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1 Introduction
LOOPS is a package for GAP4 whose purpose is to:
� provide researchers in nonassociative algebra with a powerful computational tool concerning �nite loopsand quasigroups,
� extend GAP toward the realm of nonassociative structures.1.1 InstallationWe assume that you have GAP 4.4 or newer installed on your computer. Download the LOOPS package fromthe distribution website
http://www.math.du.edu/loopsand unpack the downloaded �le into the pkg subfolder of your GAP folder.After this step, there should be a subfolder loops in your pkg folder. The package LOOPS can then beloaded to GAP anytime by calling
LoadPackage("loops");If you wish to load LOOPS automatically while starting GAP, open the �le loops/PackageInfo.g, andchange Autoload:=false to Autoload:=true in the �le.1.2 DocumentationThe documentation is available is several formats: TEX, pdf, dvi, pdf, html, and as an online help in GAP.All these formats have been obtained directly from the master TEX documentation �le. Consequently, thedi�erent formats of the documentation di�er only in their appearance, not in contents.The documentation can be found in the doc folder of LOOPS and also at the LOOPS distribution website.The online GAP help is available upon installing LOOPS, and can be accessed in the usual way, i.e., upontyping ?command , GAP displays the section of the LOOPS manual containing information about command .1.3 Test �lesTest �les conforming to the GAP standards are provided for LOOPS. They can be found in the folder tstand run in the usual way.The �le testall.g runs all tests for LOOPS with the exception of the test mouflib.tst. The test mou-

flib.tst builds all Moufang loops contained in the library of LOOPS, and runs for about 10 minutes.1.4 FeedbackWe welcome all comments and suggestions on LOOPS, especially those concerning the future developmentof the package. You can contact us by e-mail.



2
Mathematical
background

We assume that you are familiar with the theory of quasigroups and loops, for instance with the textbookof Bruck [2] or Pugfelder [12]. Nevertheless, we did include de�nitions and results in this manual in orderto unify the terminology and improve the intelligibility of the text. Some general concepts of quasigroupsand loops can be found in this chapter. More special concepts are de�ned throughout the text as needed.2.1 Quasigroups and loopsA set with one binary operation (denoted � here) is called groupoid or magma , the latter name being usedin GAP. Associative groupoid is known as semigroup .An element 1 of a groupoid G is a neutral element or an identity element if 1 � x = x � 1 = x for every x inG . Semigroup with a neutral element is a monoid .Let G be a groupoid with neutral element 1. Then an element y is called a two-sided inverse of x in G ifx � y = y � x = 1. A monoid in which every element has a two-sided inverse is called a group .Groups can be reached in another way from groupoids, namely through quasigroups and loops.A quasigroup Q is a groupoid such that the equation x � y = z has a unique solution in Q whenever twoof the three elements x , y , z of Q are speci�ed. Note that multiplication tables of �nite quasigroups areprecisely Latin squares, i.e., a square arrays with symbols arranged so that each symbol occurs in each rowand in each column exactly once. A loop L is a quasigroup with a neutral element.Groups are clearly loops, and one can show easily that an associative quasigroup is a group. Hence thetheory of quasigroups and loops is in a sense complementary to the theory of semigroups and monoids.2.2 TranslationsGiven an element x of a quasigroup Q we can associative two permutations of Q with it: the left translationLx : Q ! Q de�ned by y 7! x � y , and the right translation Rx : Q ! Q de�ned by y 7! y � x .Although it is possible to compose two right (left) translations, the resulting permutation is not necessarilya right (left) translation. The set fLx ; x 2 Qg is called the left section of Q , and fRx ; x 2 Qg is the rightsection of Q .Let SQ be the symmetric group on Q . Then the subgroup LMlt(Q) = hLx jx 2 Qi of SQ generated by all lefttranslations is the left multiplication group of Q . Similarly, RMlt(Q) = hRx jx 2 Qi is the right multiplicationgroup of Q . The smallest group containing both LMlt(Q) and RMlt(Q) is called the multiplication group ofQ and is denoted by Mlt(Q).2.3 Homomorphisms and homotopismsLet K , H be two quasigroups. Then a map f : K ! H is a homomorphism if f (x ) � f (y) = f (x � y) forevery x , y 2 K . If f is also a bijection, we speak of an isomorphism , and the two quasigroups are calledisomorphic.The ordered triple (�; �; ) of maps �, �,  : K ! H is a homotopism if �(x ) � �(y) = (x � y) for every x ,y 2 K . If the three maps are bijections, (�; �; ) is an isotopism , and the two quasigroups are isotopic.Isotopic groups are necessarily isomorphic, but this is certainly not true for nonassociative quasigroups orloops. In fact, every quasigroup is isotopic to a loop, as we shall see.Let (K ; �), (K ; �) be two quasigroups de�ned on the same set K . Then an isotopism (�; �; idK ) is called aprincipal isotopism . An important class of principal isotopisms is obtained as follows:



Section 3. Homomorphisms and homotopisms 7Let (K ; �) be a quasigroup, and let f , g be elements of K . De�ne a new operation � on K byx � y = R�1g (x ) � L�1f (y);where Rg , Lf are translations. Then (K ; �) is a quasigroup isotopic to (K ; �), in fact a loop with neutralelement f � g . We call (K ; �) a principal loop isotope of (K ; �).



3 How the package works
The package consists of three complementary components:
� the core algorithms for quasigroup theoretical notions (see Chapters 4, 5 and 6),
� some speci�c algorithms, mostly for Moufang loops (see Chapter 7),
� the library of small loops (see Chapter 8).Although we do not explain the algorithms in detail here, we describe the overarching ideas so that the usershould be able to anticipate the capabilities and behavior of LOOPS during computation.3.1 Representing quasigroupsSince the permutation representation in the usual sense is impossible for nonassociative structures, and sincethe theory of nonassociative presentations is not well understood, we had to resort to multiplication tablesto represent quasigroups in GAP.In order to save storage space, we sometimes use one multiplication table to represent several quasigroups(for instance when a quasigroup is a subquasigroup of another quasigroup).Consequently, the package is intended primarily for quasigroups and loops of small order , say up to 1000.The categories IsQuasigroupElement, IsLoopElement, IsQuasigroup, and IsLoop are declared in LOOPSas follows:
DeclareCategory( "IsQuasigroupElement", IsMultiplicativeElement );
DeclareRepresentation( "IsQuasigroupElmRep",

IsPositionalObjectRep and IsMultiplicativeElement, [1] );
DeclareCategory( "IsLoopElement",

IsQuasigroupElement and IsMultiplicativeElementWithInverse );
DeclareRepresentation( "IsLoopElmRep",

IsPositionalObjectRep and IsMultiplicativeElementWithInverse, [1] );
## latin (auxiliary category for GAP to tell apart IsMagma and IsQuasigroup)
DeclareCategory( "IsLatin", IsObject );
DeclareCategory( "IsQuasigroup", IsMagma and IsLatin );
DeclareCategory( "IsLoop", IsQuasigroup and

