1. Introduction

Let G be a finite set with n elements, and $G(\circ), G(*)$ two groups defined on G. Their (Hamming) distance is the number of pairs $(a, b) \in G \times G$ for which $a \circ b \neq a * b$. Let us denote this value by $\text{dist}(G(\circ), G(*))$.

It is not difficult to show that $\text{dist}(-, -)$ is a metric on the set of all groups defined on G. In fact, when G_n, G_m are two groups of different orders n and m, respectively, and $\text{dist}(G_n, G_m)$ is defined simply by $\max\{n^2, m^2\}$, then $\text{dist}(-, -)$ is a metric on all finite groups (defined on some fixed sets).

Similar ideas were first introduced by L. Fuchs in [8]. He asked about the maximal number of elements, which can be deleted at random from a group multiplication table M, so that the rest of M determines M up to isomorphism, or even allows a complete reconstruction of M. These two numbers have been denoted by $k_1(M)$ and $k_2(M)$.

J. Dénès shows in [1] that $k_2(M) = 2n - 1$, not including abelian groups of order 4 and 6. His proof (published also in [2]) was fixed by S. Frische in [7]. She also found correct values of $k_2(M)$ for abelian groups of order 4 and 6 — these are equal to 3 and 7. Surprisingly, the value of $k_2(M)$ does not depend on structure of M at all.

Definition 1.1. Let $G(\circ)$ be a group. Then

$$\delta(G(\circ)) = \min\{\text{dist}(G(\circ), G(*)); G(*) \neq G(\circ)\}$$

is called Cayley stability of $G(\circ)$. In similar manner, put

$$\mu(G(\circ)) = \min\{\text{dist}(G(\circ), G(*)); G(*) \simeq G(\circ) \neq G(*),\}$$

$$\nu(G(\circ)) = \min\{\text{dist}(G(\circ), G(*)); G(*) \neq G(\circ)\},$$

and call these numbers Cayley stability of $G(\circ)$ among isomorphic groups, Cayley stability of $G(\circ)$ among non-isomorphic groups, respectively. Note that $\nu(G(\circ))$ is defined only when n is not a prime.

Definition 1.2. Let $f : H \longrightarrow K$ be a mapping between two groups H, K. Distance of f from a homomorphism is the number m_f of pairs $(a, b) \in H \times H$ at which f does not behave as a homomorphism, i.e. $f(ab) \neq f(a)f(b)$.

When both operations \circ and $*$ are fixed, and g is an element of G, we shall use $d(g)$ to denote the cardinality of $\{h \in G; g \circ h \neq g * h\}$.

While working on this paper the author has been partially supported by the University Development Fund of Czech Republic, grant number 1379/1998.
2. Some known facts

Relatively few facts are known about $\nu(G(\circ))$. One can prove that $\nu(E_{2^n}) = 2^{2n-2}$, where E_{2^n} is the elementary abelian 2-group of order 2^n (see [5]). More generally, when $G(\circ), G(*)$ are two groups of order n with $d(G(\circ), G(*)) < n^2/4$, then their Sylow 2-subgroups must be isomorphic (see [6]).

The Cayley stability is known for any group $G(\circ)$ of order $n \geq 51$ (main result of [4]), and is equal to $\delta_0(G(\circ))$, where, using words of [3],

$$\delta_0(G(\circ)) = \begin{cases} 6n - 18 & \text{if } n \text{ is odd}, \\ 6n - 20 & \text{if } G(\circ) \text{ is dihedral of twice odd order}, \\ 6n - 24 & \text{otherwise}. \end{cases}$$

Cayley stability of $G(\circ)$ is less than or equal to $\delta_0(G(\circ))$ whenever $n \geq 5$ (for more details see 2.3). Moreover, the nearest group $G(*)$ must be isomorphic to $G(\circ)$. As 2.3 says, when $f : G(\circ) \longrightarrow G(*)$ is an isomorphism, then f is a transposition. This means that $\mu(G(\circ)) \leq \nu(G(\circ))$ holds for all groups of order at least 51. However, $\mu(G(\circ)) < \nu(G(\circ))$ is not true in general; the exceptions embrace the elementary abelian 2-group of order 8 and the group of quaternions of order 8. This is shown in [9], section 8. The biggest group found so far, for which $\delta(G(\circ)) \neq \delta_0(G(\circ))$ is the cyclic group of order 21 (see [9], p.36).

