loops : a GAP 4 package - References

[Ar]
R. Artzy.
On automorphic-inverse properties in loops.
Proc. Amer. Math. Soc., 10:588--591, 1959.
[Br]
Richard Hubert Bruck.
A survey of binary systems.
Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 20. Reihe: Gruppentheorie. Springer Verlag, Berlin, 1958.
[CsDr]
Piroska Cs"orgö and Ale\vs Drápal.
Left conjugacy closed loops of nilpotency class two.
Results Math., 47(3-4):242--265, 2005.
[CoRo]
Charles J. Colbourn and Alexander Rosa.
Triple systems.
Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1999.
[DrVo]
Ale\vs Drápal and Petr Vojt\vechovský.
Moufang loops that share associator and three quarters of their multiplication tables.
Rocky Mountain J. Math., 36(2):425--455, 2006.
[DaVo]
Daniel Daly and Petr Vojt\vechovský.
Enumeration of nilpotent loops via cohomology.
J. Algebra, 322(11):4080--4098, 2009.
[Fe]
Ferenc Fenyves.
Extra loops. II. On loops with identities of Bol-Moufang type.
Publ. Math. Debrecen, 16:187--192, 1969.
[Go]
Edgar G. Goodaire, Sean May, and Maitreyi Raman.
The Moufang loops of order less than 64.
Nova Science Publishers Inc., Commack, NY, 1999.
[JaMa]
Mark T. Jacobson and Peter Matthews.
Generating uniformly distributed random Latin squares.
J. Combin. Des., 4(6):405--437, 1996.
[KiKuPh]
Michael K. Kinyon, Kenneth Kunen, and J. D. Phillips.
Every diassociative A-loop is Moufang.
Proc. Amer. Math. Soc., 130(3):619--624, 2002.
[Ku]
Kenneth Kunen.
The structure of conjugacy closed loops.
Trans. Amer. Math. Soc., 352(6):2889--2911, 2000.
[Li]
Martin W. Liebeck.
The classification of finite simple Moufang loops.
Math. Proc. Cambridge Philos. Soc., 102(1):33--47, 1987.
[Mo]
G. Eric Moorhouse.
Bol loops of small order.
http://www.uwyo.edu/moorhouse/pub/bol/, 2007.
[Na]
Gábor P. Nagy.
A class of simple proper Bol loops.
Manuscripta Math., 127(1):81--88, 2008.
[NaVo2003]
Gábor P. Nagy and Petr Vojt\vechovský.
Octonions, simple Moufang loops and triality.
Quasigroups Related Systems, 10:65--94, 2003.
[NaVo2007]
Gábor P. Nagy and Petr Vojt\vechovský.
The Moufang loops of order 64 and 81.
J. Symbolic Comput., 42(9):871--883, 2007.
[Pf]
Hala O. Pflugfelder.
Quasigroups and loops: introduction, volume 7 of Sigma Series in Pure Mathematics.
Heldermann Verlag, Berlin, 1990.
[PhVo]
J. D. Phillips and Petr Vojt\vechovský.
The varieties of loops of Bol-Moufang type.
Algebra Universalis, 54(3):259--271, 2005.
[SlZe2011]
M. Slattery and A Zenisek.
Moufang loops of order 243.
Preprint, 2011.
[Vo]
Petr Vojt\vechovský.
Toward the classification of Moufang loops of order 64.
European J. Combin., 27(3):444--460, 2006.
[Wi]
Robert L. Wilson, Jr.
Quasidirect products of quasigroups.
Comm. Algebra, 3(9):835--850, 1975.

[Up]

loops manual
July 2012