this result to
other sequent calculi appear in [17]. Also, extensions to classes of structural rules
that extend simple rules, as well as to hypersequent calculi appear in [13].

Theorem 4.13. If R is a set of metarules that are preserved by R with respect
to K, then KGLR enjoys the cut elimination property. In particular, for every
equation ε over {∨, ·, 1} such that all rules in R(ε) are simple, KGLR(ε) enjoys the
cut elimination property.

Proof. If `KGLR s, for a sequent s, then |=KGLR s. Let A be a matrix in KGLf
R.

Then A ∈ KGLf and A satisfies R. So, R(A)K satisfies R, since R is preserved
by R with respect to K, and R(A)K ∈ KGL by Theorem 4.1 and Theorem 3.6.
Therefore, R(A)K ∈ KGLR, so |=R(A)K s. By Theorem 4.6, |=A s. Hence |=KGLf

R
s

and `KGLf
R

s, by Lemma 3.4. �

Corollary 4.14. The basic systems GLR, where R is a subset of R ⊆ {a, e, c, i,o}
have the cut elimination property.

We should clarify that FLc, unlike FLc (boldface), does not enjoy the cut elimi-
nation property. Note that contraction for formulas (c) is not a simple metarule, so
our results do not apply. In general, if a rule is formulated for formulas as opposed
to groupoid words then the corresponding equation mentioned in Theorem 4.11 is
properly stronger than the rule.

4.4. The finite model property. Let K be a sublanguage of L that contains the
connective \ and let R be a set of structural rules.

If s is a K-sequent, we define s← to be the smallest set of K-sequents such that
• s← contains s
• if t ∈ s← and ({t1, . . . , tn}, t) is an instance of a metarule in KGLf

R, for
n ∈ {0, 1, 2}, then t1, . . . , tn ∈ s←.

Let K be a sublanguage of L and let s be a K-sequent. Consider the partial
subalgebra AK(s) = AK of the algebra FmK of all subformulas of s. Consider
the sequent K-matrix AK(s) = AK = 〈AK,�〉, where x �AK a iff `KGLf

R
x⇒ a.

Also, consider the sequent K-matrix A′K(s) = A′K = 〈AK,�A′
K
〉, where �A′

K
=

�AK ∪ (s←)c.

Lemma 4.15. Let K be a sublanguage of L and let s be a K-sequent. Then, AK(s)
and A′K(s) are matrix models of KGLf

R.

Proof. For AK, it suffices to check the interpretations (r)AK of every metarule (r)
of KGLf

R in AK(s). Recall that (r)AK is of the form (see Section 3.3):
∀a, b, c ∈ AK, x ∈ AγK

K , u ∈ AαK
K , (if a •AK b is defined,) then

t1 ∈ �AK and t2 ∈ �AK implies t ∈ �AK .
Assume that a •AK b is defined and both t1 ∈ �AK and t2 ∈ �AK ; we need to show
that t ∈ �AK . We have `KGLf

R
t1 and `KGLf

R
t2, so `KGLf

R
t, because ({t1, t2}, t)

is an instance of (r). Consequently, t ∈ �AK , since a •AK b is defined.
Likewise, for A′K, we assume that a •AK b is defined, t1 ∈ �A′

K
and t2 ∈ �A′

K
.

Recall that �A′
K

= �AK∪(s←)c. If t1 ∈ �AK and t2 ∈ �AK , then t ∈ �AK ⊆ �A′
K
,
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by the argument above. Otherwise, without loss of generality, t1 ∈ (s←)c. Since
({t1, t2}, t) is an instance of (r), t ∈ s← would imply t1 ∈ s←, a contradiction. So,
t ∈ (s←)c ⊆ �A′

K
. �

Lemma 4.16. Let X, Y be sets, Z a subset of Y such that Zc = Y − Z is finite
and F a set of 1-1 maps from X to Y such that F−1(y) = {f−1(y) | f ∈ F} is finite
for all y ∈ Y . Then, F−1[Z] = {f−1[Z] | f ∈ F} is finite.

Proof. We first show that F−1[W ] = {f−1[W ] | f ∈ F} is finite, for every finite
subset W of Y . Since f−1[W ] ⊆

⋃
g∈F g−1[W ], it suffices to show that

⋃
g∈F g−1[W ]

is finite. We have
⋃

g∈F g−1[W ] =
⋃

g∈F

⋃
w∈W g−1(w) =

⋃
w∈W

⋃
g∈F g−1(w) =⋃

w∈W F−1(w). Since both W and F−1(w) are finite,
⋃

g∈F g−1[W ] is finite. Thus,
F−1[W ] is finite, if W is finite.

For all f ∈ F , and x ∈ X, we have x ∈ f−1[Z] iff f(x) 6∈ Zc iff x 6∈ f−1[Zc] iff
x ∈ (f−1[Zc])c. Consequently, for all f ∈ F , f−1[Z] = (f−1[Zc])c; so F−1[Z] =
{(f−1[Zc])c | f ∈ F}. Thus, F−1[Z] is bijective, under the bijection U 7→ U c, with
the set F−1[Zc] = {f−1[Zc] | f ∈ F}, which is finite since Zc is finite. �

A set R of simple structural metarules is called reducing if for every sequent s,
s← is finite. Note that the empty set of metarules is reducing.

Theorem 4.17. The system KGLf
R has the finite model property for all subsets K

of L and for all reducing sets R of metarules.

Proof. Consider the matrix A′K(s). Let s be a sequent such that 6`KGLf s. Then, s 6∈
�AK , so s 6∈ �A′

K
, since s ∈ s←. So, 6|=A′

K(s) s and 6|=R(A′
K(s)) s, by Theorem 4.6.

We will show that R(A′K(s)) is finite. It follows from Lemma 4.16 for X = AγK
K ,

Y = AγK
K (s) ×AK(s), Z = �A′

K
and F = {f(u,a) | (u, a) ∈ AαK

K ×AK(s)}, where
f(u,a) = ((u, a)?x) = (u[x]⇒ a), that F−1[�A′

K
] = {[u, a]A′

K(s) |u ∈ AαK
K , a ∈ AK}

is finite; the fact that Y −Z is finite follows from the fact that s← is finite. Every set
in R(A′K(s)) is an intersection of elements of F−1[�A′

K
], so R(A′K(s)) is finite. �

Given a sequent s not provable in GLf, using the method described in the proof
of Theorem 4.17 we can construct a finite r`u-groupoid in which s fails. We will
present a very simple example of this.

It is easy to see that the sequent p⇒ p · p is not provable in GLf, if p is a
propositional variable. Actually, the only rule that can be applied in a proof search
is (·R) and we obtain the only (up to permutation of the assumptions) incomplete
proof:

p⇒ p ε⇒ p
p⇒ p · p (·R)

So, (p⇒ p · p)← = {(ε⇒ p), (p⇒ p), (p⇒ p · p)}. In order to construct R(A′), we
need to consider all subsets of Aγ of the form [u, a], for u ∈ Aα and a ∈ A, and their
intersections. Recall that A = {p, p · p} is the set of all subformulas of p⇒ p · p and
Aγ is the free groupoid over A. Also recall that [u, a] = {x ∈ AγK | u[x]�A′a} and
a sequent is in �A′ iff it is provable in GLf or it is not in (p⇒ p · p)←. So the only
way that [u, a] is not all of Aγ is that for some x, u[x]⇒ a is in (p⇒ p · p)← and
u[x]⇒ a is not provable. Therefore, [u, a] = Aγ except possibly for [ , p], [ ◦ p, p],
[p ◦ , p], [ , p · p], [ ◦ p, p · p] and [p ◦ , p · p]. Note that x⇒ p is not in (p⇒ p · p)←,
unless x is ε or p; also, p⇒ p is provable and ε⇒ p is not. Therefore, x�A′p iff
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x 6= ε, and [ , p] = {ε}c. Similarly, we can see that [ ◦ p, p] = [p ◦ , p] = Aγ ,
[ , p · p] = {p}c and [ ◦ p, p · p] = [p ◦ , p · p] = {ε}c. Consequently,

R(A′) = {Aγ , ↓ p = {ε}c, ↓ (p · p) = {p}c, {ε, p}c},

since it contains all intersections of the sets [u, a]. The order relation is set inclusion.
Also, we have {ε}c◦{ε}c = (A∪{ε})c; so (↓ p)·(↓ p) = {ε}c ·{ε}c = g({ε}c◦{ε}c) =
g((A ∪ {ε})c) = {ε, p}c, since (A ∪ {ε})c ⊆ {ε, p}c and g is a closure operator.
Therefore, ↓ p 6⊆ (↓ p)2 and p⇒ p · p is not valid in R(A′).