Our goal is to prove that $\delta(G(\circ)) = 6p - 18$ for each prime p greater than 7 (note that $\delta(G(\circ)) \leq 6p - 18$ holds for each $p > 7$). In order to achieve this we need the following propositions:

Lemma 2.1. Suppose that $G(\circ), G(*)$ are two groups of order n, and $a \circ b \neq a* b$ for some $a, b \in G$. Then $d(a) + d(b) + d(a \circ b) \geq n$.

Proposition 2.2. Let $G(\circ), G(*)$ be two groups. Put $K = \{a \in G ; d(a) < n/3\}$, and assume that $|K| > 3n/4$. Define a mapping $f : G(\circ) \longrightarrow G(*)$ by $f(g) = a * b$ for any $g \in G$, $a, b \in K$, $g = a \circ b$. Then f is an isomorphism of $G(\circ)$ onto $G(*)$, and $f(a) = a$ for each $a \in K$. Moreover, $f(g) \neq g$ for any $g \in G$ with $d(g) > 2n/3$.

Proposition 2.3. Let $G(\circ)$ be a finite group of order $n \geq 5$. Then there exists a transposition f of $G(\circ)$ with $m_f = \delta_0(G(\circ))$. Furthermore, $m_f \geq \delta_0(G(\circ))$ for any transposition f of G. Finally, if $n \geq 12$, and f is such a permutation of G that $n > |\{g \in G : f(g) = g\}| > 2n/3$, then $m_f \geq \delta_0(G(\circ))$, and f is a transposition whenever $m_f = \delta_0(G(\circ))$.

Lemma 2.4. Assume that $G(\circ), G(*)$ are two isomorphic groups of order $n > 7$ satisfying $\text{dist}(G(\circ), G(*)) \leq 6n - 18$. Then we have $1_{G(\circ)} = 1_{G(*)}$.

Proof. Let $e = 1_{G(\circ)}$, $f = 1_{G(*)}$. Assume that $e \neq f$. We would like to prove that $d = \text{dist}(G(\circ), G(*)) > 6n - 18$.

Put $E = \{(a, b) \in G \times G ; \{e, f\} \cap \{a, b\} \neq \emptyset\}$. We show that $a \circ b \neq a * b$ for any $(a, b) \in E$. When $a = e$, we have $a \circ b = b$, and $a * b \neq b$, since $a \neq f$. All remaining cases follow from symmetry.
For any $a \in G$ denote by a^{-1}, a^* the inverse element of a in $G(\circ)$, $G(*)$, respectively. Define $I = \{a \in G; a^{-1} = a^*\}$.

We prove that $d(a) \geq 4$ for any $a \in I$, $a \not\in \{e, f\}$. Let $M = (e, f, a^{-1}, a^{-1} \circ f)$ be an ordered set. Note that all elements of M are distinct. Hence also $a \circ M = (a, a \circ f, e, f)$ and $a \ast M = (a * e, a, f, a * (a^{-1} \circ f))$ are four-element sets. Moreover, each two respective elements of $a \circ M$ and $a \ast M$ are different.

If $a \not\in I$ and $b \in G$ are such that $a \circ b = a * b = e$, we have $a^* \circ c \neq a^* \ast c$. Otherwise $b = a^* \ast a \circ b = a^* \circ c = a^* \circ c \neq a^{-1} \circ c = b$, a contradiction. This means that $d(a) + d(a^*) \geq n$ for any $a \not\in I$.

Let $i = |I|$. We need to consider three possible cases.

