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Abstract

We study a generalization of the classical correspondence between homoge-
neous quadratic polynomials, quadratic forms, and symmetric/alternating
bilinear forms to forms in n variables. The main tool is combinatorial polar-
ization, and the approach is applicable even when n! is not invertible in the
underlying field.
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1. Introduction

Let F be a field of characteristic char(F ), and let V be a d-dimensional
vector space over F . Recall that a quadratic form α : V → F is a mapping
such that

α(au) = a2α(u) (1.1)

for every a ∈ F , u ∈ V , and such that ϕ : V 2 → F defined by

ϕ(u, v) = α(u + v)− α(u)− α(v) (1.2)
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is a symmetric bilinear form.
The name “quadratic form” is justified by the fact that quadratic forms

V → F are in one-to-one correspondence with homogeneous quadratic poly-
nomials over F . This is a coincidence, however, and it deserves a careful
look:

Assume that char(F ) 6= 2. Given a symmetric bilinear form ϕ : V 2 → F ,
the mapping α : V → F defined by

α(u) =
ϕ(u, u)

2
(1.3)

is clearly a quadratic form satisfying (1.2). Conversely, if α is a quadratic
form with associated symmetric bilinear form ϕ then (1.3) follows, so α can
be recovered from ϕ. Quadratic forms V → F are therefore in one-to-one
correspondence with symmetric bilinear forms V 2 → F . Moreover, upon
choosing a basis {e1, . . . , ed} of V , (1.3) can be rewritten in coordinates as

α(
∑

i

aiei) =
∑
i,j

aiaj

2
ϕ(ei, ej),

showing that α is indeed a homogeneous quadratic polynomial. Every ho-
mogeneous quadratic polynomial is obviously a quadratic form.

Now assume that char(F ) = 2. For an alternating bilinear form ϕ : V 2 →
F , the homogeneous quadratic polynomial

β(
∑

i

aiei) =
∑
i<j

aiajϕ(ei, ej) (1.4)

satisfies

β(u + v)− β(u)− β(v) =
∑
i<j

(aibj + biaj)ϕ(ei, ej)

= ϕ(
∑

i

aiei,
∑

j

bjej) = ϕ(u, v),

and thus every alternating bilinear form arises in association with some
quadratic form. Conversely, if ϕ is the symmetric bilinear form associated
with the quadratic form α, (1.2) implies that ϕ is alternating. Furthermore,
with β as in (1.4), we see that γ = α− β satisfies γ(u + v) = γ(u) + γ(v). In
particular,

γ(
∑

i

aiei) =
∑

i

γ(aiei) =
∑

i

a2
i γ(ei),
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proving that α is a homogeneous quadratic polynomial. Thus we again
have the desired correspondence between quadratic forms and homogeneous
quadratic polynomials. However, the alternating bilinear form ϕ associated
with α does not determine α uniquely.

The goal of this paper is to investigate generalizations of the three con-
cepts (quadratic form, homogeneous quadratic polynomial and symmetric
resp. alternating bilinear form) for any number n of variables, giving rise
to polynomial n-applications, a class of polynomials of combinatorial degree
≤ n, and characteristic n-linear forms, respectively.

The key insight, which goes back at least to Greenberg [5], is the obser-
vation that (1.2) is a special case of the so-called polarization of α, but many
more concepts and observations, most of them new, will be required.

The difficulties encountered with quadratic forms over fields of charac-
teristic two will be analogously encountered for forms in n variables over
fields in which n! is not invertible. There are surprises for n > 3 (not all
n-applications are polynomial) and especially for n > 4 (not all polynomial
n-applications are homogeneous of degree n).

Finally, we remark that this paper was not written to mindlessly gen-
eralize the concept of a quadratic form. Rather, it grew from our need to
understand why the prime three behaves differently from all other primes in
Richardson’s odd code loops [11]. The reason turned out to be the fact that
odd code loops are connected to trilinear forms satisfying ϕ(u, u, u) = 0. The
details of this connection to code loops, and thus indirectly to the Monster
group, will be presented separately in a later paper.

2. Polarization, polynomial mappings, and n-applications

In this paper, a form is any mapping V n → F . A form f : V n → F
is symmetric if f(v1, . . . , vn) = f(vσ(1), . . . , vσ(n)) for every v1, . . . , vn ∈ V
and every permutation σ of {1, . . . , n}. A symmetric form f : V n → F is n-
additive if f(u+w, v2, . . . , vn) = f(u, v2, . . . , vn)+f(w, v2, . . . , vn) for every u,
w, v2, . . . , vn ∈ V , and it is n-linear if it is n-additive and f(av1, v2, . . . , vn) =
af(v1, v2, . . . , vn) for every a ∈ F , v1, . . . , vn ∈ V .

2.1. Polarization

Let α : V → F be a form satisfying α(0) = 0, and let n ≥ 1. As in Ward
[13], the nth defect (also called the nth derived form) ∆nα : V n → F of α is
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defined by

∆nα(u1, . . . , un) =
∑

1≤i1<···<im≤n

(−1)n−mα(ui1 + · · ·+ uim). (2.1)

Then ∆nα is clearly a symmetric form, and it is not hard to see, using the
inclusion-exclusion principle, that the defining identity (2.1) is equivalent to
the recurrence relation

∆nα(u1, . . . , un) = ∆n−1α(u1 + u2, u3, . . . , un)

−∆n−1α(u1, u3, . . . , un) (2.2)

−∆n−1α(u2, u3, . . . , un).

If there is a positive integer n such that ∆nα 6= 0 and ∆n+1α = 0, we say
that α has combinatorial degree n, and we write cdeg(α) = n. If α is the
zero map, we set cdeg(α) = −1.

Whenever we speak of combinatorial polarization or combinatorial degree
of a form α : V → F , we tacitly assume that α(0) = 0.

It follows from the recurrence relation (2.2) that ∆mα = 0 for every
m > cdeg(α). The same relation also shows that cdeg(α) = n if and only if
∆nα 6= 0 is a symmetric n-additive form. In particular, when F is a prime
field, cdeg(α) = n if and only if ∆nα 6= 0 is a symmetric n-linear form.