Obviously, the construction in the proof of Theorem 4.17 did not produce the
smallest counterexample to the equation p ≤ p2, since a three-element chain would
also work. We present an alternative proof of Theorem 4.17 that produces smaller
counterexamples. The proof is along the same lines as the proof in [31].

First for every K-sequent s, we define s⇐ as the smallest set of K-sequents that
satisfies the conditions in the definition of s← plus the condition

• If (u[x]⇒ a) ∈ s⇐, then (|u| ⇒ a) ∈ s⇐.
It is easy to see that if s← is finite, then s⇐ is also finite. Also, we define the
sequent K-matrix BK(s) = BK = 〈AK,�BK〉, where �BK = �AK ∪ (s⇐)c. It can
be easily shown, as in Lemma 4.15, that BK is a matrix model of KGLf. We can
now prove Theorem 4.17 using the matrix BK.

Proof. Let s be a sequent such that 6`KGLf s. Then, s 6∈ �AK , so s 6∈ �BK , since
s ∈ s⇐. So, 6|=BK(s) s and 6|=R(BK(s)) s, by Theorem 4.6. We will show that
R(BK(s)) is finite. If (|u| ⇒ a) 6∈ s⇐, then (u[x]⇒ a) 6∈ s⇐, for all x ∈ AγK

K , hence
(u[x]⇒ a) ∈ �BK , for all x ∈ AγK

K and [u, a]BK(s) = AγK
K . Since there are only

finitely many sequents in s⇐, the set D = {[u, a]BK(s) | u ∈ AαK
K , a ∈ AK} is finite.

Every set in R(BK(s)) is an intersection of elements of D, so R(BK(s)) is finite. �

We revisit the same example of p⇒ p · p and describe the r`u-groupoid R(B).
According to the last proof we need only consider sets [u, a] such that (|u| ⇒ a) ∈
(p⇒ p · p)⇐ = {(ε⇒ p), (p⇒ p), (p⇒ p · p), (ε⇒ p · p)}, since all other such sets
are equal to Aγ ; note that (p⇒ p · p)⇐ is bigger than (p⇒ p · p)←. Also, note that
x �B p · p iff x is ε or p, since (ε⇒ p · p) ∈ (p⇒ p · p)⇐, even though (ε⇒ p · p) 6∈
(p⇒ p · p)←. So, [ , p · p] is equal to {ε, p}c and not to {p}, as in the previous
construction. It can be easily verified that [ , p] = [ ◦ p, p · p] = [p ◦ , p · p] = {ε}c

and [ ◦ p, p] = [p ◦ , p] = Aγ . Consequently,

R(B) = {Aγ , ↓ p = {ε}c, ↓ (p · p) = {ε, p}c}.

Also, (↓ p)◦(↓ p) = {ε}c◦{ε}c = (A∪{ε})c and (↓ p)·(↓ p) = g((A∪{ε})c) = {ε, p}c;
hence ↓ p 6⊆ (↓ p)2. Observe that R(B) is a smaller counterexample than R(A′);
actually it is the smallest counterexample to p⇒ p ·p. Nevertheless, for the sequent
p⇒ 1 the construction does not produce a counterexample of minimum cardinality.
We mention, without details, that for p⇒ 1, R(B) = {AγK , [p ◦ , 1] = {ε}c, ↓ p =
{p}c, {ε, p}c}, but the smallest counterexample has 3 elements.

4.5. Strong separation. Let K be a sublanguage of L that contains the connective
\. The strong separation property for HL states that B `HL c iff B `KHL c, for all
sets of formulas B ∪ {c} over K. Also, the separation property for HL states that
`HL c iff `KHL c, for all formulas c over K.
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The separation property for HL follows from the cut elimination property of
KGL and the equivalence of the systems KHL and KGL. In detail, if `HL c,
then `GL ε⇒ c, by Theorem 2.3, and `GLf ε⇒ c, by Corollary 4.8. Since ε⇒ c
is provable without (CUT), then we can obtain a proof of it by a proof search. It
is not hard to see that resulting proof will involve only the rules in KGL. Since
`KGL ε⇒ c, we get `KHL c, by Theorem 2.3. The converse direction is obvious.

A proof of the strong separation property cannot be obtained by a similar argu-
ment, since the systems KGL and KGLf are not equivalent. Nevertheless, HL has
the strong separation property, as we prove below.

Let K be a sublanguage of L that contains the connective \ and let B ∪{c} be a
set of formulas over K; also, let R be a set of simple structural metarules fit for K.
We denote by AK = AK(B, c) the partial subalgebra of FmK of all subformulas
of B ∪ {c}. Consider the sequent K-matrix AK(B, c) = AK = 〈AK,�〉, where
x �AK a iff B `KHLR φK(x⇒ a).

Corollary 4.18. Let K be a sublanguage of L that contains the connective \, let
B ∪ {c} be a set of K-formulas and let R be a set of simple structural metarules fit
for K. The sequent matrix AK(B, c) is in KGLR.

Proof. Let (r) be a metarule of KGLR that may involve the connective • ∈ K.
Recall that (r)AK is of the form (see Section 3.3):

∀a, b, c ∈ AK, x ∈ AγK
K , u ∈ AαK

K , if a•AK b is defined, then s1 ∈�AK

and . . . and sn ∈�AK implies s ∈�AK .
By Lemma 3.3, we need to show that (r)AK holds, so assume that a•AK b is defined
and si ∈�AK , for all i. By definition, we get B `KHLR φK(si), for all i. Since (r)
is a metarule of KGLR, its instance (r′) = ({s1, . . . , sn}, s) holds in KGLR; i.e.
{s1, . . . , sn} `KGLR s. By Theorem 2.3 we get {φK(s1), . . . , φK(sn)} `KHLR φK(s);
let Π be a proof in KHLR of this deduction. Let Πi be a proof of φK(si) from B
in KHLR for all i. Then

Π1 Π2 · · · Πn

Π
is a proof of φK(s) in KHLR from B. Hence s ∈ �AK . �

Corollary 4.19. If B ∪ {c} is a set of formulas over a sublanguage K of L that
contains \ and and let R is a set of simple structural metarules fit for K, then
B `HLR c iff {1 ≤ b |b ∈ B} |=RLUGR 1 ≤ c iff B `KHLR c. In particular, the Hilbert
system HL enjoys the strong separation property.

Proof. If B `HLR c, then s[B] `GLR s(c) by Theorem 2.3. If AK = AK(B, b)
then AK(B, c) ∈ KGLR by Corollary 4.18, so R(AK) ∈ RLUGR, by Theorem 4.1
and Theorem 4.11. So R(AK)L ∈ GLR by Lemma 4.10, and s[B] `R(AK)L s(c).
Consequently, {1 ≤ b | b ∈ B} |=R(AK) 1 ≤ c, in view of Lemma 3.5 and the fact
that ε(s(c)) = (1 ≤ c). Consider the identity partial map f : FmK ⇀ AK on the
subformulas of B ∪ {c} and let f̄ : FmL → R(AK) be a homomorphism in H(f)
(recall the definition of H(f) preceding Lemma 4.5). So,

if f̄(1) ⊆R(AK) f̄(b), for all b ∈ B, then f̄(1) ⊆R(AK) f̄(c).

Since f̄ is a L-homomorphism we have f̄(1) = εg = g�({ε}). Moreover, since
AK ∈ KGLR, for every subformula d of B∪{c}, f̄(d) =↓ f(d) =↓ d, by Lemma 4.5.
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Consequently, f̄(1) ⊆R(AK) f̄(d) iff g�({ε}) ⊆R(AK)↓ d iff ε ∈↓ d iff ε �AK d. This
is in turn equivalent to B `KHLR d by definition, so we have that B `KHLR b, for
all b ∈ B implies B `KHLR c. Consequently, we obtain B `KHLR c. �

Note that u ≈ v =| |=RLUG 1 ≤ u\v∧v\u, for all pairs of terms u, v. Consequently,
RLUG is the equivalent algebraic semantics of `HL for ε(p) = (p ∧ 1 ≈ 1) and
∆(p, q) = p\q ∧ q\p.