(i) Let $e \not\in I$, $f \not\in I$. If $i \geq n - 4$, we have $d \geq 4(n - 4) + 2n = 6n - 16 > 6n - 18$. On the other hand, if $i \leq n - 5$, then $d \geq (n - i)n/2 + 4i = n^2/2 + i(4 - n/2)$. Since $n \geq 7$, we can conclude that $d \geq n^2/2 + (n - 5)(4 - n/2) = 13n/2 - 20 > 6n - 18$.

(ii) Let $\{e, f\} \subseteq I$. If $i \geq n - 3$, then again (however, the reason is different) $d \geq 4(n - 4) + 2n$. For $i \leq n - 4$, one can see that $d \geq (n - i)n/2 + 4(i - 1) + n = n^2/2 + i(4 - n/2) - 4 + n \geq n^2/2 + (n - 4)(4 - n/2) - 4 + n = 7n - 20 > 6n - 18$.

(iii) Finally, let $\{e, f\} \subseteq I$. If $i \geq n - 2$, we have $d \geq 4(n - 4) + 2n$. If $i \leq n - 3$, then $d \geq (n - i)n/2 + 4(i - 2) + 2n = n^2/2 + i(4 - n/2) - 8 + 2n \geq n^2/2 + (n - 3)(4 - n/2) - 8 + 2n = 15n/2 - 20 > 6n - 18$.

This proof can be found in [9].

Unfortunately, also some use of computers is needed in two special cases.

3. Basic estimates

From now on suppose that $G(\circ)$, $G(*)$ are two distinct groups of prime order $p > 7$. Let us denote by H the set of all rows in multiplication table of $G(\circ)$ at which operations \circ and $*$ completely agree, i.e. $H = \{g \in G; d(g) = 0\}$. Assume that H is not empty, and a, b belong to H. Then $(a * b) \circ g = (a \circ b) \circ g = a \circ (b \ast g) = a \circ (b * g) = a * (b * g) = (a * b) * g = (a \circ b) * g$, which shows that H is a common subgroup of $G(\circ)$ and $G(*)$.

According to lemma 2.4, H is never empty, when $\text{dist}(G(\circ), G(*)) < 6p - 18$. Because there are no non-trivial subgroups in \mathbb{Z}_p, H must be the one element subgroup $1_{G(\circ)} = 1_{G(*)}$, since $G(\circ)$, $G(*)$ are distinct.

Put $m = \min\{d(g); g \neq 1\}$. We know that $m > 0$. The case $m = 1$ is impossible, hence $m > 1$. In fact, as the following lemma shows, $m > 2$.

Lemma 3.1. Let $G(\circ)$, $G(*)$ be two groups of odd order n. Then $d(g) \neq 2$ for any $g \in G$.

Proof. Let $\pi : G \rightarrow G$ be a left translation by g in $G(\circ)$, and $\sigma : G \rightarrow G$ a left translation by g in $G(*)$. Then $g \circ a \neq g * a$ if and only if $\pi(a) \neq \sigma(a)$, i.e. $\pi^{-1} \circ \sigma(a) \neq a$.

Suppose that $d(g) = 2$. This means that $\pi^{-1} \circ \sigma$ is a transposition. In particular, $\text{sgn}(\pi^{-1} \circ \sigma) = -1$. But $\text{sgn}(\pi) = \text{sgn}(\pi^*) = \text{sgn}(\pi^n) = \text{sgn}(id) = 1$, and a similar argument shows that also $\text{sgn}(\sigma) = 1$, a contradiction. □

Suppose, for a while, that $m \geq 6$. Then $\text{dist}(G(\circ), G(*)) \geq 6(n - 1) > 6n - 18$, and we can see that this case is not interesting.

Some additional theory is needed for $m = 3, 4, 5$.

We use symbol $\lfloor x \rfloor$ to denote the smallest integer k such that $x \leq k$.

