The abstract groups \((3, 3 \mid 3, p)\),
their subgroup structure,
and their significance for Paige loops

text

\textit{Petr Vojtěchovský}

\textbf{Abstract}

For most (and possibly all) non-associative finite simple Moufang loops, three generators of order 3 can be chosen so that each two of them generate a group isomorphic to \((3, 3 \mid 3, p)\). The subgroup structure of \((3, 3 \mid 3, p)\) depends on the solvability of a certain quadratic congruence, and it is described here in terms of generators.

\section{1. Introduction}

Moufang loops and, more generally, diassociative loops are usually an abundant source of two-generated groups. In the end, this is what diassociativity is all about: every two elements generate an associative subloop, i.e., a group. (We refer the reader not familiar with the theory of loops to [5].) This short paper emerged as an offshoot of our larger-scale program to fully describe the subloop structure of all non-associative finite simple Moufang loops, sometimes called \textit{Paige loops}.

Let \(M^*(q)\) denote the Paige loop constructed over \(F = GF(q)\) as in [4]. That is, \(M^*(q)\) consists of vector matrices

\[M = \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix}, \]

where \(a, b \in F\), \(\alpha, \beta \in F^3\), \(\det M = ab - \alpha \cdot \beta = 1\), and where \(M\) is identified with \(-M\). The multiplication in \(M^*(q)\) coincides with the Zorn...
matrix multiplication
\[
\begin{pmatrix}
 a & \alpha \\
 \beta & b
\end{pmatrix}
\begin{pmatrix}
 c & \gamma \\
 \delta & d
\end{pmatrix}
= \begin{pmatrix}
 ac + \alpha \cdot \delta & a\gamma + d\alpha - \beta \times \delta \\
 e\beta + b\delta + \alpha \times \gamma & \beta \cdot \gamma + bd
\end{pmatrix},
\]
where \(\alpha \cdot \beta \) (resp. \(\alpha \times \beta \)) is the standard dot product (resp. cross product).

We have shown in [6, Theorem 1.1] that every \(M^*(q) \) is three-generated, and when \(q \neq 9 \) is odd or \(q = 2 \) then the generators can be chosen as
\[
g_1 = \begin{pmatrix} 1 & e_1 \\ 0 & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & e_2 \\ 0 & 1 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 0 & ue_3 \\ -u^{-1}e_3 & 1 \end{pmatrix}, \tag{1}
\]
where \(u \) is a primitive element of \(F \) (cf. [6, Proposition 4.1]). In particular, note that \(g_1, g_2 \) and \(g_3 \) generate \(M^*(p) \) for every prime \(p \). We find it more convenient to use another set of generators.

Proposition 1. Let \(q \neq 9 \) be an odd prime power or \(q = 2 \). Then \(M^*(q) \) is generated by three elements of order three.

Proof. Let us introduce
\[
g_4 = g_3g_1 = \begin{pmatrix} 0 \\ (0, u, -u^{-1}) \end{pmatrix}, \quad g_5 = g_3g_2 = \begin{pmatrix} 0 \\ (-u, 0, -u^{-1}) \end{pmatrix}.
\]
It follows from (1) that \(M^*(q) \) is generated by \(g_3, g_4, \) and \(g_5 \). One easily verifies that these elements are of order 3. \(\square \)

The groups \(\langle g_3, g_4 \rangle, \langle g_3, g_5 \rangle \) and \(\langle g_4, g_5 \rangle \) play therefore a prominent role in the lattice of subloops of \(M^*(q) \). As we prove in Section 3, each of them is isomorphic to the group \((3, 3 \mid 3, p) \), defined below.

2. The abstract groups \((3, 3 \mid 3, p) \)

The two-generated abstract groups \((l, m \mid n, k) \) defined by presentations
\[
(l, m \mid n, k) = \langle x, y \mid x^l = y^m = (xy)^n = (x^{-1}y)^k \rangle \tag{2}
\]
were first studied by Edington [3], for some small values of \(l, m, n \) and \(k \). The notation we use was devised by Coxeter [1] and Moser [2], and has a
The abstract groups $(3, 3 | 3, p)$

Deeper meaning that we will not discuss here. From now on, we will always refer to presentation (2) when speaking about $(l, m | n, k)$.

