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1 Introduction

LOOPS is a package for GAP4 whose purpose is to:

◦ provide researchers in nonassociative algebra with a powerful computational tool concerning finite loops
and quasigroups,

◦ extend GAP toward the realm of nonassociative structures.

1.1 Installation

We assume that you have GAP 4.4 or newer installed on your computer. Download the LOOPS package from
the distribution website

http://www.math.du.edu/loops

and unpack the downloaded file into the pkg subfolder of your GAP folder.

After this step, there should be a subfolder loops in your pkg folder. The package LOOPS can then be
loaded to GAP anytime by calling

LoadPackage("loops");

If you wish to load LOOPS automatically while starting GAP, open the file loops/PackageInfo.g, and
change Autoload:=false to Autoload:=true in the file.

1.2 Documentation

The documentation is available is several formats: TEX, pdf, dvi, ps, html, and as an online help in GAP.
All these formats have been obtained directly from the master TEX documentation file. Consequently, the
different formats of the documentation differ only in their appearance, not in content.

All formats of the documentation except html can be found in the doc folder of LOOPS, while the html
version is in the htm folder. You can also download the documentation at the LOOPS distribution website.

The online GAP help is available upon installing LOOPS, and can be accessed in the usual way, i.e., upon
typing ?command , GAP displays the section of the LOOPS manual containing information about command .

1.3 Test files

Test files conforming to the GAP standards are provided for LOOPS. They can be found in the folder tst.
The command ReadPackage("loops", "tst/testall.g") runs all tests for LOOPS.

1.4 Feedback

We welcome all comments and suggestions on LOOPS, especially those concerning the future development
of the package. You can contact us by e-mail.

1.5 Acknowledgement

We thank the following people for sending us remarks and comments, and for suggesting new functionality
of the package: Muniru Asiru, Bjoern Assmann, Andreas Distler, Steve Flammia, Kenneth W. Johnson,
Michael K. Kinyon, Frank Lübeck, and Jonathan D. H. Smith.

Gábor P. Nagy was supported by OTKA grants F042959 and T043758, and Petr Vojtěchovský by the 2006
PROF grant of the University of Denver.



2
Mathematical
background

We assume that you are familiar with the theory of quasigroups and loops, for instance with the textbook
of Bruck [2] or Pflugfelder [18]. Nevertheless, we did include definitions and results in this manual in order
to unify the terminology and improve the intelligibility of the text. Some general concepts of quasigroups
and loops can be found in this chapter. More special concepts are defined throughout the text as needed.

2.1 Quasigroups and loops

A set with one binary operation (denoted · here) is called groupoid or magma, the latter name being used
in GAP. Associative groupoid is a semigroup.

An element 1 of a groupoid G is a neutral element or an identity element if 1 · x = x · 1 = x for every x in
G . Semigroup with a neutral element is a monoid .

Let G be a groupoid with neutral element 1. Then an element y is called a two-sided inverse of x in G if
x · y = y · x = 1. A monoid in which every element has a two-sided inverse is called a group.

Groups can be reached in another way from groupoids, namely through quasigroups and loops.

A quasigroup Q is a groupoid such that the equation x · y = z has a unique solution in Q whenever two
of the three elements x , y , z of Q are specified. Note that multiplication tables of finite quasigroups are
precisely Latin squares, i.e., a square arrays with symbols arranged so that each symbol occurs in each row
and in each column exactly once. A loop L is a quasigroup with a neutral element.

Groups are clearly loops, and one can show easily that an associative quasigroup is a group.

2.2 Translations

Given an element x of a quasigroup Q we can associative two permutations of Q with it: the left translation
Lx : Q → Q defined by y 7→ x · y , and the right translation Rx : Q → Q defined by y 7→ y · x .
Although it is possible to compose two right (left) translations, the resulting permutation is not necessarily
a right (left) translation. The set {Lx ; x ∈ Q} is called the left section of Q , and {Rx ; x ∈ Q} is the right
section of Q .

Let SQ be the symmetric group on Q . Then the subgroup LMlt(Q) = ⟨Lx |x ∈ Q⟩ of SQ generated by all left
translations is the left multiplication group of Q . Similarly, RMlt(Q) = ⟨Rx |x ∈ Q⟩ is the right multiplication
group of Q . The smallest group containing both LMlt(Q) and RMlt(Q) is called the multiplication group of
Q and is denoted by Mlt(Q).

2.3 Homomorphisms and homotopisms

Let K , H be two quasigroups. Then a map f : K → H is a homomorphism if f (x ) · f (y) = f (x · y) for
every x , y ∈ K . If f is also a bijection, we speak of an isomorphism, and the two quasigroups are called
isomorphic.

The ordered triple (α, β, γ) of maps α, β, γ : K → H is a homotopism if α(x ) · β(y) = γ(x · y) for every x ,
y ∈ K . If the three maps are bijections, (α, β, γ) is an isotopism, and the two quasigroups are isotopic.