Note that the terms x◦(y◦z) and (x◦y)◦z are fit for any language that contains \
and at least one of / and multiplication. It follows from Corollary 4.19 that for such
a languages K, the system KHLa enjoys the strong separation property. Recall that
the (bidirectional) Hilbert-style rule that corresponds to the simple Gentzen-style
rule of associativity is

x ◦ (y ◦ z) K d

(x ◦ y) ◦ z  K d
h(a)

The next result simplifies this rule to an axiom.

Lemma 4.20. Let K be a set of connectives that contains \.
(1) If K contains multiplication, then h(a) is equivalent to the combination of

the axioms [(ab)c]\[a(bc)] and [a(bc)]\[(ab)c].
(2) If K contains /, then h(a) is equivalent to the combination of the axioms

[(a\d)/c]\[a\(d/c)] and [a\(d/c)]\[(a\d)/c].

Proof. (1) Since K contains multiplication, (x◦y)◦z  K d = [φK(x)φK(y)]φK(z)\d
and x ◦ (y ◦ z) K d = φK(x)[φK(y)φK(z)]\d. Therefore, h(a) is equivalent to

[(ab)c]\d
[a(bc)]\d

(·h(a))

This implies the two axioms, by instantiating d to a(bc) and (ab)c. The converse is
also true by (T`), a rule that is shown to be derivable in Lemma A.2.

(2) We first consider the case where K contains /, but not multiplication; clearly
both x ◦ (y ◦ z) and (x ◦ y) ◦ z need to be solvable. The only case where the rule
does not trivialize is when x and z are formulas; for example, if x consists of more
than one formula then at least one of y and z need to be empty.

If y is also a single formula, then h(a) is equivalent to the instance

c\[b\(a\d)]

b\[a\(d/c)]

Instantiating this for b = (a\d)/c, yields the target formula [(a\d)/c]\[a\(d/c)]
in the denominator and c\{[(a\d)/c]\(a\d)} in the numerator, which is just an
instance of (As``). Likewise, h(a) implies [a\(d/c)]\[(a\d)/c].

Conversely, starting from c\[b\(a\d)] we first obtain b\[(a\d)/c], by (RAr`). Us-
ing the first axiom and (Rd\) we obtain {b\[(a\d)/c]}\{b\[a\(d/c)]}. Hence by
(MP`), we have b\[a\(d/c)], which completes the derivation of the downward direc-
tion of h(a). Likewise, we obtain the upward direction.

If y consists of at least two formulas, then h(a) is equivalent to the instance

y  K a\(d/c)

y  K (a\d)/c

which, by similar arguments, is equivalent to the combination of the two axioms.
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We will show that if K contains both / and multiplication, then the two sets
of axioms are equivalent, and invoke (1). We saw that the two axioms in (1) are
equivalent to the bidirectional rule (·h(a)). Likewise, by instantiating b appropri-
ately, it is easy to see that the two axioms in (2) are equivalent to the bidirectional
rule

b\[(a\d)/c]

b\[a\(d/c)]
(/h(a))

We claim that the rules (·h(a)) and (/h(a)) are equivalent. As an example, we
demonstrate one of the four directions.

c\[b\(bc)]
(PI)

(bc)\[a\(a(bc))]
(PI)

[a(bc)]\d
(bc)\(a\d)

(T`  K)

c\[b\(a\d)]
(T`  K)

b\[(a\d)/c]
(RAr`)

where the rule (T`  K) is shown to be derivable in Lemma A.2. �

Lemma 4.20(2) provides a Hilbert-style system that is equivalent to FL and has
the strong separation property with respect to the set {\, /} of basic connectives.

4.6. Further results. We conclude the section by presenting two more applica-
tions of the quasiembedding result.

4.6.1. Algebraic semantics. The next theorem is a strengthening of Theorem 4.6
for matrices in A ∈ KGL.

Theorem 4.21. Assume that K is a subset of L that contains the connective \,
S ∪{s0} is a set of sequents fit for K and A ∈ KGL. If S |=R(A) s0 then S |=A s0.

Proof. Let f : FmK ⇀ A be a partial assignment such that f [S ∪ {s0}] ⊆ AγK ×
A. We will show that f [S] ⊆ �A implies f(s0) ∈ �A. Since S |=R(A) s0, for
every homomorphism f̄ : FmL → R(A) with f̄ ∈ H(f) (see definition before
Lemma 4.5), we have that f̄ [S] ⊆ �R(A) implies f̄(s0) ∈ �R(A).

It suffices to show that f̄(s) ∈ �R(A) iff f(s) ∈ �A, for all s ∈ S ∪ {s0}. Let
s = (x⇒ a0) and x = xFm

γK
K (a1, . . . , an). We have f(s) ∈ �A iff f(x) �A f(a0)

iff f(x) ∈↓ f(a0). On the other hand, f̄(s) ∈ �R(A) iff (f̄(x))R(A) ⊆ f̄(a0) iff
↓ f(x) ⊆↓ f(a0) iff f(x) ∈↓ f(a0).

We used above that (f̄(x))R(A) =↓ f(x). Indeed, we have f̄(x) = f̄(xFm
γK
K (a1, . . . , an))

= xR(A)γK (f̄(a1), . . . , f̄(an)) and (f̄(x))R(A) = xR(A)(f̄(a1), . . . , f̄(an)), since f̄ is
an assignment, and f̄(ai) =↓ ai, for all i, by Lemma 4.5. Moreover, by Lemma 4.4(4)
and the fact that f is a assignment, we have xR(A)(↓ f(a1), . . . , ↓ f(an)) =↓
xAγK (f(a1), . . . , f(an)) =↓ f(xFm

γK
K (a1, . . . , an)) =↓ f(x). �

Lemma 4.22. The variety RLUGR of all r`u-groupoids that satisfy a set of simple
rules R is an algebraic semantics for GLR; i.e., for all sets of sequents S ∪{s}, we
have S `GLR

s iff ε[S] |=RLUGR
ε(s).

Proof. In view of Theorem 3.4, it suffices to show that S |=KGLR
s iff ε[S] |=RLUGR

ε(s).
If ε[S] |=RLUGR

ε(s), then ε[S] |=R(A) ε(s) for all A ∈ KGLR, by Corollary 4.12.
In view of Lemma 3.5 and Theorem 4.1, S |=R(A)K s, for all A ∈ KGLR. By
Theorem 4.21, S |=A s for all A ∈ KGLR, so S |=KGLR

s.
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Conversely, if S |=KGLR
s, then S |=AK s, for all A ∈ RLUGR. By Lemma 3.5,

we have ε[S] |=A ε(s), for all A ∈ RLUGR; hence ε[S] |=RLUGR
ε(s). �

For an equation u ≈ v, we define s(u ≈ v) = {u⇒ v, v ⇒ u}. Note that ε[s(u ≈
v] = {u ≤ v, v ≤ u} It is obvious that u ≈ v =| |=RLUG ε(s(u ≈ v)). If we combine
this fact with Lemma 4.22 and the equivalence of GL and HL given in Theorem 2.3,
we obtain the following theorem.

Theorem 4.23. The variety RLUGR of all r`u-groupoids that satisfy a set of simple
rules R is an equivalent algebraic semantics for both GLR and HLR. The same
holds for the K reduct of RLUGR and KGLR and KHLR, where K contains \ for
the statement about KHLR.

Corollary 4.24. The variety RLUG is generated by its finite members; hence its
equational theory is decidable. The same holds for RLUGR, where R is a set of
reducing simple rules.

Proof. Generation by finite members follows from Theorems 4.17 and 4.23. Decid-
ability follows by the generation by finite members. Alternatively, an equation ε is
valid in RLUGR iff the sequent s(ε) is provable in GLR, by Theorem 4.23, iff s(ε) is
provable in GLf

R, by Theorem 4.8. Now, by performing an exhaustive proof search
for s(ε), we can decide if it is provable in GLf. �

4.6.2. Remarks on the FEP. Let A be in KRLUGR, for a simple set of rules R and
for a sublanguage K that contains multiplication, and B a partial subalgebra of A.
We define the K-matrix BA = 〈BK,�〉, where x � b iff xA ≤A b.