Proposition 3.2. Let $G(\circ)$, $G(\ast)$ be two distinct groups of order $n \geq 5$. Then either $\text{dist}(G(\circ), G(\ast)) \geq \delta_0(G(\circ))$, or

$$\text{dist}(G(\circ), G(\ast)) \geq \lfloor n/4 \rfloor [n/3] + (n - \lfloor n/4 \rfloor - 1)m.$$

Proof. Put $K = \{ a \in G; d(a) < n/3 \}$.

(i) Suppose that $|K| > 3n/4$. By 2.2 there is an isomorphism $f : G(\circ) \rightarrow G(\ast)$ such that $f(a) = a$ for each $a \in K$. If $n < 12$, then we have $|K| > 3n/4 > n - 3$. Therefore f must be a transposition, and $\text{dist}(G(\circ), G(\ast)) = m_f \geq \delta_0(G(\circ))$ follows by 2.3. If $n \geq 12$, then $\text{dist}(G(\circ), G(\ast)) \geq \delta_0(G(\circ))$ follows at once from 2.3, because $n > |K| > 3n/4 > 2n/3$.

(ii) Now, let $|K| \leq 3n/4$. We show that there are at least $\lfloor n/4 \rfloor$ elements g with $d(g) \geq \lfloor n/3 \rfloor$. Assume the contrary, i.e. assume that there are at least $n - \lfloor n/4 \rfloor + 1$ elements g with $d(g) < \lfloor n/3 \rfloor$, so also with $d(g) < n/3$. However, $n - \lfloor n/4 \rfloor + 1 > 3n/4$, a contradiction with $|K| \leq 3n/4$. \hfill \Box

Proposition 3.3. Let $G(\circ)$, $G(\ast)$ be as in previous proposition. Let’s choose $h \in G$ such that $d(h) = m$, and h_0, \ldots, h_{m-1} are pairwise different elements satisfying $h \circ h_i \neq h \ast h_i$ for $i = 0, \ldots, m - 1$. Further suppose there is an l-element subset Y of $\{ h_0, \ldots, h_{m-1} \}$ such that $Y \cap h \circ Y = \emptyset$. Then either $\text{dist}(G(\circ), G(\ast)) \geq 6n - 18$, or we get

(1) $\text{dist}(G(\circ), G(\ast)) \geq l(n - m) + (n - 2l - 1)m,$ and

(2) $\text{dist}(G(\circ), G(\ast)) \geq l(n - m) + ([n/4] - 2l)[n/3] + (n - [n/4] - 1)m,$

provided $\lfloor n/4 \rfloor - 2l \geq 0$.

Proof. Let us keep the notation of 3.2. If $|K| > 3n/4$, then $\text{dist}(G(\circ), G(\ast)) \geq \delta_0(G(\circ))$ follows in the same way as in 3.2. When $|K| \leq 3n/4$, we have at least $\lfloor n/4 \rfloor$ elements $g \in G$ for which $d(g) \geq \lfloor n/3 \rfloor$. Without loss of generality, put $Y = \{ h_0, \ldots, h_{l-1} \}$. According to 2.1, we get

$$d(h) + d(h_i) + d(h \circ h_i) \geq n, \text{ or in other words}$$

$$d(h_i) + d(h \circ h_i) \geq n - m \text{ for each } i = 0, \ldots, l - 1.$$

This immediately proves (1). In order to prove (2), notice there are at least $\lfloor n/4 \rfloor - 2l$ rows in K not belonging to $Y \cup h \circ Y$. \hfill \Box

Corollary 3.4. When $G(\circ)$ is a group of prime order $p > 31$, then $\delta(G(\circ)) = 6p - 18$.