Note that combinatorial polarization is a linear process, i.e., ∆n(cα +
dβ) = c∆nα + d∆nβ for every c, d ∈ F and α, β : V → F .

In the terminology of Ferrero and Micali [3], a form α : V → F is an
n-application if

α(au) = anα(u) for every a ∈ F , u ∈ V , and (2.3)

∆nα : V n → F is a symmetric n-linear form. (2.4)

Note that (2.3) and (2.4) are generalizations of (1.1) and (1.2), that is,
quadratic forms are precisely 2-applications.

2.2. Polynomial mappings and n-applications

Let F [x1, . . . , xd] be the ring of polynomials in variables x1, . . . , xd with
coefficients in F . Denote multivariables by x = (x1, . . . , xd), multiexponents
by m = (m1, . . . , md), and write xm instead of xm1

1 · · ·xmd
d . Then every

polynomial f ∈ F [x] can be written uniquely as a finite sum of monomials

f(x) =
∑

c(m)xm,
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where c(m) ∈ F for every multiexponent m. Finally, let M(f) = {m; c(m) 6=
0} be the set of all multiexponents of f .

The degree of f ∈ F [x] is deg(f) = max{m1 + · · ·+ md; (m1, . . . , md) ∈
M(f)}.

Define a binary relation ∼ on F [x] as follows: For a variable xi and
exponents mi, ni let xmi

i ∼ xni
i if and only if either mi = ni, or mi > 0,

ni > 0 and mi − ni is a multiple of |F | − 1. (When F is infinite, mi − ni is
a multiple of |F | − 1 if and only if mi = ni.) Then let c(m)xm ∼ c(n)xn if
and only if c(m) = c(n) and xmi

i ∼ xni
i for every 1 ≤ i ≤ d. It is not difficult

to see that ∼ extends linearly into an equivalence on F [x].
We call F [x]/∼ reduced polynomials. Given a polynomial f ∈ F [x], the

equivalence class [f ]∼ contains a unique polynomial g such that 0 ≤ mi <
|F | for every 1 ≤ i ≤ d, m ∈ M(g). We usually identify [f ]∼ with this
representative g, and refer to g as a reduced polynomial, too.

The significance of reduced polynomials rests in the fact that they are
precisely the polynomial functions:

Lemma 2.1. Let f , g ∈ F [x]. Then [f ]∼ = [g]∼ if and only if f − g is the
zero function.

Let α : V → F be a mapping and B = {e1, . . . , ed} a basis of V . Then α is
a polynomial mapping with respect to B if there exists a polynomial f ∈ F [x]
such that

α(
∑

i

aiei) = f(a1, . . . , ad)

for every a1, . . . , ad ∈ F . We say that f realizes α with respect to B. By
Lemma 2.1, there is a unique reduced polynomial realizing α with respect to
B.

A change of basis will result in a different polynomial representative for
a polynomial mapping, but many properties of the representative remain
intact.

Lemma 2.2. Let α : V → F be realized with respect to a basis B of V
by some reduced polynomial f ∈ F [x]. If B∗ is another basis of V then α
is realized by some reduced polynomial f ∗ ∈ F [x] with respect to B∗ and
deg(f) = deg(f ∗).
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Proof. Let B = {e1, . . . , ed}, B∗ = {e∗1, . . . , e∗d}, e∗i =
∑

j ci,jej. Then

α
(∑

i

aie
∗
i

)
= α

(∑
i

ai

∑
j

ci,jej

)

= α
(∑

j

(∑
i

aici,j

)
ej

)
= f

(∑
i

aici,1, . . . ,
∑

i

aici,d

)
,

which is some polynomial f ∗ in a1, . . . , ad.
We clearly have deg(f) = deg(f ∗) when e∗1 = ce1 for some c 6= 0 and

e∗i = ei for every i > 1. We can therefore assume that e∗1 = e1 + e2 and
e∗i = ei for every i > 1. (Every change of basis is a product of these two
types of elementary operations.)

Let g(x) = xm be a monomial of f such that deg(g) = deg(f). Then

g
(∑

i

xici,1, . . . ,
∑

i

xici,d

)
= (x1 + x2)

m1xm2
2 · · · xmd

d (2.5)

contains the reduced monomial g(x) as a summand that cannot be cancelled
with any other summand of (2.5), nor any other summand of f ∗, due to
deg(g) = deg(f). This means that deg(f ∗) ≥ deg(g) = deg(f), and the
other inequality follows by symmetry.

We say that a mapping α : V → F is a polynomial mapping of degree n if
α is realized by a reduced polynomial of degree n with respect to some (and
hence every) basis of V .

We have seen in the Introduction that every 2-application is a polynomial
mapping, in fact a homogeneous quadratic polynomial. It is a fascinating
question whether every n-application is a polynomial mapping, and the series
of papers [6]–[10] by Prószyński is devoted to this question, albeit in the more
general setting of mappings between modules.

Of course, every n-application V → F is a polynomial mapping when F is
finite, since any mapping V → F is then a polynomial by Lagrange’s Interpo-
lation. Prószynski proved that any 3-application is a polynomial mapping [6,
Theorem 4.4], and showed after substantial effort that for every n > 3 there
is an n-application over a field of characteristic two that is not a polynomial
mapping [9, Example 4.5].

For n > 3, there is therefore no hope of maintaining the correspondence
between n-applications and a certain class of polynomials, unless we restrict
our attention to polynomial n-applications.
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We present a characterization of polynomials that are n-applications in
Section 5. But first we have a look at forms obtained by polarization.

3. Characteristic forms

For all fields F containing the rational numbers, we will find it convenient
to set char(F ) = ∞, rather than the more contemporary char(F ) = 0.

Since we will often deal with repeated arguments, we adopt the following
notation from multisets, cf. [1]: For an integer r and a vector u, we under-
stand by r ∗ u that u is used r times. For instance, ϕ(r ∗ u, s ∗ v) stands
for

ϕ( u, . . . , u︸ ︷︷ ︸, v, . . . , v︸ ︷︷ ︸ ).

r times s times

With these conventions in place, a symmetric form ϕ : V n → F is said
to be characteristic if either n < char(F ), or n ≥ char(F ) = p and ϕ(p ∗
u, v1, . . . , vn−p) = 0 for every u, v1, . . . , vn−p ∈ V . Note that every symmetric
form in characteristic ∞ is characteristic.