The starting point for our discussion is Theorem 2, due to Edington [3, Theorem IV and pp. 208–210]. (Notice that there is a typo concerning the order of $(3, 3 | 3, n)$, and a misprint claiming that $(3, 3 | 3, 3)$ is isomorphic to A_4.) For the convenience of the reader, we give a short, contemporary proof.

Theorem 2 (Edington). The group $G = (3, 3 | 3, n)$ exists for every $n \geq 1$, is of order $3n^2$, and is non-abelian when $n > 1$. It contains a normal subgroup $H = \langle x^2y, xy^2 \rangle \cong C_n \times C_n$. In particular, $G \cong C_3$ when $n = 1$, $G \cong A_4$ when $n = 2$, and G is the unique non-abelian group of order 27 and exponent 3 when $n = 3$.

Proof. Verify that $(3, 3 | 3, 1)$ is isomorphic to C_3. Let $n > 1$. Since $x(x^2y)x^{-1} = yx^{-1} = y(x^2y)y^{-1} \in H$, and $x^{-1}(xy^2)x = y^2x = y^{-1}(xy^2)y \in H$, the subgroup H is normal in G. It is an abelian group of order at most n^2 since $x^2y \cdot xy^2 = x(xy^2)y = x(xy)^{-1} = xy^2 \cdot xy^2$. Clearly, $G/H \cong C_3$ (enumeration of cosets works fine), and hence $|G| = 3|H| \leq 3n^2$.

Let $N = (a) \times (b) \cong C_n \times C_n$, and $K = \langle f \rangle \leq \text{Aut}(N)$, where f is defined by $f(a) = a^{-1}b$, $f(b) = a^{-1}$. Let E be the semidirect product of N and K via the natural action of K on N. We claim that E is non-abelian, and isomorphic to $(3, 3 | 3, n)$ with generators $x = (1, f)$ and $y = (a, f)$. We have $(a, f)^2 = (af(a), f^2) = (b, f^2)$, $(b, f^2)(1, f) = (b, \text{id})$, and $(1, f)(b, f^2) = (a^{-1}, \text{id})$. Thus E is non-abelian, and generated by $(1, f)$, (a, f). A routine computation shows that $(1, f)^3 = (a, f)^3 = ((1, f)(a, f))^3 = ((1, f)^{-1}(a, f))^3 = 1$.

The group E proves that $|G| = 3|H| = 3n^2$. In particular, $H \cong C_n \times C_n$.

We would like to give a detailed description of the lattice of subgroups of $(3, 3 | 3, p)$ in terms of generators x and y. From a group-theoretical point of view, the groups are rather boring, nevertheless, the lattice can be nicely visualized. The cases $p = 2$ and $p = 3$ cause troubles, and we exclude them from our discussion for the time being.

Lemma 3. Let G and H be defined as before. Then H is the Sylow p-subgroup of G, and contains $p + 1$ subgroups $H(i) = \langle h(i) \rangle$, for $0 \leq i < p$, or $p = \infty$, all isomorphic to C_p. We can take

\[h(i) = x^2y(xy^2)^i, \text{ for } 0 \leq i < p \text{ and } h(\infty) = xy^2. \]
There are p^2 Sylow 3-subgroups $G(k, l) = \langle g(k, l) \rangle$, for $0 \leq k, l < p$, all isomorphic to C_3. We can take
\[g(k, l) = (x^2 y)^{-k} (xy^2)^{l-1} x (x^2 y)^{k} (xy^2)^{l}. \]

Proof. The subgroup structure of H is obvious. Every element of $G \setminus H$ has order 3, so there are p^2 Sylow 3-subgroups of order 3 in G. The subgroup H acts transitively on the set of Sylow 3-subgroups. (By Sylow Theorems, G acts transitively on the copies of C_3. As $|G| = 3p^2$, the stabilizer of each C_3 under this action is isomorphic to C_3. Since p and 3 are relatively prime, no element of H can be found in any stabilizer.) This shows that our list of Sylow 3-subgroups is without repetitions, thus complete. \square

For certain values of p (see below), there are no other subgroups in G. For the remaining values of p, there are additional subgroups of order $3p$.