Lemma 4.25. If A is in KRLUGR, for a simple set of rules R and for a sublanguage
K that contains multiplication, and B a partial subalgebra of A, then BA ∈ GL and
the map q : B → R(BA), defined by q(b) =↓ b, is an embedding.

Proof. In view of Corollary 4.12 and Lemma 3.3, to show that BA ∈ KGLR, it
suffices to check the interpretations (r)BA , for all metarules (r) of KGL. As an
example, we check (\L)A. Let a, b, c ∈ B, x ∈ Bγ , u ∈ Bα, and assume that
a\Bb is defined, x �BA

a and u[b] �BA
c. Then xA ≤A a and (u[b])A ≤A c,

so x �AM a and u[b] �AM c. Since AM ∈ GL, we have u[x ◦ (a\b)] �AM c or
(u[x ◦ (a\b)])A ≤A c. Since a\Bb is defined, we have u[x ◦ (a\b)] �BA

c. �

A class of algebras is said to have the finite embeddability property if every partial
subalgebra of an algebra in the class can be (partially) embedded in a finite algebra
in the class.

Corollary 4.26. If for all A is in RLUGR, for a simple set of rules R, and for all B
a partial subalgebras of A, R(BA) is finite, then RLUGR has the finite embeddability
property.

The following lemma is shown in [4], under a different terminology.

Theorem 4.27. [4] If A is an integral residuated lattice and B a partial subalgebra
of A, then R(BA) is finite. Thus, the variety RLUGai of integral residuated lattices
has the finite embeddability property.
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Appendix A. Equivalence between GL and HL

Lemma A.1. For all a, b, c ∈ FmL, x ∈ (FmL)γ and u ∈ (FmL)α, we have
(1) u[a ◦ b]⇒ c a`GL u[a · b]⇒ c.
(2) u[x]⇒ a a`GL u[φ(x)]⇒ a.
(3) u[x]⇒ a a`GL x⇒ u a.

Proof. (1) The left-to-right deduction is just (·L). For the converse, we have

a⇒ a b⇒ b
a ◦ b⇒ a · b (·R)

u[a · b]⇒ c

u[a ◦ b]⇒ c
(CUT)

(2) For x ∈ FmL, the statement is obvious. We proceed by induction. Assume
that the statement is true for x, y ∈ (FmL)γ and for all a ∈ FmL, u ∈ (FmL)α;
we will show it is true for x ◦ y. We have, for ux[y] = uy[x] = u[x ◦ y],

u[x ◦ y]⇒ a

ux[y]⇒ a
(=)

ux[φ(y)]⇒ a
(ind)

u[x ◦ φ(y)]⇒ a
(=)

and

u[x ◦ φ(y)]⇒ a

uφ(y)[x]⇒ a
(=)

uφ(y)[φ(x)]⇒ a
(ind)

u[φ(x) ◦ φ(y)]⇒ a
(=)

u[φ(x) · φ(y)]⇒ a
(1)

u[φ(x ◦ y)]⇒ a
(=)

All of the above deductions hold upwards as well, so we obtain the converse.
(3) We will use induction on the complexity of u. The statement is obvious for

u = . Assume that the statement holds for u. We have
(y ◦ u)[x]⇒ a

y ◦ u[x]⇒ a
(=)

φ(y) ◦ u[x]⇒ a
(2)

u[x]⇒ φ(y)\a
(\R)

x⇒ u (φ(y)\a)
(ind)

x⇒ (y ◦ u) a
(=)

and x⇒ a\b
a⇒ a (Id) b⇒ b

(Id)

a ◦ (a\b)⇒ b
(\L)

a ◦ x⇒ b
(CUT)

The first sequence of deductions establishes the forward direction. The converse
follows from noting that all the deductions except for (\R) hold upwards. The
converse of the rule (\R) is given by the second sequence of deductions. Similarly, we
obtain (y◦u)[x]⇒ a a`GL x⇒ (y◦u) a, a fact that completes the induction. �

A.1. Derivable rules. We will show that the following rules and rule schemes are
derivable in HL. As before, a, b, c denote atomic formulas and K ranges over all
sublanguages of L that contain \ and are such that the rule scheme connectives are
contained in K. The variable x ranges over all groupoid words fit for K.

a\b b\c
a\c

(T`)
a b\(a\c)

b\c
(NP`)

a\b c\d
(b\c)\(a\d)

(R\)

a\b
(c/b)\(c/a)

(Rn/)
a\b

(a/c)\(b/c)
(Rd/)

b/a

a\b
(RC`)
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a\[b/(a\b)]
(As`r) [b/(a\b)]/a

(Asrr) [(b/a)\b]/a
(Asr`)

a\(b/c)
c\(a\b)

(RA`r)
(b\c)/a

b\(c/a)
(RA`)

b\(c/a)
(b\c)/a

(RAr)

a b/a

b
(MPr)

a

b/(b/a)
(Nr)

a (c/a)/b

c/b
(NPr)

a\b
(c ∧ a)\(c ∧ b)

(R`∧)
a\b

(a ∧ c)\(b ∧ c)
(Rr∧)

c\a c\b
c\(a ∧ b)

(RM1)

a\b
(c ∨ a)\(c ∨ b)

(R`∨)
a\b

(a ∨ c)\(b ∨ c)
(Rr∨)

a\b
ca\cb

(R`·) a\b
ac\bc

(Rr·) a\b c\d
ac\bd

(R·)

x K a a\b
x K b

(T` K)
x a a\b

x b
(T` )

x K a x K b

x K (a ∧ b)
(RM K)

x K a b\c
x K [c/(a\b)]

(R\ K)
x K a b\c

x K [(b/a)\c]
(R/ K)

x φ(x)
(PI )

x a

φ(x)\a
(RPI )

φ(x)\a
x a

(RPE )

Lemma A.2.
(1) The above rules are derivable in HL. In particular, every rule is derivable

from rules of HL that involve only the connectives of the given rule.
(2) The rule (RAr`) is equivalent to the combination of (As`r) and (Rn/), in

the presence of (I`), (As``) and (T`) [or of (I`), (RA`r), (Rd\) and (MP`)].
(3) The rule (RA`r) is equivalent to the combination of (As``) and (Rn\), in

the presence of (I`), (As`r) and (T`) [or of (I`), (RAr`), (Rd\) and (MP`)].
(4) The rules (Rd/) and (Rd\) are equivalent, in the presence of (As``), (As`r)

and (T`) [or of (I`), (RAr`), (RA`r), (Rd\) and (MP`)].
(5) Finally, the rules (N`), (NP`) and (RC`) are equivalent, in the presence of

(As`r), (As``) and (MP`) [or of (I`), (RAr`), (RA`r) and (MP`)].

Proof. The statements follow from the deductions below.

(T`) = a\b
b\c

(a\b)\(a\c)
(Rd\)

a\c
(MP`)

= b\c
a\b

(b\c)\(a\c)
(Rn\)

a\c
(MP`)

(Rn/) =
a\b b\[(c/b)\c)]

(As``)

a\[(c/b)\c)]
(T`)

(c/b)\(c/a)
(RAr`)

(RAr`) = b\[c/(b\c)]
(As`r)

a\(b\c)
[c/(b\c)]\(c/a)

(Rn/)

b\(c/a)
(T`)
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(Rn\) =
a\b b\[c/(b\c)]

(As`r)

a\[c/(b\c)]
(T`)

(b\c)\(a\c)
(RA`r)

(RA`r) = c\[(b/c)\b]
(As``)

a\(b/c)

[(b/c)\b]\(a\b)
(Rn\)

c\(a\b)
(T`)

(As``) = (b/a)\(b/a)
(I`)

a\[(b\a)\b]
(RA`r) (Rd/) =

c\[(a/c)\a]
(As``)

a\b
[(a/c)\a]\[(a/c)\b]

(Rd\)

c\[(a/c)\b]
(T`)

(a/c)\(b/c)
(RAr`)

(As`r) = (a\b)\(a\b)
(I`)

a\[b/(a\b)]
(RAr`)

(Rd\) =
c\[a/(c\a)]

(As`r)
a\b

[a/(c\a)]\[b/(c\a)]
(Rd/)

c\[b/(c\a)]
(T`)

(c\a)\(c\b)
(RA`r)

(R\) =

a\b
(b\d)\(a\d)

(Rn\)
c\d

(b\c)\(b\d)
(Rd\)