All forms arising by polarization are characteristic:

Lemma 3.1. Let α : V → F and n ≥ 1. Then ∆nα : V n → F is a
characteristic form.

Proof. There is nothing to prove when n < char(F ). Assume that n ≥ p =
char(F ) and let u, v1, . . . , vn−p ∈ V . By definition of ∆nα,

∆nα(p ∗ u, v1, . . . , vn−p) =
∑ p∑

k=0

(−1)n−r−k

(
p

k

)
α(ku + vi1 + · · ·+ vir),

where the outer summation runs over all subsets {i1, . . . , ir} of {1, . . . , n−p}.
Since p divides

(
p
k

)
unless k = 0 or k = p, the inner sum reduces to

(−1)n−rα(vi1 + · · ·+ vir) + (−1)n−r−pα(vi1 + · · ·+ vir).

When p is odd, the two signs (−1)n−r and (−1)n−r−p are opposite to each
other, and the inner sum vanishes. When p is even, the two signs are the
same and the inner sum becomes 2α(vi1 + · · ·+ vir) = 0.
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In the rest of this section we show that: (a) every characteristic n-additive
form can be realized by polarization if n! is invertible, and (b) every char-
acteristic n-linear form can be realized by polarization of a homogeneous
polynomial of degree n with all exponents less than char(F ). For (a), we
generalize (1.3) and set

α(u) =
ϕ(n ∗ u)

n!
.

For (b), we generalize (1.4), once again having to resort to coordinates.
Result (a) is mentioned without proof by Greenberg [5, p. 110] and it has

been rediscovered and proved by Ferrero and Micali in [3]. To our knowledge,
(b) is new.

Lemma 3.2. Let ϕ, ψ : V n → F be characteristic n-additive forms such
that

ϕ(u1, . . . , un) = ψ(u1, . . . , un)

whenever u1, . . . , un are pairwise distinct vectors of V . Then ϕ = ψ.

Proof. Assume that ϕ(s1 ∗u1, . . . , sm ∗um) 6= ψ(s1 ∗u1, . . . , sm ∗um) for some
pairwise distinct vectors u1, . . . , um and positive integers s1, . . . , sm, where
s1 + · · ·+ sm = n and where m is as small as possible. Note that ui 6= 0 for
every i by additivity, and si < char(F ) since both ϕ, ψ are characteristic.

Suppose for a while that u2 = ku1 for an integer 0 < k < char(F ). Then

ks2ϕ(s1 ∗ u1, s2 ∗ u1, s3 ∗ u3, . . . , sm ∗ um) = ϕ(s1 ∗ u1, s2 ∗ u2, . . . , sm ∗ um)

6= ψ(s1 ∗u1, s2 ∗u2, . . . , sm ∗um) = ks2ψ(s1 ∗u1, s2 ∗u1, s3 ∗u3, . . . , sm ∗um)

and thus

ϕ((s1 + s2) ∗ u1, s3 ∗ u3, . . . , sm ∗ um) 6= ψ((s1 + s2) ∗ u1, s3 ∗ u3, . . . , sm ∗ um),

a contradiction with minimality of m.
We can therefore assume that for every i 6= j and every 0 < k < char(F )

we have ui 6= kuj. Then v1 = u1, v2 = 2u1, . . . , vs1 = s1u1, vs1+1 = u2, . . . ,
vs1+s2 = s2u2, . . . , vn = smum are n distinct vectors and

ϕ(v1, . . . , vn) = ϕ(s1 ∗ u1, . . . , sm ∗ um)
m∏

i=1

si!
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is not equal to

ψ(s1 ∗ u1, . . . , sm ∗ um)
m∏

i=1

si! = ψ(v1, . . . , vn),

a contradiction.

Proposition 3.3. Let n < char(F ), and let ϕ : V n → F be a characteristic
n-additive form. Then α : V → F defined by

α(u) =
ϕ(n ∗ u)

n!

satisfies ∆nα = ϕ.

Proof. Both ∆nα and ϕ are characteristic since n < char(F ). By Lemma 3.2,
it suffices to show that ∆nα(u1, . . . , un) = ϕ(u1, . . . , un) for every pairwise
distinct vectors u1, . . . , un of V . We have

∆nα(u1, . . . , un) =
∑

1≤i1<···<ik≤n

(−1)n−kα(ui1 + · · ·+ uik)

=
1

n!

∑
1≤i1<···<ik≤n

(−1)n−kϕ(n ∗ (ui1 + · · ·+ uik)).

Let v1, . . . , vm be pairwise distinct vectors of V such that v1, . . . , vm ∈
{u1, . . . , un}, and let 1 ≤ si ≤ n be such that s1 + · · · + sm = n. We
count how many times ϕ(s1 ∗ v1, . . . , sm ∗ vm) appears in ∆nα(u1, . . . , un).
It appears precisely in those summands ϕ(n ∗ (ui1 + · · · + uik)) satisfying
{v1, . . . , vm} ⊆ {ui1 , . . . , uik}, and then it appears

(
n

s1, . . . , sm

)
=

n!

s1! · · · sm!

times; a number that is independent of k. For a fixed `, there are precisely(
n−m

`

)
subsets {ui1 , . . . , ui`+m

} containing {v1, . . . , vm}. Altogether, ϕ(s1 ∗
v1, . . . , sm ∗ vm) appears with multiplicity

(
n

s1, . . . , sm

) n−m∑

`=0

(−1)n−(`+m)

(
n−m

`

)
. (3.1)

9



Recall that
n∑

`=0

(−1)`

(
n

`

)
=

{
1, n = 0,
0, n > 0.

Hence (3.1) vanishes when m < n. When m = n, we have s1 = · · · = sn = 1,
and so (3.1) is equal to n!.