Proof. Let $G(\ast)$ be the nearest group to $G(\circ)$. Since $m \geq 3$, it is easy to see that we can always find a set Y (from 3.3) such that it has at least two elements. Inequality (2) gives

$$\text{dist}(G(\circ), G(\ast)) \geq 2(p - m) + ([p/4] - 4)[p/3] + (p - [p/4] - 1)m.$$

Observe that its right hand side is increasing in m. For $m = 3$ we obtain

$$\text{dist}(G(\circ), G(\ast)) \geq 5p - 9 + ([p/4] - 4)[p/3] - 3[p/4],$$

and one can check that the expression on the r.h.s. is for $p > 31$ always greater than $6p - 18$ (consider p in form $12r + s$, say). \hfill \Box
4. Case $m = 5$

Estimate (1) from 3.3 turns out to be strong enough when $m = 5$. Let us denote, for convenience, the powers of any h in $G(\circ)$ by h^r. For example, $h^2 = h \circ h$.

Lemma 4.1. Let $G(\circ)$, $G(\ast)$ be two distinct groups of prime order $p > 7$, and suppose that $m = 5$. Then $\text{dist}(G(\circ), G(\ast)) \geq 6p - 18$.

Proof. Denote by h one of the rows for which $d(h) = 5$. Suppose that $h^{i_0}, h^{i_1}, h^{i_2}, h^{i_3}, h^{i_4}$ are pairwise different elements with $h \circ h^{i_j} \neq h \ast h^{i_j}$, $j = 0, \ldots, 4$, where $i_0 < i_1 < i_2 < i_3 < i_4 < p$. We can suppose that $i_0 > 0$ (otherwise $\text{dist}(G(\circ), G(\ast)) \geq 6p - 18$ follows from 2.4).

We would like to find a 3-element subset Y of $\{h^{i_0}, h^{i_1}, h^{i_2}, h^{i_3}, h^{i_4}\}$ satisfying $Y \cap h \circ Y = \emptyset$. Clearly, $h^{i_0 + 1} \neq h^{i_2}, h^{i_4}$. As $i_0 > 0$, we have also $h^{i_2 + 1}, h^{i_3 + 1} \neq h^{i_0}$. Finally, $h^{i_3 + 1} \neq h^{i_4}$, and $Y = \{h^{i_0}, h^{i_2}, h^{i_4}\}$ is such a subset. By (1) we know that $\text{dist}(G(\circ), G(\ast)) \geq 3(p - 5) + (p - 7)5 = 8p - 50$, and $8p - 50$ is less than $6p - 18$ only when $p < 16$, i.e. $p \leq 13$.

But when $p \leq 13$ we have $\text{dist}(G(\circ), G(\ast)) \geq 5p - 5 \geq 6p - 18$. \square

5. Cases $m = 4$, $m = 3$

Proposition 5.1. For any two distinct groups $G(\circ), G(\ast)$ of prime order $p > 19$ with $m = 4$ we have $\text{dist}(G(\circ), G(\ast)) \geq 6p - 18$.

Proof. Assume there is a 3-element subset Y from 3.3. Then (1) yields $\text{dist}(G(\circ), G(\ast)) \geq 3(p - 4) + (p - 7)4 = 7p - 40$, and $7p - 40$ is less than $6p - 18$ only when $p < 22$, i.e. $p \leq 19$. We cannot improve this result by using estimate (2), since $[p/4] \geq 2l = 6$ if and only if $p \geq 21$.

It is not always feasible to find a 3-element subset Y of $\{h^{i_0}, h^{i_1}, h^{i_2}, h^{i_3}\}$ with $Y \cap h \circ Y = \emptyset$. One can show by tedious elementary methods that this is not feasible if and only if $i_1 = i_0 + 1$ and $i_3 = i_2 + 1$. However, in such a case we can show that the transposition $f = (h^{i_1}, h^{i_3})$ is an isomorphism of $G(\circ)$ onto $G(\ast)$ (detailed proofs are given in [9] 4.18, 4.19). Our wanted estimate then follows from 2.3. \square

There is no such estimate for $m = 3$. We need more information about the group operation \ast.