(b\c)\(a\d)
(T`)

(NP`) = b\(a\c)

a
(a\c)\c

(N`)

[b\(a\c)]\(b\c)
(Rd\)

b\c
(MP`)

(RC`) = b/a a\[(b/a)\b]
(As``)

a\b
(NP`)

, (N`) =
a a\[b/(a\b)]

(As`r)

b/(a\b)
(MP`)

(a\b)\b
(RC`)

(MPr) =
b/a

a a\[(b/a)\b]
(As``)

(b/a)\b
(MP`)

b
(MP`)

(MP`) =
a\b

a
1\a

(R1a`)

1\b
(T`)

b
(R1b`)

(R`·) =
a\b b\(c\cb)

(PI)

a\(c\cb)
(T`)

ca\cb
(RPI)

(Rr·) =
c\(b\bc)

(PI)
a\b

(b\bc)\(a\bc)
(Rn\)

c\(a\bc)
(T`)

ac\bc
(RPI)

(R·) =
a\b

ac\bc
(Rr/)

c\d
bc\bd

(R`/)

ac\bd
(T`)

(R`∧) = (c ∧ a)\c
(ME`)

a\b (c ∧ a)\a
(MEr)

(c ∧ a)\b
(T`)

(c ∧ a)\(c ∧ b)
(RM1)

(R`∨) = c\(c ∨ b)
(JI`)

a\b b\(c ∨ b)
(JIr)

a\(c ∨ b)
(T`)

(c ∨ a)\(c ∨ b)
(RJ\)

The proofs of (Rr∧) and (Rr∨) are similar to (R`∧) and (R`∨), respectively.
Using (RCr), one can show that (Asrr), (Asr`), (MPr), (Nr) and (NPr) follow
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from the corresponding rules, obtained by interchanging the letters r and ` in their
names.

Assume that x, y are groupoid words, a, b, c are formulas.
For (T` K), if K contains ·, then x  K a = φ(x)\a and (T` K) is just (T`).

Assume now that K does not contain ·, in which case x is solvable. If x is equal to
a formula or ε, then (T` K) is just (T`) or (MP`). If x = c ◦ y, y is solvable and
(T` K) holds for y, we have

(c ◦ y) K a

y  K (c\a)
(=)

a\b
(c\a)\(c\b)

(Rd\)

y  K (c\b)
(Ind)

(c ◦ y) K b
(=)

Note that if K does not contain /, this is the only case. If x = y ◦ c, y is a solvable
groupoid word not equal to a formula or ε, and (T` K) holds for y, then we have

(y ◦ c) K a

y  K (a/c)
(=)

a\b
(a/c)\(b/c)

(Rd/)

y  K (b/c)
(Ind)

(y ◦ c) K b
(=)

The proof of (T`) is almost identical.
For (RM K), if · is not contained in K, then x is solvable. If x = c ◦ y, y is

solvable and (RM K) holds for y, we have

(c ◦ y) K a

y  K (c\a)
(=)

(c ◦ y) K b

y  K (c\b)
(=)

y  K [(c\a) ∧ (c\b)]
(Ind)

[(c\a) ∧ (c\b)]\[c\(a ∧ b)]
(M\)

y  K (c\(a ∧ b))
(T` K)

(c ◦ y) K (a ∧ b)
(=)

Note that for y = and y = d we obtain

c\(a ∧ b) c\(a ∧ b)
c\(a ∧ b)

(RM1) and
d\[c\(a ∧ b)] d\[c\(a ∧ b)]

d\[c\(a ∧ b)]
(RM2)

The proof for the case where x = y ◦ c, y is a solvable groupoid word not equal to a
formula or ε, and (RM K) holds for y is analogous to the previous case, if instead
of (M\) we use (M/), which we prove now. We obtain the axiom

c\[(a/c)\a]
(A``)

(a/c ∧ b/c)\(a/c)
(ME`)

{c\[(a/c)\a]}\[{c\[(a/c ∧ b/c)\a]}]
(Rn\), (Rd\)

c\[(a/c ∧ b/c)\a]
(MP`)

which we call (Aux`) and similarly, using (MEr), we obtain the axiom

c\[(a/c ∧ b/c)\b]
(Auxr)

Consequently, we have (M/)
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c\[(a/c ∧ b/c)\a]
(Aux`)

c\[(a/c ∧ b/c)\b]
(Auxr)

c\[(a/c ∧ b/c)\(a ∧ b)]
(RM2)

(a/c ∧ b/c)\[(a ∧ b)/c]
(RAr`)

If x is a formula or ε, then (RM K) is just (RM1). The same holds for the case
where · is contained in K, since x K a = φ(x)\a.

For (R\ K) we have

x K a

a\[b/(a\b)]
(As`r)

b\c
[b/(a\b)]\[c/(a\b)]

(Rd/)

a\[c/(a\b)]
(T`)

x K [c/(a\b)]
(T` K)

For (R/ K) we use (As``) and (Rd\), and work as before.
For (RPI ), we work by induction on x. If x is a formula or ε, then x  a =

φ(x)\a. We assume that there are groupoid words y, z such that x = z ◦ y or
x = y ◦ z, and y contains the right-most among the occurrences of subformulas or
ε of maximal depth. For the two cases, we have respectively

(z ◦ y) a

y  (φ(z)\a)
(=)

φ(y)\(φ(z)\a)
(=)

φ(z)φ(y)\a
(RPI)

φ(z ◦ y)\a
(=)

and

(y ◦ z) a

y  (a/φ(z))
(=)

φ(y)\(a/φ(z))
(=)

φ(z)\(φ(y)\a)
(RA`r)

φ(y)φ(z)\a
(RPI)

φ(y ◦ z)\a
(=)

We apply the same reasoning for (PI ). If x is a formula or ε, then (PI ) follows
from (I`). We assume that there are groupoid words y, z such that x = z ◦ y or
x = y ◦ z, the rule holds for y and y contains the right-most among the occurrences
of subformulas or ε of maximal depth. For the two cases, we have respectively

y  φ(y) φ(y)\[φ(z)\φ(z)φ(y)]
(PI)

y  [φ(z)\φ(z)φ(y)]
(T` )

z ◦ y  φ(z ◦ y)
(=)

and y  φ(y)
φ(z)\[φ(y)\φ(y)φ(z)]

(PI)

φ(y)\[φ(z)φ(y)/φ(z)]
(RAr`)

y  [φ(z)φ(y)/φ(z)]
(T` )

z ◦ y  φ(z ◦ y)
(=)

(RPE ) follows directly from (PI ) and (T` ). �

A.2. Translations between HL and GL. If (R)= 〈S, s〉 is a rule of KGL, we
set (HR) to be rule scheme 〈φK[S], φK(s)〉.

Theorem A.3. For every set S ∪ {s} of sequents and every sublanguage K of L
that contains \, if S `KGL s then φK(S) `KHL φK(s).

Proof. Given a rule (R) of K-GLs, we will verify that the rule scheme (HR) is a
derivable rule scheme of KHL.

Assume that K does not contain the connective ·, and consider (K∧L`). Since
u[a] is solvable, there is a solvable groupoid word x and an augmented solvable
groupoid word v such that u[a] equals v[a ◦ x] or v[x ◦ a]. If K does not contain
/, then only the first case can hold and the terms x and v can be taken to be
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left solvable. In the first case the rule scheme (HK∧L`) is equal to the following
deduction tree.

u[a] K c

(v[a ◦ x]) K c
(=)

x K (a\(v  K c))
(=)

(a ∧ b)\a
(ME`)

[a\(v  K c)]\[(a ∧ b)\(v  K c)]
(Rn\)

x K [(a ∧ b)\(v  K c)]
(T` K)

u[a ∧ b] K c
(=)

The second case uses the rule (Rn/) and the proof is analogous. If K contains the
connective ·, then u[a] K c = φ(u[a])\c. Moreover, φ(u[a]) = φ(v[a ◦ x]), for some
left solvable groupoid word x and an augmented left solvable groupoid word v. So,

u[a] K c

φ(u[a])\c
(=)

φ(v[a ◦ x])\c
(=)

v[a ◦ x] c
(RPE )

and

v[a ◦ x] c

(v[(a ∧ b) ◦ x] c
(*)

φ(v[(a ∧ b) ◦ x])\c
(RPI )

φ(u[a ∧ b])\c
(=)

u[a ∧ b] K c
(=)

where (*) follows from the deduction tree for the first case, since v[a ◦ x] is left
solvable. Likewise, we obtain (HK∧Lr). The rule (HK∧R) is equal to (RM K).