Theorem 3.4 (Realizing characteristic n-linear forms by polarization). Let
{e1, . . . , ed} be a basis of V and let ϕ : V n → F be a characteristic n-linear
form. Define α : V → F by

α(
∑

aiei) =
∑

t1+···+td=n
0≤ti<char(F )

at1
1 · · · atd

d

t1! · · · td! ϕ(t1 ∗ e1, . . . , td ∗ ed). (3.2)

Then ∆nα = ϕ. Moreover, α is a homogeneous polynomial of degree n with
all exponents less than char(F ).

Proof. Let p = char(F ) ≤ ∞. By n-linearity and symmetry of ϕ, we have

ϕ

(
n ∗

d∑
i=1

aiei

)
=

∑
t1+···+td=n

0≤ti≤n

(
n

t1, . . . , td

)
at1

1 · · · atd
d ϕ(t1 ∗ e1, . . . , td ∗ ed).

Since ϕ is characteristic, we can rewrite this as

ϕ

(
n∗

d∑
i=1

aiei

)
=

∑
t1+···+td=n

0≤ti<p

(
n

t1, . . . , td

)
at1

1 · · · atd
d ϕ(t1∗e1, . . . , td∗ed). (3.3)

If n < p, we can divide (3.3) by n! and apply Proposition 3.3. For the rest
of the proof assume that n ≥ p.

Then all summands of the right hand side of (3.3) vanish, since the multi-
nomial coefficients

(
n

t1,...,td

)
are equal to zero (as ti < p). In fact, the multi-

plicity of p in the prime factorization of
(

n
t1,...,td

)
, say pm, is the same as the

multiplicity of p in the prime factorization of n!. Thus, upon formally divid-
ing (3.3) by n!, the left hand side of (3.3) becomes ϕ(n ∗ u)/n! and the right
hand side of (3.3) becomes α(u). The calculation in the proof of Proposition
3.3 therefore still applies, proving ∆nα = ϕ.

Finally, α is obviously a homogeneous polynomial of degree n with all
exponents less than char(F ).
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Example 3.5 (n = p = 3). Let ϕ : V 3 → F3 be a characteristic trilinear
form. Let {e1, e2, e3} be a basis of V , and u = a1e1 + a2e2 + a3e3. Then

ϕ(u, u, u) =
∑

i6=j

3a2
i ajϕ(ei, ei, ej) +

∑

i<j<k

6aiajakϕ(ei, ej, ek).

Upon formally dividing this equality by 3!, we obtain the homogeneous poly-
nomial from Theorem 3.4, namely

α(u) =
∑

i6=j

a2
i aj

2
ϕ(ei, ei, ej) +

∑

i<j<k

aiajakϕ(ei, ej, ek).

A careful reader might wonder if the property that every exponent is less
than char(F ) is invariant under a change of basis. In general the answer is
“no”, but for mappings of the form (3.2) the answer is “yes”, see Lemma 5.2.

4. Combinatorial degree of polynomial mappings

We now wish to return to the question: Which polynomial mappings are
n-applications? Our task is therefore to characterize polynomial mappings
α that satisfy the homogeneity condition α(au) = anα(u) and for which ∆nα
is n-linear. When F is a prime field, ∆nα is n-linear if and only if ∆nα is
n-additive, which happens if and only if cdeg(α) ≤ n. We therefore need
to know how to calculate the combinatorial degree of polynomial mappings,
which is what we are going to explain in this section. In the next section,
we tackle the homogeneity condition and the linearity of ∆nα with respect
to scalar multiplication.

Let t be a nonnegative integer and p a prime, where we also allow p =
∞. Then there are uniquely determined integers ti, the p-adic digits of t,
satisfying 0 ≤ ti < p and t = t0p

0 + t1p
1 + t2p

2 + · · · . In particular, when
p = ∞, then t0 = t and ti = 0 for i > 0, using the convention ∞0 = 1. The
p-weight ωp(t) of t is the sum t0 + t1 + t2 + · · · .

Let p = char(F ). The p-degree of a monomial xm ∈ F [x] is

degp(x
m) =

d∑
i=1

ωp(mi),

and the p-degree of a polynomial f ∈ F [x] is

degp(f) = max{degp(x
m); m ∈ M(f)}.
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In particular, when p = ∞, degp(f) = deg(f).
In [13], Ward showed:

Proposition 4.1. Let F be a prime field or a field of characteristic ∞, V
a vector space over F , and α : V → F a polynomial mapping satisfying
α(0) = 0. Then cdeg(α) = deg(α).

He also mentioned [13, p. 195] that “It is not difficult to show that, in
general, the combinatorial degree of a [reduced] nonzero polynomial over Fq,
q a power of the prime p, is the largest value of the sum of the p-weights of
the exponents for the monomials appearing in the polynomial.” A proof of
this assertion can be found already in [12]. Here we prove a more general
result for polynomials over any field, not just for polynomials over finite fields
Fq. We follow the technique of [12] very closely.

When x1 = (x1,1, . . . , x1,d), x2 = (x2,1, . . . , x2,d) are two multivariables,
we write x1 +x2 for the multivariable (x1,1 +x2,1, . . . , x1,d +x2,d). Moreover,
when m = (m1, . . . ,md) is a multiexponent, we write (x1 + x2)

m for (x1,1 +
x2,1)

m1 · · · (x1,d + x2,d)
md . For f ∈ F [x] satisfying f(0) = 0 and for n ≥ 1 let

∆nf ∈ F [x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d] be defined by

∆nf(x1, . . . , xn) =
∑

1≤i1<···<im≤n

(−1)n−mf(xi1 + · · ·+ xim). (4.1)

The (formal) combinatorial degree cdeg(f) of f ∈ F [x] is the least integer
n such that ∆nf is a nonzero polynomial and ∆n+1f is the zero polynomial,
letting again cdeg(0) = −1.

Whenever we speak of combinatorial polarization or combinatorial degree
of a polynomial f , we tacitly assume that f(0) = 0.

We shall show in Theorem 4.8 that cdeg(f) = degp(f) for every f ∈ F [x]
and in Corollary 4.11 that cdeg(α) = cdeg(f) whenever α : V → F is a
polynomial mapping realized by f with respect to some basis of V .

Lemma 4.2. If f , g ∈ F [x] satisfy M(f) ∩ M(g) = ∅ then M(∆nf) ∩
M(∆ng) = ∅ for every n ≥ 1.