If $K \leq G$ has order $3p$, it contains a unique normal subgroup of order p, say $L \leq H$. Since L is normalized by both K and H, it is normal in G. Then G/L is a non-abelian group of order $3p$, and has therefore p subgroups of order 3. Using the correspondence of lattices, we find p subgroups of order $3p$ containing L (the group K is one of them).

Lemma 4. The group $H(i)$ is normal in G if and only if
\[i^2 + i + 1 \equiv 0 \pmod{p}. \] (3)

If $p \equiv 1 \pmod{3}$, there are two solutions to (3). For other values of p, there is no solution.

Proof. We have
\[
 x^{-1} h(i) x = x^{-1} x^2 y (xy^2)^i x = xy^2 y^2 (xy^2)^i x \\
 = (xy^2)(y^2 x)^{i+1} = (x^2 y)^{-(i+1)}(xy^2).
\]

Thus $x^{-1} h(i) x$ belongs to $H(i)$ if and only if $(x^2 y)^{-(i+1)}(xy^2)^i = (x^2 y)(xy^2)^i$, i.e. if and only if i satisfies (3). Similarly,
\[
 y^{-1} h(i) y = y^{-1} x^{-2} y (xy^2)^i y = (y^2 x)(xy^2)(y^2 x)^i y \\
 = (y^2 x)(y^2 x)^i = (x^2 y)^{-(i+1)}(xy^2).
\]

Then $y^{-1} h(i) y$ belongs to $H(i)$ if and only if i satisfies (3).

The quadratic congruence (3) has either two solutions or none. Pick $a \in GF(p)^\ast$, $a \neq 1$. Then $a^2 + a + 1 = 0$ if and only if $a^3 = 1$, since $a^3 - 1 = (a-1)(a^2 + a + 1)$. This simple argument shows that (3) has a solution if and only if 3 divides $p - 1 = |GF(p)^\ast|$. \square
Theorem 5 (The Lattice of Subgroups of \((3, 3 \mid 3, p)\)). For a prime \(p > 3\), let \(G = (3, 3 \mid 3, p)\), \(H = \langle x^2y, xy^2 \rangle\), \(h(i) = x^2y(xy)^i\) for \(0 \leq i < p\), \(h(\infty) = xy^2\), \(H(i) = \langle h(i) \rangle\), \(g(k, l) = (x^2y)^{-k}(xy^2)^{-l}x(x^2y)^k(xy^2)^l\) for \(0 \leq k, l < p\), and \(G(k, l) = (g(k, l))\).

Then \(H(\infty) \cong C_p\), \(H(i) \cong C_p\), \(G(k, l) \cong C_3\) are the minimal subgroups of \(G\), and \(H(i) \lor H(j) = H \cong C_p \times C_p\) for every \(i \neq j\). When \(3\) does not divide \(p - 1\), there are no other subgroups in \(G\). Otherwise, there are additional \(2p\) non-abelian maximal subgroups of order \(3p\); \(p\) for each \(1 < i < p\) satisfying \(i^3 \equiv 1 \pmod{p}\). These subgroups can be listed as \(K(i, l) = H(i) \lor G(0, l)\), for \(0 \leq l < p\). Then \(H(i) \lor G(k', l') = K(i, l)\) if and only if \(l' - l \equiv ik'\) (mod \(p\)); otherwise \(H(i) \lor G(k', l') = G\). Finally, let \((k, l) \neq (k', l')\). Then \(G(k, l) \lor G(k', l') = H(i) \lor G(k, l)\) if and only if there is \(1 < i < p\) satisfying \(i^3 \equiv 1 \pmod{p}\) such that \(l' - l \equiv (k' - k)i\) (mod \(p\)); otherwise \(G(k, l) \lor G(k', l') = G\).