For (HK∨R`), we have

x K a a\(a ∨ b)
(JI`)

x K (a ∨ b)
(T` K)

and for (HK∨Rr) we use (JIr). For (HK∨L), we use the same reasoning as in
(HK∧L`); in the key deduction we use (RJ\) and (RJ/) instead of (T` K).

Note that in case that K does not contain · and x 6= ε, the sequent u[x◦ (a\b)] in
(HK\L) is solvable for x ◦ (a\b), since otherwise it not solvable at all. We consider
the two cases, where x 6= ε and / is contained in K or not. Note that in the second
case x has to be equal to a formula d in order for x ◦ (a\b) to be left solvable. For
the two cases we have respectively

x K a

u[b] K c

b\(u K c)
(=)

x K [(u K c)/(a\b)]
(R\ K)

u[x ◦ (a\b)] K c
(=)

and

d K a

d\a
(=)

u[b] K c

b\(u K c)
(=)

(a\b)\[d\(u K c)]
(R\)

u[d ◦ (a\b)] K c
(=)

If x = ε, then we use (N`). Finally, if K contains ·, then we reduce the proof to the
case where K contains neither · or /, as we did for the rule (HK∧L`). Likewise we
obtain the proof of (HK/L`), by using (R/ K) instead of (R\ K). Of course, in
this case K contains /.

For (HK\R), we have a ◦ x K b = x K a\b, if K does not contain ·, because
then x is solvable. If K contains ·, then we have

(a ◦ x) K b

φ(a ◦ x)\b
(=)

aφ(x)\b
(=)

φ(x)\(a\b)
(PRE )

x K a\b
(=)
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Note that in the case of (HK/R), K contains /. Assume first that K does not
contain ·. If x is not equal to a formula or ε, then we have x ◦ a K b = x K b/a,
because x has to be solvable. For the case where x is equal to c, where c is either a
formula or ε, and for the case where K contains ·, we have respectively (here ĉ = c,
if c is a formula, while ε̂ = 1)

c ◦ a K b

a\(ĉ\b)
(=)

ĉ\(b/a)
(RAr`)

c K b/a
(=)

and

x ◦ a K b

(φ(x) · a)\b
(=)

a\(φ(x)\b)
(RPE )

φ(x)\(b/a)
(RAr`)

x K b/a
(=)

The rule (HK·R) follows directly from (R·) and the fact that x K a = φ(x)\a,
y  K b = φ(y)\b and x◦y  K ab = φ(x)φ(y)\ab. Moreover, the rule (HK·L) holds
trivially since both u[a ◦ b] K c and u[a · b] K c are equal to φ(u[a ◦ b])\c. Also,
(HK1R) follows from (1).

For (HK1L), if u = then u[1] = 1 and | | = ε, so we have
a

1\a , which follows
from (I1r) and (MP`). If K does not contain ·, then u[1] is solvable, so there exist
a solvable groupoid word x and a solvable augmented groupoid word v such that
u[1] equals v[1 ◦ x] or v[x ◦ 1]; in both cases |u| = v[x]. If K does not contain /,
then only the first case can hold and the terms can be taken to be left solvable. We
have the following for the two cases

|u| K c

x K (v  K c)
(=)

(v  K c)\[1\(v  K c)]
(I1r)

x K (1\(v  K c))
(T` K)

(v[1 ◦ x]) K c
(=)

u[1] K c
(=)

|u| K c

x K (v  K c)
(=)

1\[(v  K c)\(v  K c)]
(I1`)

(v  K c)\[(v  K c)/1]
(RAr`)

x K ((v  K c)/1)
(T` K)

(v[x ◦ 1]) K c
(=)

u[1] K c
(=)

If K contains ·, then we reduce the problem to the case where K does not contain
/ as in the proof of (HK∧L`). (HKId) is equal to (I`). Finally, for (HKcut), if K
does not contain · and x is not a formula or ε, then u[x] is solvable for x and

x K a a\(u K c)
x K (u K c)

(T` K)

u[x] K c
(=)

If x = d, where d is a formula or ε, then u[a] is equal to v[a ◦ y] or v[y ◦ a], for some
solvable groupoid word x and a solvable augmented term v. We have

d\a
(a\v  K c)\(d\v  K c)

(Rn\)
y  K a\(v  K c)

y  K d\(v  K c)
(T` K)

v[d ◦ y] K c
(=)
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for the first case. Likewise we handle the second case. If K contains ·, then we reduce
the proof to the case where neither · nor / is in K, as in the proof of (HK∧L`). �

Theorem A.4. For every set B ∪ {c} of formulas and every sublanguage K of L
that contains the connective \, if B `KHL c then s[B] `KGL s(c).

Proof. First note that by (\R) and

x⇒ a\b
a⇒ a (Id) b⇒ b

(Id)

a ◦ (a\b)⇒ b
(\L)

a ◦ x⇒ b
(CUT)

we obtain the bidirectional rule
a ◦ x⇒ b

x⇒ a\b
(\R)l

In particular, for x = ε we have ε⇒ a\b a`KGL a⇒ b; we will be using this fact
without explicit reference. For every rule (R) of HL, we will verify that the rule
(GR) is derivable in GL. (GI`) follows from (Id) and (GMP`) follows from (CUT).
For (GRd\) and (GRn\), we have

c⇒ c (Id) a⇒ b
c ◦ (c\a)⇒ b

(\L)

c\a⇒ c\b
(\R)

and
a⇒ b c⇒ c (Id)

a ◦ (b\c)⇒ c
(\L)

b\c⇒ a\c
(\R)

(GME`), (GMEr) and (GRM) follow easily from (∧L`), (∧Lr) and (∧R), respec-
tively. (GM\) follows from

a⇒ a (Id) b⇒ b
(Id)

a ◦ (a\b)⇒ b
(\L)

a ◦ [(a\b) ∧ (a\c)]⇒ b
(∧L`)

a⇒ a (Id) c⇒ c (Id)

a ◦ (a\c)⇒ b
(\L)

a ◦ [(a\b) ∧ (a\c)]⇒ c
(∧Lr)

a ◦ [(a\b) ∧ (a\c)]⇒ b ∧ c
(∧R)

(a\b) ∧ (a\c)⇒ a\(b ∧ c)
(\R)

(GJI`), (GJIr) and (GRJ) follow easily from (∨R`), (∨Rr) and (∨L), respectively.
For (PI) and (RPI) we have

a⇒ a (Id) b⇒ b
(Id)

a ◦ b⇒ a · b (·R)

b⇒ a\a · b
(\R)

and
b⇒ a\c
a ◦ b⇒ c

(\R)l

a · b⇒ c
(·L)

For (GN`) and (GAs``) we have

e⇒ a b⇒ b
(Id)

ε ◦ (a\b)⇒ b
(\L)

ε⇒ (a\b)\b
(\R)

and
a⇒ a (Id) b⇒ b

(Id)

(b/a) ◦ a⇒ b
(\L)

a⇒ (b/a)\b
(\R)

For (GPI), (GRAr`) and (GRPI) we have

a⇒ a (Id) b⇒ b
(Id)

a ◦ b⇒ ab
(·R)

b⇒ a\ab
(\R)

,

a⇒ b\c
b ◦ a⇒ c

(\R)↑

b⇒ c/a
(\R) and

b⇒ a\c
a ◦ b⇒ c

(\R)↑

ab⇒ c
(·L)
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For (GRCr), (GI1`) and (GI1r) we have

b⇒ a
ε⇒ a/b

(\R),
a⇒ a (Id)

ε⇒ a\a
(\L)↑

1⇒ a\a
(1`)

and
ε ◦ a⇒ a (Id)
1 ◦ a⇒ a

(1L)

a⇒ 1\a
(\R)

(G1) follows from (1R). For (RJ\), if K does not contain ·, we have

b ◦ |z| ⇒ c

ε⇒ z  K (a\c)
a ◦ |z| ⇒ c

(\R)↑, (/R)↑

(a ∨ b) ◦ |z| ⇒ c
(∨L)

ε⇒ z  K (a\c)
(\R), (/R)

Note that (/R) and (/R)↑ are not needed if K does not contain /. If · is contained
in K, the only modification needed in the proof is the replacement of |z| by φ(z).
Likewise, we obtain (RJ/). �

Corollary A.5. The systems KHL and KGL are mutually translatable via the
maps φK and s.