Proof. It suffices to establish the lemma when f , g are monomials, since
combinatorial polarization is a linear process. Let f(x) = xm. Consider one
of the summands f(x1 + · · · + xs) of ∆nf(x1, . . . , xn), as displayed in (4.1).
We have

f(x1+· · ·+xs) = (x1+· · ·+xs)
m = (x1,1+· · ·+xs,1)

m1 · · · (x1,d+· · ·+xs,d)
md .

12



In turn, let h be a summand of f(x1+ · · ·+xs). By the multinomial theorem,
for every 1 ≤ i ≤ d, the variables x1,i, . . . , xs,i appear in h precisely mi times,
counting multiplicities. Hence the multiexponent m can be reconstructed
from any monomial of ∆nf(x1, . . . , xn).

Corollary 4.3. Assume that f ∈ F [x] satisfies f(0) = 0. Then cdeg(f) =
max{cdeg(xm); m ∈ M(f)}.

We proceed to determine the combinatorial degree of monomials.
Let m, n be two multiexponents. We write m ≤ n if mi ≤ ni for every

1 ≤ i ≤ d. When m ≤ n, n−m stands for the multiexponent (n1 −m1, . . . ,
nd −md). We also let

(
m

n

)
=

d∏
i=1

(
mi

ni

)
=

d∏
i=1

mi!

ni!(mi − ni)!
,

with the usual convention 0! = 1.
The following lemma gives a critical insight into defects of monomials.

Lemma 4.4. Let f(x) = xm ∈ F [x]. Let x1, . . . , xs be multivariables. Then

∆sf(x1, . . . , xs) =
∑(

m1

m2

)
· · ·

(
ms−1

ms

)
x1

msx2
ms−1−ms · · ·xs

m1−m2 , (4.2)

where the summation ranges over all chains of multiexponents m = m1 >
m2 > · · · > ms > 0.

Proof. Straightforward calculation shows that

(x + y)m =
d∏

i=1

(xi + yi)
mi =

d∏
i=1

mi∑
ni=0

(
mi

ni

)
xni

i ymi−ni
i

is equal to

∑
0≤n≤m

d∏
i=1

(
mi

ni

)
xn1

1 · · · xnd
d ym1−n1

1 · · · ymd−nd
d =

∑
0≤n≤m

(
m

n

)
xny m−n.

Since ∆2f(x, y) = (x + y)m − xm − y m, the lemma follows for s = 2.

13



Assume that the lemma holds for s ≥ 2. Let gms(x) = xms and note that
we have just proved

∆2gms(x1, x2) =
∑

0<ms+1<ms

(
ms

ms+1

)
x1

ms+1x2
ms−ms+1 . (4.3)

Using an analogy of (2.2) for formal polynomials and the induction assump-
tion, we have

∆s+1f(x1, . . . , xs+1)

= ∆sf(x1 + x2, x3, . . . , xs+1)−∆sf(x1, x3, . . . , xs+1)−∆sf(x2, x3, . . . , xs+1)

=
∑ (

m1

m2

)
· · ·

(
ms−1

ms

)
((x1+x2)

ms−x1
ms−x2

ms)x3
ms−1−ms · · · xs+1

m1−m2

=
∑ (

m1

m2

)
· · ·

(
ms−1

ms

)
∆2gms(x1, x2)x3

ms−1−ms · · ·xs+1
m1−m2 ,

where the summation ranges over all chains of multiexponents m = m1 >
m2 > · · · > ms > 0. We are done upon substituting (4.3) into the last
equation.

Note that the multiexponents of x1, x2, · · · , xs in the sum of (4.2) are
different for every chain m = m1 > m2 > · · · > ms > 0. Therefore, by
Lemma 4.2, the combinatorial degree of xm is the length s of a longest chain
m = m1 > m2 > · · · > ms > 0 satisfying

(
mi

mi+1

)
6= 0 (4.4)

for every 1 ≤ i < s, where the inequality is understood in F .
Let us call a chain m = m1 > m2 > · · · > ms > 0 of multiexponents

satisfying (4.4) regular.

Lemma 4.5. Let n =
∑∞

i=0 nip
i, where 0 ≤ ni < p for every i. Then the

length of a longest regular chain for m = (n) is ωp(n).

Proof. There is nothing to prove in characteristic p = ∞. Assume that
p < ∞, and let a =

∑∞
i=0 aip

i, b =
∑∞

i=0 bip
i be two integers with 0 ≤ ai,

bi < p for every i. By Lucas Theorem [4],

(
a

b

)
≡

∞∏
i=0

(
ai

bi

)

14



modulo p. Consequently, if
(

a
b

) 6≡ 0, we must have ai ≥ bi for every i since(
ai

bi

)
is not divisible by p.

Hence the length t of a longest regular chain for n cannot exceed ωp(n) =∑∞
i=0 ni. On the other hand, t ≥ ωp(n) holds, because we can construct a

regular chain for n of length ωp(n) by reducing one of the nis by one in each
step.

Lemma 4.6. Let m = (m1, . . . , md) be a multiexponent. Let m = m1 >
m2 > · · · > ms > 0 be a longest regular chain for m. Then mi, mi+1 differ
in exactly one exponent for every 1 ≤ i < s, and s =

∑d
i=1 ωp(mi), where

p = char(F ) ≤ ∞.

Proof. If mi, mi+1 differ in two exponents, we can construct a longer regular
chain by reducing the powers separately. Thus, given the regular chain m =
m1 > · · · > ms > 0, we can construct another regular chain for m of length
s, in which we first reduce only the first exponent, then the second exponent,
etc. We are done by Lemma 4.5.

Example 4.7. Let us construct a longest regular chain for (7, 4) in charac-
teristic p = 3. Since 7 = 1 · 30 + 2 · 31 and 4 = 1 · 30 + 1 · 31, the procedure
outlined in the proof of Lemma 4.6 yields the chain (7, 4) > (4, 4) > (1, 4) >
(0, 4) > (0, 1) > (0, 0), for instance. The chain has length 5 = ω3(7) + ω3(4),
as expected.