The group \((3, 3 \mid 3, 2)\) is isomorphic to \(A_4\), the alternating group on 4 points, and \((3, 3 \mid 3, 3)\) is the unique non-abelian group of order 27 and exponent 3.

Proof. Check that \(h(i)^{-1}g(k, l)h(i) = g(k + 1, l + i)\), and conclude that \(H(i) \lor G(k, l) = H(i) \lor G(k', l')\) if and only if \(l' - l \equiv i(k' - k)\) (mod \(p\)). This also implies that, for some \(1 < i < p\), \(H(i) \lor G(k', l')\) equals \(K(i, l)\) if and only if \(l' - l \equiv ik'\) (mod \(p\)) and \(i^3 \equiv 1 \pmod{p}\).

Finally, if \(S = G(k, l) \lor G(k', l') \neq G\), it contains a unique \(H(i) \leq G\). Moreover, we have \(S = H(i) \lor G(k, l) = H(i) \lor G(k', l')\) solely on the grounds of cardinality, and everything follows.

We illustrate Theorem 5 with \(p = 7\). The congruence (3) has two solutions, \(i = 2\) and \(i = 4\). The subgroup lattice of \((3, 3 \mid 3, 7)\) is depicted in the 3D Figure 1. The 49 subgroups \(G(k, l)\) are represented by a parallelogram that is thought to be in a horizontal position. All lines connecting the subgroups \(G(k, l)\) with \(K(2, 0)\) and \(K(4, 0)\) are drawn. The lines connecting the subgroups \(G(k, l)\) with \(K(2, j), K(4, j)\), for \(1 \leq j < p\), are omitted for the sake of transparency. The best way to add these missing lines is by the means of affine geometry of \(GF(p) \times GF(p)\). To determine which groups \(G(k, l)\) are connected to the group \(K(i, j)\), start at \(G(0, j)\) and follow the line with slope \(i\), drawn modulo the parallelogram.

The group \(A_4\) fits the description of Theorem 5, too, as can be seen from its lattice of subgroups in Figure 2. So does the group \((3, 3 \mid 3, 3)\).
Figure 1: The lattice of subgroups of $(3, 3 \mid 3, 7)$

Figure 2: The subgroup structure of A_4
3. Three subgroups

We promised to show that each of the subgroups \(\langle g_3, g_4 \rangle, \langle g_3, g_5 \rangle, \langle g_4, g_5 \rangle \) of \(M^*(q) \) is isomorphic to \((3, 3 \mid 3, p) \).

Proposition 3.1. Let \(g_3, g_4, g_5 \) be defined as above, \(q = p^r \). Then the three subgroups \(\langle g_3, g_4 \rangle, \langle g_3, g_5 \rangle, \langle g_4, g_5 \rangle \) of \(M^*(p^r) \) are isomorphic to \((3, 3 \mid 3, p) \), if \(q \neq 9 \) is odd or \(q = 2 \).

Proof. We prove that \(G_1 = \langle g_3, g_4 \rangle \cong (3, 3 \mid 3, p) \); the argument for the other two groups is similar. We have \(g_3^3 = g_4^3 = (g_3g_4)^3 = (g_4g_3)^3 = (g_3g_4)^p = (g_3^2g_4)^p = e \). Thus \(G_1 \cong (3, 3 \mid 3, p) \). Also, \(H_1 = \langle g_3^2g_4, g_3g_4 \rangle \cong C_p \times C_p \). When \(p \neq 3 \), we conclude that \(|G_1| = 3p^2 \), since \(G_1 \) contains an element of order 3. When \(p = 3 \), we check that \(g_3 \notin H_1 \), and reach the same conclusion. \(\square \)

We finish this paper with a now obvious observation, that in order to describe all subloops of \(M^*(q) \), one only has to study the interplay of the isomorphic subgroups \(\langle g_3, g_4 \rangle, \langle g_3, g_5 \rangle, \) and \(\langle g_4, g_5 \rangle \).

References

Department of Mathematics
Iowa State University
Ames, IA 50011
U.S.A.
petr@iastate.edu