Appendix B. Action systems

In this section we define and study the notion of an action, which will be used
as a tool in the investigation of matrices appropriate for Gentzen systems.

B.1. Nuclei. A partially-ordered groupoid (or po-groupoid, for brevity) is a struc-
ture K = 〈K,≤, ·〉 such that · is a binary operation on K, ≤ is a partial order on
K and multiplication is order preserving (p ≤ q implies pr ≤ qr and rp ≤ rq).

A residuated partially-ordered groupoid or residuated po-groupoid is a structure
K = 〈K,≤, ·, \, /〉 such that 〈K,≤, ·〉 is a po-groupoid and for all x, y, z ∈ K,

(res) xy ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y.

A residuated lattice-ordered groupoid or residuated `-groupoid is an algebra K =
〈K,∧,∨, ·, \, /〉 such that 〈K,∧,∨〉 is a lattice and 〈K,≤, ·, \, /〉 is a residuated
po-groupoid, where ≤ is the lattice order.

If K is one of the above structures, we say that K has a unit, if there is an
element 1 ∈ K such that 1x = x1 = 1, for all x ∈ K. In this case we add in
the type a constant 1 that is interpreted as the unit element. We will refer to a
residuated lattice-ordered groupoid with unit as an rlu-groupoid. A po-groupoid
with unit is called integral, if the unit is the greatest element; it is called associative
or commutative, if its monoid reduct is. It is called integral if x ≤ 1, for all x ∈ K,
and it called contracting if x ≤ x2, for all x ∈ K.

Lemma B.1. If K = 〈K,≤, ·1〉 is a po-groupoid with unit, then the algebra P(K) =
〈P(K),∩,∪, ·, \, /, {1}〉 is a rlu-groupoid, where for X, Y ⊆ K, X · Y = {xy | x ∈
X, y ∈ Y }, X\Y = {z |X · {z} ⊆ Y } and Y/X = {z | {z} ·X ⊆ Y }.

Recall that a closure operator c on a poset P = 〈P,≤〉 is a map c : P → P
that is extensive (p ≤ c(p)), monotone (if p ≤ q, then c(p) ≤ c(q)) and idempotent
(c(c(p)) = c(p), for all p, q ∈ P ).

A nucleus on a po-groupoid K is a map g : K → K such that g is a closure
operator on 〈K,≤〉 and for all x, y ∈ K,

(nuc) g(x)g(y) ≤ g(xy).
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A nucleus on a residuated po-groupoid or `-groupoid is a nucleus on its po-groupoid
reduct. We denote by g[K] or Kg the image of K under g.

The following lemma essentially generalizes known facts (see [8], [40], [35], [21]).
Its proofs can be found in [18].

Lemma B.2.

(1) If K is a residuated po-groupoid, then g is a nucleus on K iff for all x, y ∈
K, g(x)/y, y\g(x) ∈ Kg iff for all x, y ∈ K, g(g(x)g(y)) = g(xy).

(2) If K = 〈K,≤, ·〉 is a po-groupoid and g is a nucleus on K, then Kg =
〈g[K],≤, ·g〉, where g[K] = {g(k) | k ∈ K} and x ·g y = g(xy), is a po-
groupoid.

(3) If K = 〈K,≤, ·, \, /〉 is a residuated po-groupoid and g is a nucleus on K,
then Kg = 〈g[K],≤, ·g, \, /〉 is a residuated po-groupoid.

(4) If K = 〈K,∧,∨, ·, \, /〉 is a residuated `-groupoid and g is a nucleus on K,
then Kg = 〈g[K],∧,∨g, ·g, \, /, 〉, where x ∨g y = g(x ∨ y), is a residuated
`-groupoid.

(5) In all of the above cases, if K has a unit 1, then 1g = g(1) is a unit of Kg.
(6) In any of the above cases, g is a {·,∨, 1}-homomorphism from K to Kg (if

∨ and 1 exist); also it is order preserving. In particular, if t is a {·,∨, 1}-
formula, then g(tK(x̄)) = tKg (g(x̄)), for all appropriate sequences x̄ of
elements in K.

(7) If K is associative, commutative, integral or contracting, then so is Kg.
(8) If K = 〈K,∧,∨, ·, \, /, 1〉 is an rlu-groupoid and s ∈ K, then the map

gs : K → K defined by gs(x) = (s/x)\s is a closure operator on K. If K is
associative and commutative, then gs is a nucleus on K.

Note that for item (6), existing (infinite) meets are preserved and if
∨

X exists
then

∨
g X = g(

∨
X).

B.2. Action systems.

B.2.1. More on groupoid words. Recall the definition of the set Qγ of groupoid
words and the set Qα of augmented groupoid words over a set Q. For u ∈ Qα and
x ∈ Qγ define x ∗ u = u[x ◦ ] and u ∗ x = u[ ◦ x]. For example, if x = (a, b) and
u = (a, ( , a)), then x ∗ u = (a, (( , (a, b)), a)) and u ∗ x = (a, (((a, b), ), a)). Note
that u ∗ ε = ε ∗ u = u. Recall that we have allowed ourselves to denote the element
u[x] also by u ? x and x ? u. Note that u ? x = |u ∗ x| and x ? u = |x ∗ u|, for all
x ∈ Qγ and u ∈ Qα. For all x, y ∈ Qγ and u ∈ Qα, we have

(x ∗ u) ? y = (u ∗ y) ? x = u ? (x ◦ y).

Indeed, for all x, y ∈ Qγ and u ∈ Qα, we have

(x ∗ u) ? y = u[x ◦ ] ? y = u[x ◦ y]

(u ∗ y) ? x = u[ ◦ y] ? x = u[x ◦ y]

u ? (x ◦ y) = u[x ◦ y]

The set SubG(x) of subterms of a G-term x over Q is defined inductively by
SubG(x) = {x}, for x ∈ Q ∪ {ε} and SubG((x, y)) = {(x, y)} ∪ SubG(x) ∪ SubG(x).
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B.2.2. Actions. A multi-sorted structureA = 〈KA, LA,K ′A, ∗, | |〉 is called a partial
action system if

• KA = 〈KA, ◦, e〉 is a partial groupoid with unit,
• LA and K ′A are sets,
• | | : K ′A → LA is an onto map,
• ∗ : KA×K ′A → K ′A, ∗ : K ′A×KA → K ′A are partial maps which we denote

both by the same symbol,
• the partial maps ? : KA ×K ′A → LA and ? : K ′A ×KA → LA are defined

by x ? u = |x ∗ u| and u ? x = |u ∗ x|, and,
• for all x ∈ KA, y ∈ LA and u ∈ K ′A, we have

(act) (x ∗ u) ? y = (u ∗ y) ? x,

(g-act) u ? (x ◦ y) = (x ∗ u) ? y and

(u-act) u ∗ e = e ∗ u = u.

in the sense: if one of the sides of an equation is defined, then the other side is also
defined and they are equal. If u ? x = x ? u, for all x ∈ KA and u ∈ K ′A, then
we denote the common value by u[x]. An action system is a partial action system,
where all partial maps in the definition are full.

If Q is a set and ε, 6∈ Q, then Q = 〈Qγ , Qγ , Qα, ∗, | |〉 is an action system. We
also obtain an action system if instead of groupoid words we consider sequences,
multisets or sets of elements of Q. In the last two cases (sequences and multisets) we
can actually eliminate , take ∗ and ◦ to be union and ε to be the empty (multi)set.

Also, if K = 〈K, ◦, e〉 is a commutative monoid, then 〈K,K,K, ◦, | |〉 is an action
system, where |k| = k, for all k ∈ K. Note that the assumptions of associativity
and commutativity are essential.

In both of the examples given above we have KA = LA. We allow the two sets
to be different in the definition so that partial action systems are closed under the
following construction.

If A = 〈KA, LA,K ′A, ∗, | |〉, is a partial action system and Q any set, consider
the structure A×Q = 〈KA, LA ×Q,K ′A ×Q, ∗, | |〉, where k ∗ (k′, q) = (k ∗ k′, q),
(k′, q) ∗ k = (k ∗ k′, q) and |(k′, q)| = (|k′|, q).