We summarize Corollary 4.3 and Lemmas 4.4, 4.6:

Theorem 4.8 (Combinatorial degree of formal polynomials). Let f ∈ F [x]
be a polynomial satisfying f(0) = 0, and let char(F ) = p ≤ ∞. Then
cdeg(f) = degp(f).

We now return to combinatorial polarization of polynomial mappings.
First observe:

Lemma 4.9. Let f ∈ F [x] be a reduced polynomial satisfying f(0) = 0. Then
∆nf ∈ F [x1, . . . , xn] is a reduced polynomial for every n ≥ 1.

Lemma 4.10. Let α : V → F be a polynomial mapping satisfying α(0) = 0,
and assume that the reduced polynomial f ∈ F [x] represents α with respect
to some basis of V . Then cdeg(f) = cdeg(α).

15



Proof. Let {e1, . . . , ed} be the underlying basis. Let n ≥ 1, and ui =∑
j aijej. Then

∆nα(u1, . . . , un) = α
(∑

j

a1je1, . . . ,
∑

j

anjej

)

= ∆nf(a11, . . . , a1d, . . . , an1, . . . , and). (4.5)

This equality implies cdeg(f) ≥ cdeg(α), since if ∆nα 6= 0 then ∆nf is a
nonzero function and thus a nonzero polynomial.

On the other hand, assume that n = cdeg(f). Then ∆nf is a nonzero
polynomial that is reduced by Lemma 4.9. Thus ∆nf is a nonzero function
by Lemma 2.1, and (4.5) implies that cdeg(α) ≥ n = cdeg(f).

Corollary 4.11 (Combinatorial degree of polynomial mappings). Let V be
a vector space over a field F of characteristic p ≤ ∞, and let α : V → F be
a nonzero polynomial mapping satisfying α(0) = 0. Then cdeg(α) is equal to
degp(f), where f ∈ F [x1, . . . , xd] is a reduced polynomial that realizes α with
respect to some basis of V .

5. Polynomial n-applications

5.1. Totally reduced polynomials

We have already established that the degree of a polynomial mapping is
well-defined, cf. Lemma 2.2. By Corollary 4.11, the combinatorial degree is
also well-defined for polynomial mappings.

However, one has to be careful with even the most common concepts,
such as the property of being homogeneous. To wit, consider the polynomial
mapping α : F2

4 → F4 defined by α(a1e1 + a2e2) = a2
1a

2
2 with respect to some

basis {e1, e2} of F2
4 over F4. Then

α(a1(e1 + e2) + a2e2) = α(a1e1 + (a1 + a2)e2) =

a2
1(a1 + a2)

2 = a4
1 + a2

1a
2
2 = a1 + a2

1a
2
2.

Thus, as a reduced polynomial, α is homogeneous with respect to {e1, e2}
but not with respect to {e1 + e2, e2}. Of course, no difficulties arise with
respect to homogeneity if we do not insist that polynomials be reduced.

Let us consider another property of polynomials familiar to us from The-
orem 3.4: A polynomial f ∈ F [x1, . . . , xd] is totally reduced if for every
m ∈ M(f) and every 1 ≤ i ≤ d we have 0 ≤ mi < char(F ).

Theorem 4.8 implies immediately:

16



Corollary 5.1. Let f ∈ F [x] be a monomial. Then cdeg(f) ≤ deg(f), and
the equality holds if and only if f is totally reduced.

Now, the polynomial mapping β : F2
4 → F4 defined by β(a1e1 + a2e2) =

a1a2 is totally reduced with respect to {e1, e2}, but

β(a1(e1 + e2) + a2e2) = β(a1e1 + (a1 + a2)e2) = a1(a1 + a2) = a2
1 + a1a2

shows that β is not totally reduced with respect to {e1 +e2, e2}. Hence being
totally reduced is not a property of polynomial mappings. But we have:

Lemma 5.2. Let α : V → F be a polynomial mapping satisfying α(0) = 0
and realized with respect to the basis B (respectively B∗) by the reduced poly-
nomial f (respectively f ∗). Assume that every monomial g of f satisfying
cdeg(g) = cdeg(f) is totally reduced. Then every monomial g∗ of f ∗ satisfy-
ing cdeg(g∗) = cdeg(f ∗) is totally reduced.

Proof. Let g be a monomial of f . Let h∗ be the reduced polynomial obtained
from g by the change of basis from B to B∗, and let g∗ be a summand
of h∗. Then cdeg(g∗) ≤ cdeg(h∗) = cdeg(g) ≤ cdeg(f) = cdeg(f ∗) by
Corollary 4.11, and deg(g∗) ≤ deg(h∗) ≤ deg(g). If cdeg(g∗) < cdeg(f ∗),
there is nothing to prove. Assume therefore that cdeg(g∗) = cdeg(f ∗). Then
cdeg(g∗) = cdeg(g) = cdeg(f), and so g is totally reduced by assumption.
By Corollary 5.1, deg(g) = cdeg(g). But then deg(g∗) ≤ deg(g) = cdeg(g) =
cdeg(g∗), and the same corollary shows that deg(g∗) = cdeg(g∗) and that g∗

is totally reduced.

The reader shall have no difficulty establishing:

Lemma 5.3. Let α : V → F be a polynomial mapping satisfying α(0) =
0 and realized with respect to the basis B (respectively B∗) by the reduced
polynomial f (respectively f ∗). Assume that there is an integer n such that
0 6= deg(g) ≡ n (mod |F | − 1)) for every monomial g of f . Then 0 6=
deg(g∗) ≡ n (mod |F | − 1) for every monomial g∗ of f ∗.

Let B be a basis of V , α : V → F a polynomial mapping, and f the unique
reduced polynomial realizing α with respect to B. We say that β : V → F is
a monomial of α if β is a polynomial mapping realized by a monomial of f .
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Thanks to Lemmas 5.2 and 5.3, we can safely define the following sub-
spaces of polynomial mappings V → F without having to fix a basis of V :

Pn(V )={α; cdeg(α) ≤ n, α(0) = 0},
P t

n(V )={α ∈ Pn(V ); all monomials β with cdeg(β)=n are totally reduced},
P≡n (V )={α; all monomials β satisfy 0 6= deg(β) ≡ n (mod |F | − 1)}.
Note that Pn−1(V ) ⊆ P t

n(V ).