IsMultiplicativeElementWithInverseCollection);3.2 Conversions between magmas, quasigroups, loops and groupsWhether an object is considered a quasigroup or a loop is a matter of declaration in LOOPS. A declaredloop is considered to be a quasigroup, however, a declared quasigroup is not considered to be a loop, evenif it accidentally possesses a neutral element. It is possible to convert a quasigroup Q (with or without aneutral element) to a loop using
1I AsLoop( Q ) OAs we have seen above, the category IsQuasigroup is declared in LOOPS so that it is contained in thecategory IsMagma. All standard GAP command for magmas are therefore available for quasigroups andloops, too.Although groups are quasigroups mathematically, they are not treated as quasigroups in LOOPS. If youwish to apply methods of LOOPS to groups, apply one of the conversions
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2I AsQuasigroup( G ) O
I AsLoop( G ) Oto the group G . These conversions fail when G is in�nite and will exhaust all available memory when G ishuge.For much more information on conversions, see Section 4.6.3.3 Calculating with quasigroupsAlthough the quasigroups are ultimately represented by multiplication tables, the algorithms are e�cientbecause nearly all calculations are delegated to groups. The connection between quasigroups and groups isfacilitated via the above-mentioned translations, and we illustrate it with a few examples:Example 1: This example shows how properties of quasigroups can be translated into properties of trans-lations in a straightforward way.Let Q be a quasigroup. We ask if Q is associative. We can either test if (xy)z = x (yz ) for every x , y , z 2 Q ,or we can ask if Lxy = LxLy for every x , y 2 Q . Note that since Lxy , Lx , Ly are elements of a permutationgroup, we do not have to refer directly to the multiplication table once the left translations of Q are known.Example 2: This example shows how properties of loops can be translated into properties of translationsin a way that requires some theory.A left Bol loop is a loop satisfying x (y(xz )) = (x (yx ))z . We claim (without proof) that a loop L is left Bolif and only if LxLyLx is a left translation for every x , y 2 L.Example 3: This example shows that many properties of loops become purely group-theoretical once theyare expresses in terms of translations.A loop is simple if it has no nontrivial congruences. Then it is easy to see that a loop is simple if and onlyif its multiplication group is a primitive permutation group.The main idea of the package is therefore to:

� calculate the translations and the associated permutation groups when they are needed,
� store them as attributes,
� use them in algorithms as often as possible.3.4 Naming, viewing and printing quasigroups and their elements

GAP displays information about objects in two modes:
� View (default, short),
� Print (longer).Moreover, when the name of an object is set, it is always shown, no matter which display mode is used.Only loops contained in the libraries of LOOPS are named. For instance, the loop obtained via MoufangLoop(

32, 4 ), the 4th Moufang loop of order 32, is named Moufang loop 32/4.When Q is a quasigroup of order n, it is displayed as <quasigroup of order n>. Similarly, a loop of ordern appears as <loop of order n>.The displayed information for a loop L is enhanced when it is known that L has certain additional properties.At this point, we support:
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<associative loop ...>
<extra loop ...>
<Moufang loop ...>
<C loop ...>
<left Bol loop ...>
<right Bol loop ...>
<LC loop ...>
<RC loop ...>
<alternative loop ...>
<left alternative loop ...>
<right alternative loop ...>
<flexible loop ...>The corresponding mathematical de�nitions and an example can be found in Section 6.4.It is possible for a loop to have several of the above properties. In such a case, we display the �rst propertyon the list that is satis�ed.By default, elements of a quasigroup appear as qn and elements of a loop appear as ln in both displaymodes. The neutral element of a loop is always denoted by l1. However, one can change the names ofelements of a quasigroup Q or loop L to name with

1I SetQuasigroupElmName( Q, name ) O
I SetLoopElmName( L, name ) OFor quasigroups and loops in the Print mode, we display the multiplication table (if it is known), or wedisplay the elements.In the following example, L is a loop with two elements.

gap> L;
<loop of order 2>
gap> Print( L );
<loop with multiplication table [ [ 1, 2 ], [ 2, 1 ] ]>
gap> Elements( L );
[ l1, l2 ]
gap> SetLoopElmName( L, "loop_element" );; Elements( L );
[ loop_element1, loop_element2 ]



4
Basic methods
and attributes

We describe the basic core methods of the LOOPS package in this chapter. The methods discussed here (andmore) are declared and implemented in �les quasigrp.gd and quasigrp.gi, respectively.4.1 About Cayley tablesLet X = fx1; : : : ; xng be a set and � a binary operation on X . Then an n by n array with rows and columnsbordered by x1, : : :, xn , in this order, is a Cayley table , or a multiplication table of �, if the entry in the rowxi and column xj is xi � xj .A Cayley table is a quasigroup table if it is a Latin square , i.e., if every entry xi appears in every columnand every row exactly once.An annoying feature of quasigroup tables in practice is that they are often not bordered, and it is up to thereader to �gure out what is meant. Throughout this manual and in LOOPS, we therefore make the followingassumption: All distinct entries in a quasigroup table must be integers, say x1 < x2 < � � � < xn , and if noborder is speci�ed, we assume that the table is bordered by x1, : : :, xn , in this order. Note that we do notassume that the distinct entries x1, : : :, xn form the interval 1, : : :, n. The signi�cance of this observationwill become clear in Chapter 5.Finally, we say that a quasigroup table is a loop table if the �rst row and the �rst column are the same, andif the entries in the �rst row are ordered in an ascending fashion.4.2 Testing Cayley tablesA square array with integral entries is called a matrix in GAP. The following synonymous operations test ifa matrix T is a quasigroup table, as de�ned above:
1I IsQuasigroupTable( T ) O
I IsQuasigroupCayleyTable( T ) OThe following synonymous operations test if a matrix T is a loop table:

2I IsLoopTable( T ) O
I IsLoopCayleyTable( T ) OWe would like to call attention to the fact that the package GUAVA also has some operations dealing withLatin squares. In particular, IsLatinSquare is declared in GUAVA.4.3 Canonical and normalized Cayley tablesAlthough we do not assume that a quasigroup table with distinct entries x1 < � � � < xn satis�es xi = i , it isoften desirable to present quasigroup tables in the latter way. The rather general operation

1I CanonicalCayleyTable( T ) Otakes any Cayley table T with distinct entries x1 < � � � < xm , and returns a Cayley table in which xi hasbeen replaced by i .The operation
2I NormalizedQuasigroupTable( T )makes a quasigroup table T into a loop table by:

� �rst calling CanonicalCayleyTable to rename the entries to 1, : : :, n,
� then permuting the columns of T so that the �rst row reads 1, : : :, n,
� and then permuting the rows of T so that the �rst column reads 1, : : :, n.



12 Chapter 4. Basic methods and attributes4.4 Creating quasigroups and loops manuallyWhen T is a quasigroup table, the corresponding quasigroup is obtained by
1I QuasigroupByCayleyTable( T ) OSince CanonicalCayleyTable is called within the above operation, the resulting quasigroup will have aCayley table with distinct entries 1, : : :, n.Here is the analogous operation for a loop table T :
2I LoopByCayleyTable( T ) O4.5 Creating quasigroups and loops from a �leTyping a large multiplication table manually is tedious and error-prone. We have therefore included auniversal algorithm in LOOPS that reads multiplication tables of quasigroups from a �le.Instead of writing a separate algorithm for each common format, our algorithm relies on the user to providea bit of information about the input �le. Here is an outline of the algorithm, with �le named F and a stringD as arguments on the input:

� read the entire content of F into a string S ,
� replace all end-of-line characters in S by spaces,
� replace by spaces all characters of S that appear in D ,
� split S into maximal substrings without spaces, called chunks,
� recognize distinct chunks (let n be the number of distinct chunks),
� if the number of chunks is not n2, report error,
� construct the multiplication table by assigning numerical values 1, : : :, n to chunks, depending on theirposition among distinct chunks.The following examples clarify the algorithm and document its versatility. All examples are of the formF + D =) T , meaning that an input �le containing F together with the string D produce multiplicationtable T .Example 1: Data does not have to be arranged into an array of any kind.0 1 2 12 0 20 1 + 0000 =) 1 2 32 3 13 1 2Example 2: Chunks can be any strings.red greengreen red + 0000 =) 1 22 1Example 3: A typical table produced by GAP is easily parsed by deleting brackets and commas.[ [0; 1]; [1; 0] ] + 00[; ]00 =) 1 22 1Example 4: A typical TEX table with rows separated by lines is also easily converted. Note that we haveto use nn to make sure that every occurrence of n is deleted, since nn represents the character n in GAP.x& y& zncry& z& xncrz& x& y + 00nncr&00 =) 1 2 32 3 13 1 2And here are the needed LOOPS commands:

1I QuasigroupFromFile( F, D ) O
I LoopFromFile( F, D ) O



Section 8. Opposite quasigroups and loops 134.6 ConversionsAs we have already briey mentioned, we provide operations that convert between magmas, quasigroups,loops and groups, provided such conversions are possible.If M is a declared magma that happens to be a quasigroup, the corresponding quasigroup is returned via
1I AsQuasigroup( M ) OIf M is a magma that happens to be a quasigroup, the operation
2I AsLoop( M ) Oreturns a loop L as follows:

� if M possesses a neutral element e and f is the �rst element of M , then L is an isomorphic copy of Mvia the transposition (e; f ),
� if M does not posses a neutral element, L is returned as PrincipalLoopIsotope( M , M.1, M.1 ).Here,

3I PrincipalLoopIsotope( Q, f , g ) Ois the principal isotope of a quasigroup Q using elements f , g of Q , as explained in Section 2.3.Of course, one can obtain a loop from M in di�erent ways, for instance by normalizing the Cayley table ofM . The three approaches mentioned here can result in di�erent loops in general.When M is a declared magma that happens to be a group, then the corresponding group is returned by
4I AsGroup( M ) ANote that the conversions work in both directions, not just toward more special structures. Thus, if G is adeclared group, then AsLoop( G ) returns the corresponding loop, for instance.4.7 Products of loopsLet L1, : : :, Ln be a list consisting of loops and groups, where n � 1. Then
1I DirectProduct( L1, ..., Ln) Oreturns the direct product of L1, : : :, Ln.If there are only groups among L1, : : :, Ln, a group is returned. Otherwise a loop is returned. If n = 1, L1is returned.4.8 Opposite quasigroups and loopsWhen Q is a quasigroup with multiplication �, the opposite quasigroup of Q is a quasigroup with the sameunderlying set as Q and with multiplication � de�ned by x � y = y � x .Since the quasigroup-theoretical concepts are often chiral (cf. left Bol loops versus right Bol loops), it isuseful to have access to the opposite quasigroup of Q :
1I Opposite( Q ) O



14 Chapter 4. Basic methods and attributes4.9 Basic attributesWe associate many attributes with quasigroups in order to speed up computation. This section lists thebasic attributes of quasigroups and loops.The list of elements of a quasigroup Q is obtained by the usual command
1I Elements( Q ) AThe Cayley table of a quasigroup Q is returned with
2I CayleyTable( Q ) AOne can use Display( CayleyTable( Q ) ) for pretty matrix-style output of small Cayley tables.The neutral element of a loop L is obtained via
3I One( L ) AIf you want to know if a quasigroup Q has a neutral element, you can �nd out with the standard functionfor magmas
4I MultiplicativeNeutralElement( Q ) AThe size of a quasigroup Q is calculated by
5I Size( Q ) AWhen L is a power-associative loop , i.e., the orders of elements are well-de�ned in L, the exponent of L isthe smallest positive integer divisible by orders of all elements of L. The following attribute calculates theexponent without testing for power-associativity:
6I Exponent( L ) AHere is an example for operations and attributes mentioned sofar:

gap> A := [ [ 1, 2 ], [ 3, 4 ] ];; B := [ [ 8, 5 ], [ 5, 8 ] ];;
gap> [ IsQuasigroupTable( A ), IsQuasigroupTable( B ), IsLoopTable( B ) ];
[ false, true, false ]
gap> Q := QuasigroupByCayleyTable( B );; CayleyTable( Q );
[ [ 2, 1 ], [ 1, 2 ] ]
gap> CanonicalCayleyTable( B );
[ [ 2, 1 ], [ 1, 2 ] ]
gap> NormalizedQuasigroupTable( B );
[ [ 1, 2 ], [ 2, 1 ] ]
gap> LoopByCayleyTable( last );
<loop of order 2>
gap> [ IsQuasigroup( Q ), IsLoop( Q ), Size( Q ), Elements( Q )]
[ true, false, 2, [ q1, q2 ] ]
gap> IsQuasigroupElement( Elements( Q )[ 2 ] );
true
gap> AsLoop( Q );
<loop of order 2>4.10 Basic arithmetic operationsEach quasigroup element in GAP knows which quasigroup it belongs to. It is therefore possible to performarithmetic operations with quasigroup elements without referring to the quasigroup. All elements involvedin the calculation must belong to the same quasigroup.Two elements x , y of the same quasigroup are multiplied by x � y in GAP. Since multiplication of elementsis ambiguous in the nonassociative case, we always multiply elements from left to right, i.e., x � y � z means((x � y) � z ). Of course, one can specify association by parentheses.Universal algebraists introduce two additional operations for quasigroups. Namely the left division xnysatisfying x � (xny) = y , and the right division x=y satisfying (x=y) � y = x . These two operations can befound in LOOPS as:
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1I LeftDivision( x, y ) O
I RightDivision( x, y ) OWhen Q is a quasigroup, x is an element of Q , and S is a list of elements of Q , then

2I LeftDivision( S, x ) O
I LeftDivision( x, S ) O
I RightDivision( S, x ) O
I RightDivision( x, S ) Oreturns the list of elements obtained by performing the respective division of S by x , or of x by S , usingone element of S at a time.We also support = in place of RightDivision. But we do not support n in place of LeftDivision.4.11 Powers and inversesPowers of elements are not well-de�ned in quasigroups, since bracketing can matter even for a single element.We say that the quasigroup Q is power-associative , if for any x 2 Q , the submagma generated by x isassociative.For magmas and positive integer exponents, GAP de�nes the powers in the following way: x 1 = x , x 2k =(x k ) � (x k ) and x 2k+1 = (x 2k ) � x . One can easily see that this returns x k in log2(k) steps. For LOOPS, wehave decided to keep this method, hoping that everybody will use it with care for non power-associativequasigroups.Let x be an element of a loop L with neutral element 1. Then the left inverse x� of x is the unique elementof L satisfying x�x = 1. Similarly, the right inverse x� satis�es xx� = 1. If x� = x�, we call x�1 = x� = x�the inverse of x .

1I LeftInverse( x ) O
I RightInverse( x ) O
I Inverse( x ) OThe following examples illustrates the usage of arithmetic operations. MoufangLoop will be explained inChapter 8. In this example, M.i coincides with Elements( M )[ i ].

gap> M := MoufangLoop( 12, 1 );; x := M.2;
l2
gap> [ x * M.3, x^2, x^(-1), Inverse( x ) ];
[ l4, l1, l2, l2 ]
gap> One( M ) = LeftDivision( x, x );
true4.12 Associators and commutatorsLet Q be a quasigroup and x , y , z 2 Q . Then the associator of x , y , z is the unique element u such that(xy)z = (x (yz ))u. The commutator of x , y is the unique element v such that xy = (yx )v .

1I Associator( x, y, z ) O
I Commutator( x, y ) O4.13 GeneratorsThe following two attributes are synonyms of GeneratorsOfMagma:

1I GeneratorsOfQuasigroup( Q ) A
I GeneratorsOfLoop( L ) AAs usual in GAP, one can refer to the ith generator of a quasigroup Q by Q.i. Note that it is not necessarilythe case that Q.i = Elements( Q )[ i ], since the set of generators can be a proper subset of the elements.It is easy to prove that a quasigroup of order n can be generated by a subset containing at most log2 nelements. When Q is a quasigroup

2I GeneratorsSmallest( Q ) Areturns a generating set fq0, : : :, qmg of Q such that Q0 = ;, Qm = Q , Qi = hq1, : : :, qi i, qi+1 is the largestelement of Q nQi .