Lemma B.3. If A is a partial action system and Q any set, then A×Q is a partial
action system, as well.

A multi-sorted structure A = 〈KA,LA,K′A, ∗, | |, \∗, /∗〉 is called a residuated
action system if

• KA = 〈KA,≤, ◦, e〉 is a po-groupoid with unit,
• K′A = 〈K ′A,≤′〉 and LA = 〈LA,≤′′〉 are posets,
• 〈〈KA, ◦, e〉, LA,K ′A, ∗, | |〉, is an action system and
• \∗ : K ′A × LA → KA, /∗ : LA × KA → K ′A are maps such that, for all

u ∈ K ′, x ∈ K and y ∈ L,

(r-act) u ? x ≤′′ y ⇔ x ≤ u\∗y ⇔ u ≤′ y/∗x.

A residuated action system A is called lattice-ordered, if KA is lattice-ordered.
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If 〈K,≤, ◦, \, /, e〉 is a commutative residuated po-monoid, then
〈K,K′,K′, ◦, | |, \, /〉 is a residuated action system, where K = 〈K,≤, ◦, e〉, K′ =
〈K,≤〉 and |k| = k, for all k ∈ K.

If K is lattice ordered, then so is the residuated action system. In this sense,
lattice-ordered residuated action systems are generalizations of commutative resid-
uated `-monoids.

Assume that A = 〈KA, LA,K ′A, ∗, | |〉, where KA = 〈KA, ·, e〉, is a partial action
system and consider the powersets

MA = P(KA), NA = P(LA) and M ′A = P(K ′A).

For m1,m2,m ∈ MA m′ ∈ M ′A and n ∈ NA define

m1 ◦m2 = {k1 ◦ k2 | k1 ∈ m1, k2 ∈ m2},

m ∗m′ = {k ∗ k′ | k ∈ m, k′ ∈ m′},

m′ ∗m = {k′ ∗ k | k′ ∈ m′, k ∈ m},

|m′| = {|k′| | k′ ∈ m′},

m′\∗n = {k ∈ K |m′ ? {k} ⊆ n}

n/∗m = {k′ ∈ K ′ | {k′} ? m ⊆ n}.

Consider the structure P(A) = 〈MA,NA,M′A, ∗, | |, \∗, /∗〉, where MA = 〈MA,⊆
, ◦, {e}〉, NA = 〈NA,⊆〉 and M′A = 〈M ′A,⊆〉.

Lemma B.4. If A is a partial action system, then P(A) is a residuated action
system

B.2.3. Nuclei and action systems.

Lemma B.5. Let A = 〈KA,LA,K′A, ∗, | |, \∗, /∗〉 be a residuated action system
and s an element of LA. Then the map gs : KA → KA defined by gs(x) = (s/∗x)\∗s
is a nucleus on KA.

Proof. The pair (x 7→ s/∗x, x 7→ x\∗s) forms a Galois connection between 〈KA,≤〉
and 〈K ′A,≤〉; the two maps are the polarities of the Galois connection. So gs

and gs, where gs(x) = (s/∗x)\∗s and gs(u) = s/∗(u\∗s), are closure operators on
〈KA,≤〉 and 〈K ′A,≤〉, respectively. (For more information on Galois connections,
see Section 3.1 in [18].)

In detail, we have s/∗x ≤′ s/∗x, so (s/∗x) ? x ≤′′ s; hence x ≤ (s/∗x)\∗s =
gs(x), for all x ∈ K. Based on the extensivity of gs we can get that /∗ is order
reversing in its denominator as follows. If x ≤ y, then x ≤ y ≤ gs(y) = (s/∗y)\∗s;
so (s/∗y) ? x ≤′′ s, hence s/∗y ≤′ s/∗x. Similarly, we can prove that for every
u ∈ K ′, u ≤′ gs(u), where gs(u) = s/∗(u\∗s), and that \∗ is order reversing
in its denominator. Combining these two facts we obtain the monotonicity of gs.
Finally, to show that gs(gs(x)) ≤ x, note that s/∗x ≤′ gs(s/∗x) = s/∗((s/∗x)\∗s) =
s/∗gs(x), so gs(gs(x)) = (s/∗gs(x))\∗s ≤ (s/∗x)\∗s = gs(x). Thus, gs is a closure
operator on 〈K,≤〉.
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Moreover, for all x, y ∈ K, we have the following implications

s/∗(x ◦ y) ≤′ s/∗(x ◦ y)
⇒ (s/∗(x ◦ y)) ? (x ◦ y) ≤′′ s (r-act)
⇒ [x ∗ (s/∗(x ◦ y))] ? y ≤′′ s (g-act)
⇒ x ∗ (s/∗(x ◦ y)) ≤′ s/∗y (r-act)
⇒ x ∗ (s/∗(x ◦ y)) ≤′ s/∗((s/∗y)\∗s) (u ≤′ gs(u))
⇒ [x ∗ (s/∗(x ◦ y))] ? gs(y) ≤′′ s (r-act)
⇒ [(s/∗(x ◦ y)) ∗ gs(y)] ? x ≤′′ s (act)
⇒ (s/∗(x ◦ y)) ∗ gs(y) ≤′ s/∗x (r-act)
⇒ (s/∗(x ◦ y)) ∗ gs(y) ≤′ s/∗((s/∗x)\∗s) (u ≤′ gs(u))
⇒ [(s/∗(x ◦ y)) ∗ gs(y)] ? gs(x) ≤′′ s (r-act)
⇒ (s/∗(x ◦ y)) ? (gs(x) ◦ gs(y)) ≤′′ s (g-act), (act)
⇒ gs(x) ◦ gs(y) ≤ (s/∗(x ◦ y))\∗s (r-act)
⇒ gs(x) ◦ gs(y) ≤ gs(x ◦ y)

Consequently, gs is a nucleus on K. �

Corollary B.6. If A = 〈KA,K′A, ∗, | |, \∗, /∗〉 is a lattice-ordered residuated ac-
tion system and s ∈ LA, then Rs(A) = (KA)gs—see Lemmas B.2 and B.5—is a
residuated `-groupoid with unit. If KA satisfies a given groupoid identity (in par-
ticular if it is associative, commutative or idempotent) then so does Rs(A); more
explicitly, for every groupoid word t, t(KA)gs (x̄) = gs(tKA(gs(x̄))). If e is the unit
of KA, then gs(e) is the unit of Rs(A). If KA is integral, then Rs(A) is integral
and gs(e) = e.

B.2.4. The r`u-groupoid of a G-matrix. Let A = 〈A,�〉 be a sequent K-matrix.
It is easy to see that A = 〈Aγ , Aγ , Aα, ∗, | |〉 is a partial action system. It follows
from Lemmas B.3 and B.4 that I(A) = P(A × A) is a lattice-ordered residuated
action system. Therefore, by Corollary B.6, we obtain the following result.

Corollary B.7. Let A = 〈A,�〉 be a sequent K-matrix. Then, R(A) = R�(I(A))
is a residuated `-groupoid with unit g�({ε})

The algebra R(A) is called the residuated `-groupoid of A.

For every a ∈ A and u ∈ Aα, set

[u, a] ={(u, a)}\∗� = {x ∈ Aγ | u[x] � a}
and ↓ a = [ , a] = {x ∈ Aγ | x � a}. Note that, [u, a] ∈ R(A), so the assignment
q(a) =↓ a defines a map q : A → R(A).

Lemma B.8. If k ∈ R(A) and x ∈ Aγ , then x ∈ k iff x ∈ [u, a], for all u ∈ Aα

and a ∈ A such that k ⊆ [u, a].

Proof. Since k ∈ R(A), we have k = g�(k) = (�/∗k)\∗�. So x ∈ k iff x ∈
(�/∗k)\∗� iff (�/∗k) ? {x}⊆� iff

(u, a) ? x∈�, for all u ∈ JA and a ∈ QA such that (u, a)∈�/∗k.

Observe that (u, a)?x∈� is equivalent to {(u, a)}?{x}⊆� and {x} ⊆ {(u, a)}\∗� =
[u, a]. Moreover, (u, a)∈�/∗k is equivalent to {(u, a)}⊆�/∗k and k ⊆ {(u, a)}\∗� =
[u, a]. �
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