5.2. Polynomials satisfying α(au) = anα(u)

Proposition 5.4. Let α : V → F be a polynomial mapping, and let n ≥ 1.
Then α satisfies (2.3) if and only if α ∈ P≡n (V ).

Proof. Suppose that α ∈ P≡n (V ). Then we can make α into a not necessarily
reduced homogeneous polynomial of degree n+ s(|F | − 1) for some s, and so
α(au) = an+s(|F |−1)α(u) = anα(u).

Conversely, suppose that (2.3) holds. Let B = {e1, . . . , ed} be a fixed
basis of V , and let f be the reduced polynomial representing α with respect
to B. Let M be the set of all monomials of f , M+ = {g ∈ M ; deg(g) =
n+s(|F |−1), s ≥ 0}, and M− = M \M+. If M− is empty, we are done. Else
let var(g) denote the set of variables present in a monomial g, and let X be a
minimal element of {var(g); g ∈ M−} with respect to inclusion. Consider a
vector v =

∑
xi∈X aiei for some ai ∈ F . Let g+

1 , . . . , g+
r be all the monomials

g of M+ satisfying var(g) ⊆ X, and let g−1 , . . . , g−s be all the monomials g of
M− satisfying var(g) ⊆ X. Note that by the minimality of X, var(g−i ) = X
for every 1 ≤ i ≤ s. Set g+ = g+

1 + · · ·+g+
r and g− = g−1 + · · ·+g−s . Let ti be

the degree of g−i . For a polynomial h, we write h(v) instead of the formally
correct h(a1, . . . , ad). Then

α(v) = g+(v) + g−(v),

and
α(av) = ang+(v) + at1g−1 (v) + · · ·+ atsg−s (v).

On the other hand,

anα(v) = ang+(v) + ang−(v).

Hence α(av) = anα(v) holds if and only if

at1g−1 (v) + · · ·+ atsg−s (v) = ang−(v).
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Note that g− is a reduced nonzero polynomial in variables xi ∈ X. Hence,
by Lemma 2.1, there exists v =

∑
xi∈X aiei such that g−(v) 6= 0. Fix this

vector v, and define a polynomial h in one variable by

h(x) = xng−(v)− xt1g−1 (v)− · · · − xtsg−s (v).

This polynomial is not necessarily reduced, but since n−ti 6≡ 0 (mod |F |−1)
for every 1 ≤ i ≤ s and g−(v) 6= 0, it does not reduce to a zero polynomial.
Hence there is a ∈ F such that h(a) 6= 0. But then α(av) 6= anα(v) with this
particular choice of a and v, a contradiction.

5.3. Polynomials with n-linear defect

Let α : V → F be a polynomial mapping of combinatorial degree n. Then
∆nα is a symmetric n-additive form. Under which conditions will ∆nα be
n-linear? To answer this question, we start with an example:

Example 5.5. Let α : F4 → F4, a 7→ a3. Then there are two longest
regular chains for the (multi)exponent 3, namely 3 > 2 > 0 and 3 > 1 > 0.
Accordingly, Lemma 4.4 yields

∆2α(x, y) =

(
3

1

)
xy2 +

(
3

2

)
x2y.

Then ∆2α(x, ay) = 3xy2a2 +3x2ya, and a∆2α(x, y) = 3xy2a+3x2ya. Hence
∆2α is bilinear if and only if g(x, y, a) = 3xy2a2−3xy2a = 0 for every a ∈ F4.
Since g(x, y, a) is a reduced nonzero polynomial (in variables x, y, a), it is a
nonzero function by Lemma 2.1, and thus ∆2α is not bilinear. Why did this
happen? Because not every longest regular chain for 3 ends in 1.

To resolve the general case, first deduce from Example 4.7 and Lemmas
4.5, 4.6:

Lemma 5.6. Let f ∈ F [x], f(x) = xm, char(F ) = p. Given a longest regular
chain for m, there is j ≥ 0 such that the chain ends with a multiexponent (0,
. . . , 0, pj, 0, . . . , 0). Moreover, j = 0 in every longest regular chain for m
if and only if f is totally reduced.

Proposition 5.7. Let F be a field of characteristic p ≤ ∞, and α : V → F
a polynomial mapping satisfying α(0) = 0. Then ∆nα is a characteristic
n-linear form if and only if α ∈ P t

n(V ).
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Proof. By Lemma 3.1, every ∆nα is characteristic. To show the equivalence,
it suffices to consider a monomial α(x) = xm, by Lemma 4.2. If cdeg(α) < n
then ∆nα = 0, and vice versa.

Assume that cdeg(α) = n. Longest regular chains for m satisfy the
conclusion of Lemma 5.6. Let a ∈ F . By Lemma 4.4, any longest regular
chain with j = 0 contributes the same monomial to ∆nα(ax1, . . . , xn) and to
a∆nα(x1, . . . , xn). On the other hand, every longest regular chain with j > 0
contributes to ∆nα(ax1, . . . , xn) by a monomial containing the power apj

,
while it contributes to a∆nα(x1, . . . , xn) by a monomial containing the power
a1. Hence, ∆nα(x1, . . . , axn)−a∆nα(x1, . . . , xn) is a reduced polynomial that
is nonzero if and only if α is not totally reduced. We are then done by Lemma
2.1.

6. The correspondence

Denote by An(V ) the vector space of polynomial n-applications V → F
and by Cn(V ) the vector space of characteristic n-linear forms V n → F .

Theorem 6.1 (Correspondence). Let V be a vector space over F . Then

An(V ) = P t
n(V ) ∩ P≡n (V ) (6.1)

and
Cn(V ) ∼= (P t

n(V ) ∩ P≡n (V ))/(Pn−1(V ) ∩ P≡n (V )). (6.2)

Proof. The equality (6.1) follows from Propositions 5.4 and 5.7. To prove
(6.2), let Ψ be the restriction of the polarization operator ∆n to P t

n(V ) ∩
P≡n (V ). By Proposition 5.7, the image of Ψ is contained in Cn(V ). By
Theorem 3.4, Ψ is onto Cn(V ). Clearly, the kernel of Ψ consists of P t

n(V ) ∩
P≡n (V ) ∩ Pn−1(V ) = Pn−1(V ) ∩ P≡n (V ).