Lemma 5.2. Let $G(\circ)$, $G(\ast)$ be two groups of odd order n, and let h be a common generator of $G(\circ)$, $G(\ast)$ with $d(h) = 4$. Denote by $h^{i_0}, h^{i_1}, h^{i_2}, h^{i_3}$ the pairwise different elements for which $h \circ h^{i_j} \neq h \ast h^{i_j}$, $j = 0, \ldots, 3$, where $i_0 < i_1 < i_2 < i_3$. Then $h \circ h^{i_0} = h \circ h^{i_2}, h \ast h^{i_2} = h \circ h^{i_0}, h \ast h^{i_1} = h \circ h^{i_3}$, and $h \circ h^{i_3} = h \ast h^{i_1}$.

Proof. Let π, σ be as in the proof of 3.1. Then $\pi^{-1} \circ \sigma$ is either a 4-cycle, or a composition of two independent transpositions. In fact, $\pi^{-1} \circ \sigma$ cannot be a 4-cycle, because $\text{sgn}(\pi^{-1} \circ \sigma) = 1$. It is not difficult to observe that $\pi^{-1} \circ \sigma$ must be a permutation $(i_0, i_2)(i_1, i_3)$.

We can depict the situation as follows:
For \(m = 3 \), the appropriate picture is (without proof):

\[
\begin{array}{cccc}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \\
\end{array}
\]

Now we have enough information to write efficient computer programs in order to solve all remaining cases — we only need to consider situations when \(m = 4 \) and \(7 < p < 19 \), or \(m = 3 \) and \(7 < p < 31 \).

We will not give a concrete implementation of requested algorithms (which can be found in [9]), but we describe these algorithms in words instead.

Suppose that \(p \) is a prime between 7 and 19. We would like to modify the canonical multiplication table of \(\mathbb{Z}_p = G(\circ) \) in all possible ways, such that the resulting table will be a multiplication table of some group \(G(*) \) satisfying \(m = 4 \) (the other case \(m = 3 \) is similar), and then check that \(\text{dist}(G(\circ), G(*)) \geq 6p - 18 \).

By lemma 2.4, the first row and the first column of \(G(\circ) \) remain unchanged. We choose some row \(h \neq 0 \) in \(G \) and modify it at four places \(0 < i_0 < i_1 < i_2 < i_3 < p \). According to 5.2, this modification is given by permutation \(\{i_0, i_2\}(i_1, i_3) \), otherwise we never get a group multiplication table.

It is worth to point out that we do not need to go through all choices of \(h \in G \). In fact, we can fix only one row (a detailed explanation of this fact can be found in [9], 4.1). This trick speeds up the algorithm \(p - 1 \) times, and hence it is not essential.

Once we know one row of multiplication table of \(G(*) \), we can build up \(G(*) \) fully, because each non-zero element of \(\mathbb{Z}_p \) is a generator.

6. Main result

The algorithm described in section 5 does not find any pair of groups \(G(\circ), G(*) \) with \(\text{dist}(G(\circ), G(*)) < 6p - 18 \), which, together with all previous results, means that:

Theorem 6.1. Each group of prime order \(p > 7 \) has Cayley stability equal to \(6p - 18 \).

Note that there are two groups \(G(\circ), G(*) \) of order 7 with \(d(G(\circ), G(*)) = 18 < 24 \) — consider isomorphism \(f : G(\circ) \rightarrow G(*) \) given by

\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 4 & 5 & 2 & 3 & 6
\end{pmatrix},
\]

so the estimate \(p > 7 \) in 6.1 cannot be improved. These two groups are the nearest possible groups of order 7 — in other words, \(\delta(\mathbb{Z}_7) = 18 \).

It is easy to check that \(\delta(\mathbb{Z}_2) = 4 \) and \(\delta(\mathbb{Z}_3) = 9 \). Computation reveals that \(\delta(\mathbb{Z}_5) = 12 \). Here, the group nearest to \(\mathbb{Z}_5 \) is obtained via transposition \((2, 3) \), for example.

References

DISTANCES OF GROUPS OF PRIME ORDER

Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague, Czech Republic

Current address: Department of Mathematics, Iowa State University, Ames, IA, U.S.A.

E-mail address: petr@iastate.edu