5
Some methods based

on permutation groups
Most calculations in the LOOPS package are delegated to groups, taking advantage of the various per-mutations and permutation groups associated with quasigroups. This chapter explains in detail how thepermutations associated with a quasigroup are calculated, and it also describes some of the core methods of
LOOPS based on permutations. Additional core methods can be found in Chapter 6.5.1 Parent of a quasigroupLet Q be a quasigroup and S a subquasigroup of Q . Since the multiplication in S coincides with themultiplication in Q , it is reasonable not to store the multiplication table of S . However, the quasigroup Sthen must know that it is a subquasigroup of Q . In order to facilitate this relationship, we introduce theattribute

1I Parent( Q ) Afor a quasigroup Q . When Q is not created as a subquasigroup of another quasigroup, the attribute Parent(Q ) is set to Q . When Q is created as a subquasigroup of a quasigroup H , we let Parent( Q ) := Parent(H ). Thus, in e�ect, Parent( Q ) is the largest quasigroup from which Q has been created.Let Q be a quasigroup with parent P , where P is some n-element quasigroup. Let x be an element of Q .Then x![1] is the position of x among the elements of P , i.e., x![1] = Position( Elements( P ), x ).The position of x among the elements of Q is obtained via
2I Position( Q, x ) OWhile referring to elements of Q by their positions, we therefore must decide if the positions are meantamong the elements of Q , or among the elements of P . Since it requires no calculation to obtain x![1], wealways use the position of an element in its parent quasigroup. In this way, many attributes of a quasigroup,including its Cayley table, are permanently tied to its parent. It is now obvious why we have not insistedon Cayley tables of quasigroups to cover the entire interval 1, : : :, m, for some m.When S is a list of quasigroup elements, not necessarily from the same quasigroup, the operation
3I PosInParent( S )returns the list of positions of elements of S in the corresponding parent, i.e., PosInParent( S )[ i ] =

S[ i ]![ 1 ] = Position( Parent( S[ i ] ), S[ i ] ).5.2 Comparing quasigroups with common parentAssume that A, B are two quasigroups with common parent Q . Let GA, GB be the canonical generating setsof A and B , respectively, obtained by the method GeneratorsSmallest, described above. Then we de�neA < B if and only if GA < GB lexicographically.Note that if A is a subquasigroup of B , we get A < B , but not necessarily vice versa.



Section 4. Translations and sections 175.3 Subquasigroups and subloopsWhen S is a subset of a quasigroup Q (loop L), the smallest subquasigroup of Q (subloop of L) generatedby S is returned via:
1I Subquasigroup( Q, S ) O
I Subloop( L, S ) OIn fact, we allow S to be a list of integers, too, representing the positions of the respective elements in theparent quasigroup (loop).The following two operations test if a quasigroup (loop) S is a subquasigroup (subloop) of a quasigroup Q .They return true if and only if Q and S have the same parent, and if S is closed under multiplication in Q .

2I IsSubquasigroup( Q, S ) O
I IsSubloop( Q, S ) O5.4 Translations and sectionsWhen x is an element of a quasigroup Q , the left translation Lx is a permutation of Q . In LOOPS, all permu-tations associated with quasigroups and their elements are permutations in the sense of GAP , i.e., bijectionsof some interval 1, : : :, n. Moreover, following our convention, the numerical entries of the permutation pointto the positions among elements of Parent( Q ), not Q .The left and right translations by x in Q are obtained by

1I LeftTranslation( Q, x ) O
I RightTranslation( Q, x ) OThe following two attributes calculate the left and right section of a quasigroup Q :

2I LeftSection( Q ) A
I RightSection( Q ) AHere is an example illustrating the main features of the subquasigroup construction and the relationshipbetween a quasigroup and its parent.Note how the Cayley table of the subquasigroup is created only upon explicit demand. Also note thatchanging the names of elements of a subquasigroup (subloop) automatically changes the names of theelements of the parent subquasigroup (subloop). This is because the elements are shared.

gap> M := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.5 ] );
<loop of order 3>
gap> [ Parent( S ) = M, Elements( S ), PosInParent( S ) ];
[ true, [ l1, l3, l5], [ 1, 3, 5 ] ]
gap> HasCayleyTable( S );
false
gap> SetLoopElmName( S, "s" );; Elements( S ); Elements( M );
[ s1, s3, s5 ]
[ s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12 ]
gap> CayleyTable( S );
[ [ 1, 3, 5 ], [ 3, 5, 1 ], [ 5, 1, 3 ] ]
gap> LeftSection( S );
[ (), (1,3,5), (1,5,3) ]
gap> [ HasCayleyTable( S ), Parent( S ) = M ];
[ true, true]
gap> L := LoopByCayleyTable( CayleyTable( S ) );; Elements( L );
[ l1, l2, l3]
gap> [ Parent( L ) = L, IsSubloop( M, S ), IsSubloop( M, L ) ];
[ true, true, false ]
gap> LeftSection( L );
[ (), (1,2,3), (1,3,2) ]



18 Chapter 5. Some methods based on permutation groups5.5 Multiplication groupsThe left multiplication group, right multiplication group and the multiplication group of a quasigroup Qare calculated as follows:
1I LeftMultiplicationGroup( Q ) A
I RightMultiplicationGroup( Q ) A
I MultiplicationGroup( Q ) ALet S be a subloop of a loop L. Then the relative left multiplication group of L with respect to S is the group
hL(x )jx 2 S i, where L(x ) is the left translation by x in Q restricted to S . The relative right multiplicationgroup and relative multiplication group are de�ned analogously.

2I RelativeLeftMultiplicationGroup( L, S ) O
I RelativeRightMultiplicationGroup( L, S ) O
I RelativeMultiplicationGroup( L, S ) O5.6 Inner mapping groupsThe inner mapping group of a loop L is the stabilizer of the unit element in Mlt(L). The elements of thisstabilizer are called inner maps of L.The left inner mapping group of a loop L is the stabilizer of the unit element in LMlt(L). The right innermapping group is de�ned dually.

1I InnerMappingGroup( L ) A
I LeftInnerMappingGroup( L ) A
I RightInnerMappingGroup( L ) AHere is an example for multiplication groups and inner mapping groups:

gap> M := MoufangLoop( 12, 1 );
<Moufang loop 12/1>
gap> LeftSection( M )[ 2 ];
(1,2)(3,4)(5,6)(7,8)(9,12)(10,11)
gap> Mlt := MultiplicationGroup( M ); Inn := InnerMappingGroup( M );
<permutation group of size 2592 with 23 generators>
Group([ (4,6)(7,11), (7,11)(8,10), (2,6,4)(7,9,11), (3,5)(9,11), (8,12,10) ])
gap> Size( Inn );
2165.7 Nuclei, commutant, center, and associator subloopLet Q be a quasigroup. The left nucleus N�(Q) of Q is the set fx 2 Q jx (yz ) = (xy)z for every y , z 2 Qg.One de�nes similarly the middle nucleus N�(Q) and the right nucleus N�(Q). Then the nucleus N (Q) ofQ is the intersection of the three nuclei. These nuclei are calculated in LOOPS as follows:

1I LeftNucleus( Q ) A
I MiddleNucleus( Q ) A
I RightNucleus( Q ) A
I Nuc( Q ) AUnfortunately, the word Nucleus is reserved in the core of GAP for a global function with two variables.That is the reason why we have used the abbreviation Nuc, which is also common in the literature. However,we support these synonyms of Nuc:

2I NucleusOfLoop( Q ) A
3I NucleusOfQuasigroup( Q ) ASince all nuclei are subquasigroups of Q , they are returned as subquasigroups (resp. subloops).The commutant C (Q) of Q is the set fx 2 Q jxy = yx for every y 2 Qg. It is also known under the nameMoufang center . It is obtained via



Section 10. Nilpotency and central series 19
4I Commutant( Q ) AThe center Z (Q) is de�ned as the intersection of C (Q) and N (Q), and it is obtained via
5I Center( Q ) AFinally, the associator subloop of a loop L is the subloop of L generated by all associators of L. (Notethat some authors de�ne the associator subloop as the smallest normal subloop A of L such that L=A isassociative. The two de�nitions are not equivalent in general.)
6I AssociatorSubloop( L ) A5.8 Normal subloopsA subloop S of a loop L is normal if it is invariant under all inner mappings of L. Normality is tested via:
1I IsNormal( L, S ) OWhen S is a subset of a loop L or a subloop of L, the normal closure of S in L is the smallest normal subloopof L containing S . It is obtained by
2I NormalClosure( L, S ) OA loop L is simple if all normal subloops of L are trivial. The corresponding test in LOOPS is:
3I IsSimple( L ) O5.9 Factor loopsWhen N is a normal subloop of a loop L, the factor loop L=N can be obtained directly via the command

L/N, or by
1I FactorLoop( L, N ) OThe natural projection from L to L=N is returned by
2I NaturalHomomorphismByNormalSubloop( L, N ) OHere is an illustrating example:

gap> M := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.3 ] );
<loop of order 3>
gap> IsNormal( M, S );
true
gap> F := FactorLoop( M, S );
<loop of order 4>
gap> NaturalHomomorphismByNormalSubloop( M, S );
MappingByFunction( <loop of order 12>, <loop of order 4>,

function( x ) ... end )5.10 Nilpotency and central seriesThe de�nition of nilpotency and nilpotence class is the same as in group theory. The corresponding commandsare:
1I NilpotencyClassOfLoop( L ) A
I IsNilpotent( L ) PWhen L is not nilpotent, NilpotencyClassOfLoop( L ) returns fail.A loop L is said to be strongly nilpotent if its multiplication group is nilpotent. This property is obtainedby:

2I IsStronglyNilpotent( L ) PLet L be a loop. De�ne iterated centers Zi (L) as follows: Z0(L) = Z (L), Zi+1(L) = ��1i (Zi (L)), where �i isthe canonical projection L! L=Zi (L). The longest series Zi (L), Zi�1(L), : : :, Z0(L) with Zi (L) > Zi�1(L) >
� � � > Z0(L) is called the upper central series of L, and is returned via

3I UpperCentralSeries( L ) AThe lower central series , de�ned in the usual way, is obtained by
4I LowerCentralSeries( L ) A



20 Chapter 5. Some methods based on permutation groups5.11 SolvabilityThe de�nition of solvability, derived subloop, derived length, Frattini subloop and Frattini factor size is thesame as for groups. Frattini subloop is calculated only for strongly nilpotent loops.
1I IsSolvable( L ) P
I DerivedSubloop( L ) A
I DerivedLength( L ) A
I FrattiniSubloop( L ) A
I FrattinifactorSize( L ) A5.12 Isomorphisms and automorphismsAll isomorphisms between two loops can be found with LOOPS. The operation

1I IsomorphismLoops( L, M ) Oreturns a single isomorphism between loops L, M if the loops are isomorphic, and fail otherwise.If an isomorphism exists, it is returned as a permutation p of 1, : : :, jLj, where ip = j means that the ithelement of L is mapped onto the j th element of M . This is true even if L or M are not their own parents.The attribute
2I AutomorphismGroup( L ) Areturns the automorphism group of the loop L, with the same convention on permutations as in the case of

IsomorphismLoops.Since two isomorphisms di�er by an automorphism, all isomorphisms can be obtained by the above twofunctions.5.13 How are isomorphisms computedIn order to speed up the search for isomorphisms and automorphisms, we �rst calculate some loop invariantspreserved under isomorphisms, and use these invariants to partition the loop into blocks of elements preservedunder isomorphisms. These invariants for a loop L can be obtained via
1I Discriminator( L ) OSince the details are technical, we will not present them here. See [14] or the �le loop iso.gi for more.If two loops have di�erent discriminators, they are not isomorphic. If they have identical discriminators,they may or may not be isomorphic. The operation
2I AreEqualDiscriminators( D1, D2 ) Oreturns true if the discriminators D1, D2 are equal.



6
Testing properties of

quasigroups and loops
The reader should be aware that although loops are quasigroups, it is often the case in the literature thata property named P can di�er for quasigroups and loops. For instance, a Steiner loop is not necessarily aSteiner quasigroup.To avoid such ambivalences, we often include the noun Loop or Quasigroup as part of the name of theproperty, e.g. IsSteinerQuasigroup versus IsSteinerLoop.On the other hand, some properties coincide for quasigroups and loops and we therefore do not include
Loop, Quasigroup as part of the name of the property, e.g. IsCommutative.6.1 Associativity, commutativity and generalizationsThe following properties test if a quasigroup Q is associative and commutative:

1I IsAssociative( Q ) P
I IsCommutative( Q ) PA loop L is said to be power-associative (resp. diassociative) if every monogenic subloop of L (resp. every2-generated subloop of L) is a group.

2I IsPowerAssociative( L ) P
I IsDiassociative( L ) P6.2 Inverse propertiesA loop L has the left inverse property if x�(xy) = y for every x , y 2 L, where x� is the left inverse of x .Dually, L has the right inverse property if (yx )x� = y for every x , y 2 L, where x� is the right inverse of x .If L has both the left and right inverse properties, it has the inverse property . We say that L has two-sidedinverses if x� = x� for every x 2 L.

1I HasLeftInverseProperty( L ) P
I HasRightInverseProperty( L ) P
I HasInverseProperty( L ) P
I HasTwosidedInverses( L ) PA loop has the weak inverse property if (xy)�x = y�. Equivalently, a loop has the weak inverse property ifx (yx )� = y�.

2I HasWeakInverseProperty( L ) PAccording to [1], a loop L has the automorphic inverse propertyif (xy)� = x�y�, or, equivalently, (xy)� = x�y�. (In particular, when L has two-sided inverses and theautomorphic inverse property, it satis�es (xy)�1 = x�1y�1.) Similarly, L has the antiautomorphic inverseproperty if (xy)� = y�x�, or, equivalently, (xy)� = y�x�.
3I HasAutomorphicInverseProperty( L ) P
I HasAntiautomorphicInverseProperty( L ) PThe following implications among inverse properties hold and are implemented in LOOPS:

� Inverse property implies left and right inverse properties, two-sided inverses, weak inverse property, andantiautomorphic inverse property.
� Antiautomorphic inverse property loops have two-sided inverses.
� If a loop has any two of the left inverse property, right inverse property, weak inverse property orantiautomorphic inverse property, it also has the inverse property.



22 Chapter 6. Testing properties of quasigroups and loops6.3 Some properties of quasigroupsA quasigroup Q is semisymmetric if (xy)x = y for every x , y 2 Q . Equivalently, Q is semisymmetric ifx (yx ) = y for every x , y 2 Q . A semisymmetric commutative quasigroup is known as totally symmetric.Totally symmetric quasigroups are precisely quasigroups satisfying xy = xny = x=y .
1I IsSemisymmetric( Q ) P
I IsTotallySymmetric( Q ) PA quasigroup Q is idempotent if x 2 = x for every x 2 Q . Idempotent totally symmetric quasigroups areknown as Steiner quasigroups. A quasigroup Q is unipotent if x 2 = y2 for every x , y 2 Q .