Corollary 6.2. Let V be a d-dimensional vector space over a field F with
char(F ) = ∞. Then An(V ) are precisely the homogeneous polynomials of
degree n in d variables over F , and An(V ) ∼= Cn(V ).

Proof. Since F is infinite, P≡n (V ) consists of homogeneous polynomials of
degree n. The degree and combinatorial degree of polynomials coincide over
F , by Theorem 4.8. Hence Pn−1(V ) ∩ P≡n (V ) is trivial. As all polynomials
over F are totally reduced, we have P t

n(V ) = Pn(V ) and P t
n(V ) ∩ P≡n (V ) =

P≡n (V ).
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It is not true in general that An(V ) = P t
n(V ) ∩ P≡n (V ) consists only of

homogeneous polynomials of degree n, as was first noticed by Prószyński in
the setting of n-applications (he did not work with combinatorial degrees).

Consider the form α : F5
4 → F4 defined by

α(x1, x2, x3, x4, x5) = x1x2x3x4x5 + x2
1x

2
2x

2
3x

2
4. (6.3)

Then cdeg(α) = 5 and deg(α) = 8. Moreover, the only monomial β of α
satisfying cdeg(β) = 5 is totally reduced, and the degree of every monomial
of α differs from 5 by a multiple of 3 = 4− 1. Hence α is a 5-application. It
cannot be turned into a homogeneous polynomial of degree 5 by any change
of basis, by Lemma 2.2. But it can be made into a homogeneous polynomial
of degree 8, for instance the polynomial

x4
1x2x3x4x5 + x2

1x
2
2x

2
3x

2
4,

no longer reduced.
It appears to be an interesting problem of number-theoretical flavor to

characterize all pairs (V, n) for which P t
n(V ) ∩ P≡n (V ) does contain only ho-

mogeneous polynomials of degree n. It is not our intention to study this
problem in detail here. Nevertheless we have the following result that shows
that something interesting happens during the transition from n = 4 to n = 5
(also see Sections 2 and 3 of [6]):

Proposition 6.3. Let |F | = q = pe and let V be a d-dimensional vector space
over F . If n < 5 then P t

n(V ) ∩ P≡n (V ) consists of homogeneous polynomials
of degree n. If n ≥ max{5, q}, e ≥ 2, and d ≥ n then P t

n(V ) ∩ P≡n (V ) does
not consist only of homogeneous polynomials of degree n.

Proof. Let 2 ≤ n < 5, let α ∈ P t
n(V ) ∩ P≡n (V ), and let β be a monomial of

α. We show that deg(β) ≤ n. Assume that deg(β) = n + s(q − 1), s > 0.
When cdeg(β) = n then β is totally reduced since α ∈ P t

n(V ), and hence
deg(β) = n, a contradiction. Assume therefore that m = cdeg(β) < n.

If m = 1, β is a scalar multiple of xpi
, i < e, and pi = n + s(q− 1). Since

s > 0, we have pi > q, a contradiction with i < e. If m = 2, β is a scalar
multiple of xpi+pj

or xpi
ypj

for some i ≤ j < e, and pi + pj = n + s(q − 1).
Since s > 0, we have pi + pj > q, thus pj > q/2, so pj ≥ q, a contradiction
with j < e. If m = 3, we have n = 4, and β is a scalar multiple of xpi+pj+pk

or
xpi+pj

ypk
or xpi

ypj
zpk

. We can assume that i ≤ j ≤ k < e, and pi + pj + pk =
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4 + s(q − 1). Suppose that s > 1. Then pi + pj + pk > 2q, thus pk > q/2, a
contradiction with k < e. Suppose that s = 1. Then pi + pj + pk = q + 3.
Since pk > q/3, we must have p = 2, else pk ≥ q. Then q + 3 is odd, pi = 1,
pj + pk > q, pk > q/2, a contradiction.

Now assume that n ≥ max{5, q}, e ≥ 2, and d ≥ n. Suppose for a while
that there are 0 ≤ a0, . . . , ae−1 such that

n + q − 1 = a0p
0 + · · ·+ ae−1p

e−1, a0 + · · ·+ ae−1 < n. (6.4)

Since d ≥ n, we can fix a basis of V and define α : V → F by setting
α(x1, . . . , xd) equal to

x1 · · · xn + (x1 · · ·xa0)(x
p
a0+1 · · ·xp

a0+a1
) · · · (xpe−1

a0+···+ae−2+1 · · ·xpe−1

a0+···+ae−1
).

Furthermore, α so defined satisfies deg(α) = n + q − 1, and

cdeg(α) = max{n, a0 + · · ·+ ae−1} = n.

The only monomial of α with combinatorial degree equal to cdeg(α) is totally
reduced, and hence α is an n-application but not a homogeneous polynomial
of degree n. It remains to show that (6.4) can be satisfied.

Let n = spe + r, where 0 ≤ r < pe and 0 < s. Then n + q − 1 =
spe + r + pe − 1 = (sp)(pe−1) + r + (p − 1)(1 + p + · · · + pe−1). Hence it is
possible to write n + q − 1 = a0p

0 + a1p
1 + · · · + ae−1p

e−1 with some 0 ≤ ai

satisfying a0 + · · ·+ ae−1 ≤ sp + r + (p− 1)e. A short calculation shows that
sp + r + (p − 1)e ≤ n holds if and only if e ≤ sp(1 + p + · · · + pe−2). Since
e ≥ 2, we have e ≤ pe−1 ≤ p(1 + p + · · ·+ pe−2) ≤ sp(1 + p + · · ·+ pe−2), and
the equality holds if and only if e = 2 = p and s = 1.

Assume that e = 2 = p, s = 1. Then n ∈ {5, 6, 7}, and it is easy to check
in each case that (6.4) holds with a suitable choice of a0, a1. (For n = 5, we
recover (6.3).)
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