2I IsIdempotent( Q ) P
I IsSteinerQuasigroup( Q ) P
I IsUnipotent( Q ) PA quasigroup is left distributive if it satis�es x (yz ) = (xy)(xz ). Similarly, it is right distributive if it satis�es(xy)z = (xz )(yz ). A distributive quasigroup is a quasigroup that is both left and right distributive. Aquasigroup is called entropic or medial if it satis�es (xy)(zw) = (xz )(yw).

3I IsLeftDistributive( Q ) P
I IsRightDistributive( Q ) P
I IsDistributive( Q ) P
I IsEntropic( Q ) P
I IsMedial( Q ) PIn order to be compatible with GAP's terminology, we also support the synonyms

4I IsLDistributive( Q ) P
I IsRDistributive( Q ) Pfor IsLeftDistributive and IsRightDistributive. respectively.6.4 Loops of Bol-Moufang type and related propertiesFollowing [7] and [13], a variety of loops is said to be of Bol-Moufang type if it is de�ned by a single identityof Bol-Moufang type , i.e., by an identity that:

� contains the same 3 variables on both sides,
� exactly one of the variables occurs twice on both sides,
� the variables occur in the same order on both sides.It is proved in [13] that there are 13 varieties of nonassociative loops of Bol-Moufang type. These are:
� left alternative loops , de�ned by x (xy) = (xx )y ,
� right alternative loops , de�ned by x (yy) = (xy)y ,
� left nuclear square loops , de�ned by (xx )(yz ) = ((xx )y)z ,
� middle nuclear square loops , de�ned by x ((yy)z ) = (x (yy))z ,
� right nuclear square loops , de�ned by x (y(zz )) = (xy)(zz ),
� exible loops , de�ned by x (yx ) = (xy)x ,
� left Bol loops , de�ned by x (y(xz )) = (x (yz ))x , always left alternative,
� right Bol loops , de�ned by x ((yz )y) = ((xy)z )y , always right alternative,
� LC-loops , de�ned by (xx )(yz ) = (x (xy))z , always left alternative, left and middle nuclear square,
� RC-loops , de�ned by x ((yz )z ) = (xy)(zz ), always right alternative, right and middle nuclear square,
� Moufang loops , de�ned by (xy)(zx ) = (x (yz ))x , always exible, left and right Bol,
� C-loops , de�ned by x (y(yz )) = ((xy)y)z , always LC and RC,
� extra loops , de�ned by x (y(zx )) = ((xy)z )x , always Moufang and C.



Section 5. Conjugacy closed loops and related properties 23Note that although some of the de�ning identities are not of Bol-Moufang type, they are equivalent toa Bol-Moufang identity. Moreover, many varieties are de�ned in several ways, by equivalent identities ofBol-Moufang type.There are several varieties related to loops of Bol-Moufang type. A loop is said to be alternative if it is bothleft and right alternative, and nuclear square if it is left, middle and right nuclear square.Here are the corresponding LOOPS commands (argument L indicates that the property applies only to loops,argument Q indicates that the property applies also to quasigroups):
1I IsExtraLoop( L ) P
I IsMoufangLoop( L ) P
I IsCLoop( L ) P
I IsLeftBolLoop( L ) P
I IsRightBolLoop( L ) P
I IsLCLoop( L ) P
I IsRCLoop( L ) P
I IsLeftNuclearSquareLoop( L ) P
I IsMiddleNuclearSquareLoop( L ) P
I IsRightNuclearSquareLoop( L ) P
I IsNuclearSquareLoop( L ) P
I IsFlexible( Q ) P
I IsLeftAlternative( Q ) P
I IsRightAlternative( Q ) P
I IsAlternative( Q ) PWhile listing the varieties of loops of Bol-Moufang type, we have also listed all inclusions among them. Theseinclusions are built into LOOPS.The following trivial example shows some of the implications and the naming conventions of LOOPS at work:

gap> L := LoopByCayleyTable( [ [ 1, 2 ], [ 2, 1 ] ] );
<loop of order 2>
gap> [ IsLeftBolLoop( L ), L ]
[ true, <left Bol loop of order 2> ]
gap> [ HasIsLeftAlternativeLoop( L ), IsLeftAlternativeLoop( L ) ];
[ true, true ]
gap> [ HasIsRightBolLoop( L ), IsRightBolLoop( L ) ];
[ false, true ]
gap> L;
<Moufang loop of order 2>
gap> [ IsAssociative( L ), L ];
[ true, <associative loop of order 2> ]The analogous terminology for quasigroups of Bol-Moufang type is not standard yet, and hence is notsupported in LOOPS.6.5 Conjugacy closed loops and related propertiesA loop is left (resp. right) conjugacy closed if its left (resp. right) translations are closed under composition.A loop that is both left and right conjugacy closed is called conjugacy closed . It is common to refer to theseloops as LCC-, RCC-, CC-loops, respectively.

1I IsLCCLoop( L ) P
I IsRCCLoop( L ) P
I IsCCLoop( L ) PThe equivalence LCC + RCC = CC is built into LOOPS.A loop is Osborn if it satis�es x (yz � x ) = (x�ny)(zx ), where x� is the left inverse of x . Both Moufang loopsand CC-loops are Osborn.

2I IsOsbornLoop( L ) P



24 Chapter 6. Testing properties of quasigroups and loops6.6 Additional varieties of loopsA left (resp. right) Bol loop with the automorphic inverse property is known as left (resp. right) Bruck loop.Bruck loops are also known as K-loops.
1I IsLeftBruckLoop( L ) P
I IsLeftKLoop( L ) P
I IsRightBruckLoop( L ) P
I IsRightKLoop( L ) PSteiner loop is an inverse property loop of exponent 2.

2I IsSteinerLoop( L ) P



7 Speci�c methods
This chapter describes methods od LOOPS that apply to some special loops, mostly Moufang loops.7.1 Moufang modi�cationsAle�s Dr�apal discovered two prominent families of extensions of Moufang loops. These extensions can beused to obtain many, perhaps all, nonassociative Moufang loops of order at most 64. We call these twoconstructions Moufang modi�cations . The library of Moufang loops included with LOOPS is based onMoufang modi�cations. We describe the two modi�cations briey here. See [6] for details.Assume that L is a Moufang loop with normal subloop S such that L=S is a cyclic group of order 2m. Leth 2 S \ Z (L). Let � be a generator of L=S and write L = Si2M �i , where M = f�m + 1, : : :, mg. Let
� : Z ! M be de�ned by �(i) = 0 if i 2 M , �(i) = 1 if i > m, and �(i) = �1 if i < �m + 1. Introduce anew multiplication � on L de�ned by x � y = xyh�(i+j );where x 2 �i , y 2 �j , i 2 M , j 2 M . Then (L; �) is a Moufang loop, a cyclic modi�cation of L.When L, S , �, h are as above and when a is any element of �, the corresponding cyclic modi�cation isobtained via

1I LoopByCyclicModification( L, S, a, h ) FNow assume that L is a Moufang loop with normal subloop S such that L=S is a dihedral group of order4m, with m � 1. Let M and � be de�ned as in the cyclic case. Let �,  2 L=S be two involutions of L=Ssuch that � = � generates a cyclic subgroup of L=S of order 2m. Let e 2 � and f 2  be arbitrary. ThenL can be written as a disjoint union L = Si2M (�i [ e�i ), and also L = Si2M (�i [ �i f . Let G0 = Si2M �i ,and G1 = L nG0. Let h 2 S \N (L) \ Z (G0). Introduce a new multiplication � on L de�ned byx � y = xyh(�1)r�(i+j );where x 2 �i [ e�i , y 2 �j [ �j f , i 2 M , j 2 M , y 2 Gr , r 2 f0; 1g. Then (L; �) is a Moufang loop, adihedral modi�cation of L.When L, S , e, f and h are as above, the corresponding dihedral modi�cation is obtained via
2I LoopByDihedralModification( L, S, e, f , h ) FIn order to apply the cyclic and dihedral modi�cations, it is bene�cial to have access to a class of nonasso-ciative Moufang loops. The following construction is due to Chein:Let G be a group. Let G = fg ; g 2 Gg be a set of new elements. De�ne multiplication � on L = G [G byg � h = gh; g � h = hg ; g � h = gh�1; g � h = h�1g ;where g , h 2 G . Then L = M (G ; 2) is a Moufang loop that is nonassociative if and only if G is nonabelian.The loop M (G ; 2) can be obtained from a �nite group G with
3I LoopMG2( G ) F



26 Chapter 7. Speci�c methods7.2 Triality for Moufang loopsLet G be a group and �, � be automorphisms of G , satisfying �2 = �3 = (��)2 = 1. We write theautomorphisms of a group as exponents and [g ; �] for g�1g�. We say that the triple (G ; �; �) is a group withtriality if [g ; �][g ; �]�[g ; �]�2 = 1 holds for all g 2 G . It is known that one can associate a group with triality(G ; �; �) in a canonical way with a Moufang loop L. See [11] for more details.For any Moufang loop L, we can calculate the triality group as a permutation group acting on 3jLj points.If the multiplication group of L is polycyclic, then we can also represent the triality group as a pc group. Inboth cases, the automorphisms � and � are in the same family as the elements of G .Given a Moufang loop L, the function
1I TrialityPermGroup( L ) Freturns a record [G , �, �], where G is the group with triality associated with L, and �, � are the correspondingtriality automorphisms.The function
2I TrialityPcGroup( L ) Fdi�ers from TrialityPermGroup only in that G is returned as a pc group.



8 Libraries of small loops
Libraries of small loops form an integral part of LOOPS. We describe them here.8.1 A typical libraryA library named my Library is stored in �le data/mylibrary.tbl, and the corresponding data structure isnamed my library data.The array my library data consists of three lists
� my library data[ 1 ] is a list of orders for which there is at least one loop in the library,
� my library data[ 2 ][ k ] is the number of loops of order my library data[ 1 ][ k ] in the li-brary,
� my library data[ 3 ][ s ] contains data necessary to produce the sth loop in the library.The format of my library data[ 3 ] depends on the particular library and is not standardized in any way.The user can retrieve the mth loop of order n from library named my Library according to the template

1I MyLibraryLoop( n, m ) FIt is also possible to obtain the same loop with
2I LibraryLoop( name, n, m ) Fwhere name is the name of the library.For example, when the library is called left Bol , the corresponding data �le is called data/leftbol.tbl,the corresponding data structure is named left bol data, and the mth left Bol loop of order n is obtainedvia

LeftBolLoop( n, m )or via
LibraryLoop("left Bol", n, m )We are now going to describe the individual libraries in detail. A brief information about the library namedname can also be obtained in LOOPS with

3I DisplayLibraryInfo( name ) F8.2 Left Bol loopsThe library named left Bol contains all 6 nonassociative left Bol loops of order 8. Following the generalpattern, the mth nonassociative left Bol loop of order n is obtained by
1I LeftBolLoop( n, m ) FWe intend to enlarge this library signi�cantly in future versions of LOOPS, when the classi�cation of smallBol loops is completed.



28 Chapter 8. Libraries of small loops8.3 Small Moufang loopsThe library named Moufang contains all nonassociative Moufang loops of order less than 64, and additional4262 nonassociative Moufang loops of order 64. It is possible that there are no other nonassociative Moufangloops of order 64 than those contained in the library.The mth nonassociative Moufang loop of order n is obtained by
1I MoufangLoop( n, m ) FFor n � 63, our catalog numbers coincide with those of Goodaire et al. [8].The extent of the library is summarized below:order 12 16 20 24 28 32 36 40 42 44 48 52 54 56 60 64loops in the libary 1 5 1 5 1 71 4 5 1 1 51 1 2 4 5 4262The octonion loop of order 16 (i.e., the multiplication loop of the � basis elements in the 8-dimensionalstandard real octonion algebra) is MoufangLoop( 16, 3 ).Since we would like to know if there are additional nonassociative Moufang loops of order 64, we haveimplemented the function
2I IsomorphismTypeOfMoufangLoop( L ) FIf L is a Moufang loop cataloged in LOOPS as the mth Moufang loop of order n, the function returns[[n;m]; p], where p is a permutation of [1; : : : ;n] that is an isomorphism from L to the cataloged copy of L.If n = 64 and L is Moufang loop not cataloged in LOOPS, the user is prompted to contact the authors of

LOOPS.In order to speed up the function IsomorphismTypeOfMoufangLoop, we have precalculated and stored in thedata �le data\moufang discriminators.tbl the discriminators of all Moufang loops in the library. The�le is rather large (850 KB), and took about 20 minutes to precalculate. You can delete the �le if you willnot use IsomorphismTypeOfMoufangLoop.
gap> D := DirectProduct( MoufangLoop( 16, 2 ), CyclicGroup( 2 ) );
<loop of order 32>
gap> IsomorphismTypeOfMoufangLoop( D );
[ [ 32, 2 ], (2,3,12,20,11,29,23,13,30,31,28,27,22,15,32,18,10,19,16,24,14,

25,21,8,7,6,9,17,5) ]8.4 Steiner loopsHere is how the libary Steiner is described within LOOPS:
gap> DisplayLibraryInfo( "Steiner" );
The library contains all nonassociative Steiner loops of order less or equal to 16.
It also contains the associative Steiner loops of order 4 and 8.
------
Extent of the library:

1 loop of order 4
1 loop of order 8
1 loop of order 10
2 loops of order 14
80 loops of order 16

trueThe mth Steiner loop of order n is obtained by
1I SteinerLoop( n, m ) FOur catalog numbers coincide with those of Colbourn and Rosa [4].



Section 7. Interesting loops 298.5 CC-loopsBy results of Kunen [9], for every odd prime p there are precisely 3 nonassociative conjugacy closed loopsof order p2. Cs�org}o and Dr�apal [5] described these 3 loops by multiplicative formulas on Zp2 and Zp � Zp .Case m = 1: Let k be the smallest positive integer relatively prime to p and such that k is a square modulop (i.e., k = 1). De�ne multiplication on Zp2 by x � y = x + y + kpx 2y .Case m = 2: Let k be the smallest positive integer relatively prime to p and such that k is not a squaremodulo p. De�ne multiplication on Zp2 by x � y = x + y + kpx 2y .Case m = 3: De�ne multiplication on Zp � Zp by (x ; a)(y ; b) = (x + y ; a + b + x 2y).Moreover, Wilson [15] constructed a nonassociative CC-loop of order 2p for every odd prime p, and Kunen[9] showed that there are no other nonassociative CC-loops of this order. Here is the construction:Let N be an additive cyclic group of order n > 2, N = h1i. Let G be the additive cyclic group of order 2.De�ne multiplication on L = G �N as follows:(0;m)(0;n) = (0;m + n); (0;m)(1;n) = (1;�m + n);(1;m)(0;n) = (1;m + n); (1;m)(1;n) = (0; 1�m + n)�The CC-loops described above can be obtained by
1I CCLoop( n, m ) F8.6 Paige loopsPaige loops are nonassociative �nite simple Moufang loops. By [10], there is precisely one Paige loop forevery �nite �eld GF(q).The library named Paige contains the smallest nonassociative simple Moufang loop
1I PaigeLoop( 2 ) F8.7 Interesting loopsThe library named interesting contains some loops that are illustrative for the theory of loops. At thispoint, the library contains a nonassociative loop of order 5, a nonassociative nilpotent loop of order 6, anonMoufang left Bol loop of order 16, and the loop of sedenions of order 32 (sedenions generalize octonions).The loops are obtained with
1I InterestingLoop( n, m ) F



A Files
Below is a list of all relevant �les forming the LOOPS package. Some technical �les are not mentioned. Youdo not need any of this information unless you want to modify the package. All paths are relative to the
loops folder.

../README.loops (installation and usage instructions)
init.g (declarations)
PackageInfo.g (loading info for GAP 4.4)
read.g (implementations)
data/cc.tbl (library of CC-loops)
data/interesting.tbl (library of interesting loops)
data/leftbol.tbl (library of left Bol loops)
data/moufang.tbl (library of Moufang loops
data/moufang_discriminators.tbl (precalculated data needed for isomorphisms of Moufang loops)
data/paige.tbl (library of Paige loops)
data/steiner.tbl (library of Steiner loops)
doc/manual.* (documentation files)
gap/banner.g (banner of LOOPS)
gap/examples.gd .gi (methods for libraries of loops)
gap/loop_iso.gd .gi (methods for isomorphisms of loops)
gap/moufang_modifications.gd .gi (methods for Moufang modifications)
gap/quasigrp.gd .gi (core methods)
gap/triality.gd .gi (methods for triality of Moufang loops)
tst/auto.tst (test file for isomorphisms and automorphisms)
tst/lib.tst (test file for libraries of loops, except Moufang loops)
tst/mouflib.tst (test file for library of Moufang loops)
tst/nilpot.tst (test file for nilpotency and triality)
tst/quasigrp.tst (test file for core methods)
tst/testall.g (batch for all tets files)



B
Filters built into

the package
Many implications among properties of loops are built directly into LOOPS. A sizeable portion of theseproperties are of trivial character or are based on de�nitions (e.g., alternative loops = left alternative loops+ right alternative loops). The remaining implications are theorems.All �lters of LOOPS are summarized below, using the GAP convention that the property on the left is impliedby the property (properties) on the right.

( IsExtraLoop, IsAssociative and IsLoop )
( IsDiassociative, IsAssociative and IsLoop )
( HasInverseProperty, HasRightInverseProperty and IsCommutative )
( HasInverseProperty, HasLeftInverseProperty and IsCommutative )
( IsMoufangLoop, IsRightBolLoop and IsCommutative )
( IsMoufangLoop, IsLeftBolLoop and IsCommutative )
( IsMoufangLoop, IsRightBruckLoop and IsCommutative )
( IsMoufangLoop, IsLeftBruckLoop and IsCommutative )
( IsRightNuclearSquareLoop, IsLeftNuclearSquareLoop and IsCommutative )
( IsLeftNuclearSquareLoop, IsRightNuclearSquareLoop and IsCommutative )
( HasAutomorphicInverseProperty, HasAntiautomorphicInverseProperty and IsCommutative )
( HasAntiautomorphicInverseProperty, HasAutomorphicInverseProperty and IsCommutative )
( IsAlternative, IsLeftAlternative and IsCommutative )
( IsAlternative, IsRightAlternative and IsCommutative )
( HasTwosidedInverses, IsPowerAssociative )
( IsPowerAssociative, IsDiassociative )
( IsAlternative, IsDiassociative )
( IsFlexible, IsDiassociative )
( HasLeftInverseProperty, HasInverseProperty )
( HasRightInverseProperty, HasInverseProperty )
( HasAntiautomoprhicInverseProperty, HasInverseProperty )
( HasWeakInverseProperty, HasInverseProperty )
( HasInverseProperty, HasLeftInverseProperty and HasRightInverseProperty )
( HasInverseProperty, HasLeftInverseProperty and HasWeakInverseProperty )
( HasInverseProperty, HasRightInverseProperty and HasWeakInverseProperty )
( HasInverseProperty, HasLeftInverseProperty and HasAntiautomorphicInverseProperty )
( HasInverseProperty, HasRightInverseProperty and HasAntiautomorphicInverseProperty )
( HasInverseProperty, HasWeakInverseProperty and HasAntiautomorphicInverseProperty )
( HasTwosidedInverses, HasAntiautomorphicInverseProperty )
( IsMoufangLoop, IsExtraLoop )
( IsNuclearSquareLoop, IsExtraLoop )
( IsCLoop, IsExtraLoop )
( IsExtraLoop, IsMoufangLoop and IsLeftNuclearSquareLoop )
( IsExtraLoop, IsMoufangLoop and IsMiddleNuclearSquareLoop )
( IsExtraLoop, IsMoufangLoop and IsRightNuclearSquareLoop )
( IsLeftBolLoop, IsMoufangLoop )
( IsRightBolLoop, IsMoufangLoop )
( IsFlexible, IsMoufangLoop )
( IsDiassociative, IsMoufangLoop )
( IsMoufangLoop, IsLeftBolLoop and IsRightBolLoop )
( IsLCLoop, IsCLoop )
( IsRCLoop, IsCLoop )
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( IsCLoop, IsLCLoop and IsRCLoop )
( IsLeftAlternative, IsLeftBolLoop )
( HasTwosidedInverses, IsLeftBolLoop )
( IsRightAlternative, IsRightBolLoop )
( HasTwosidedInverses, IsRightBolLoop )
( IsLeftAlternative, IsLCLoop )
( IsLeftNuclearSquareLoop, IsLCLoop )
( IsMiddleNuclearSquareLoop, IsLCLoop )
( IsPowerAssociative, IsLCLoop )
( IsRightAlternative, IsRCLoop )
( IsRightNuclearSquareLoop, IsRCLoop )
( IsMiddleNuclearSquareLoop, IsRCLoop )
( IsPowerAssociative, IsRCLoop )
( IsLeftNuclearSquareLoop, IsNuclearSquareLoop )
( IsRightNuclearSquareLoop, IsNuclearSquareLoop )
( IsMiddleNuclearSquareLoop, IsNuclearSquareLoop )
( IsNuclearSquareLoop, IsLeftNuclearSquareLoop and IsRightNuclearSquareLoop

and IsMiddleNuclearSquareLoop )
( IsLeftAlternative, IsAlternative )
( IsRightAlternative, IsAlternative )
( IsAlternative, IsLeftAlternative and IsRightAlternative )
( IsLCCLoop, IsCCLoop )
( IsRCCLoop, IsCCLoop )
( IsCCLoop, IsLCCLoop and IsRCCLoop )
( IsOsbornLoop, IsMoufangLoop )
( IsOsbornLoop, IsCCLoop )
( HasAutomorphicInverseProperty, IsLeftBruckLoop )
( IsLeftBolLoop, IsLeftBruckLoop )
( IsLeftBruckLoop, IsLeftBolLoop and HasAutomorphicInverseProperty )
( HasAutomorphicInverseProperty, IsRightBruckLoop )
( IsRightBolLoop, IsRightBruckLoop )
( IsRightBruckLoop, IsRightBolLoop and HasAutomorphicInverseProperty )
( IsCommutative, IsSteinerLoop )
( HasInverseProperty, IsSteinerLoop )
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