Isotopic groups are necessarily isomorphic, but this is certainly not true for nonassociative quasigroups or
loops. In fact, every quasigroup is isotopic to a loop, as we shall see.

Let (K , ·), (K , ◦) be two quasigroups defined on the same set K . Then an isotopism (α, β, idK ) is called a
principal isotopism. An important class of principal isotopisms is obtained as follows:

Let (K , ·) be a quasigroup, and let f , g be elements of K . Define a new operation ◦ on K by

x ◦ y = R−1
g (x ) · L−1

f (y),

where Rg , Lf are translations. Then (K , ◦) is a quasigroup isotopic to (K , ·), in fact a loop with neutral
element f · g . We call (K , ◦) a principal loop isotope of (K , ·).
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2.4 Extensions

Let K , F be loops. Then a loop Q is an extension of K by F if K is a normal subloop of Q such that Q/K
is isomorphic to F . An extension Q of K by F is nuclear if K is an abelian group and K ≤ N (Q).

A map θ : F × F → K is a cocycle if θ(1, x ) = θ(x , 1) = 1 for every x ∈ F .

The following theorem holds for loops Q , F and an abelian group K : Q is a nuclear extension of K by F if
and only if there is a cocycle θ : F × F → K and a homomorphism φ : F → AutQ such that K × F with
multiplication (a, x )(b, y) = (aφx (b)θ(x , y), xy) is isomorphic to Q .



3 How the package works

The package consists of three complementary components:

◦ the core algorithms for quasigroup theoretical notions (see Chapters 4, 5, 6 and 7),

◦ some specific algorithms, mostly for Moufang loops (see Chapter 8),

◦ the library of small loops (see Chapter 9).

Although we do not explain the algorithms in detail here, we describe the overarching ideas so that the user
should be able to anticipate the capabilities and behavior of LOOPS during computation.

3.1 Representing quasigroups

Since the permutation representation in the usual sense is impossible for nonassociative structures, and since
the theory of nonassociative presentations is not well understood, we had to resort to multiplication tables
to represent quasigroups in GAP.

In order to save storage space, we sometimes use one multiplication table to represent several quasigroups
(for instance when a quasigroup is a subquasigroup of another quasigroup).

Consequently, the package is intended primarily for quasigroups and loops of small order , say up to 1000.

The GAP categories IsQuasigroupElement, IsLoopElement, IsQuasigroup, and IsLoop are declared in
LOOPS as follows:

DeclareCategory( "IsQuasigroupElement", IsMultiplicativeElement );

DeclareRepresentation( "IsQuasigroupElmRep",

IsPositionalObjectRep and IsMultiplicativeElement, [1] );

DeclareCategory( "IsLoopElement",

IsQuasigroupElement and IsMultiplicativeElementWithInverse );

DeclareRepresentation( "IsLoopElmRep",

IsPositionalObjectRep and IsMultiplicativeElementWithInverse, [1] );

## latin (auxiliary category for GAP to tell apart IsMagma and IsQuasigroup)

DeclareCategory( "IsLatin", IsObject );

DeclareCategory( "IsQuasigroup", IsMagma and IsLatin );

DeclareCategory( "IsLoop", IsQuasigroup and

IsMultiplicativeElementWithInverseCollection);

3.2 Conversions between magmas, quasigroups, loops and groups

Whether an object is considered a magma, quasigroup, loop or group is a matter of declaration in LOOPS.
Loops are automatically quasigroups, and both groups and quasigroups are automatically magmas. All
standard GAP commands for magmas are therefore available for quasigroups and loops, too.

In GAP, functions of the type AsSomething(X ) convert the domain X into Something, if possible, without
changing the underlying domain X . For example, if X is declared as magma but is associative and has
neutral element and inverses, AsGroup( X ) returns the corresponding group with the underlying domain
X .

We have opted for a more general kind of conversions in LOOPS (starting with version 2.1.0), using functions
of the type IntoSomething(X ). The two main features that distinguish IntoSomething from AsSomething

are:
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◦ The function IntoSomething( X ) does not necessarily return the same domain as X . The reason is
that X can be a group, for instance, defined on one of many possible domains, while IntoLoop( X )

must result in a loop, and hence be defined on a subset of some interval [1,..,n] (see Section 4.1).

◦ In some special situations, the function IntoSomething( X ) allows to convert X into Something even
though X does not have all the properties of Something. For instance, every quasigroup is isotopic to a
loop, so it makes sense to allow conversions of the type IntoLoop( Q ) even if the quasigroup Q does
not posses a neutral element.

Details of all conversions in LOOPS can be found in Section 4.9.

3.3 Calculating with quasigroups

Although the quasigroups are ultimately represented by multiplication tables, the algorithms are efficient
because nearly all calculations are delegated to groups. The connection between quasigroups and groups is
facilitated via the above-mentioned translations, and we illustrate it with a few examples:

Example 1: This example shows how properties of quasigroups can be translated into properties of trans-
lations in a straightforward way.

Let Q be a quasigroup. We ask if Q is associative. We can either test if (xy)z = x (yz ) for every x , y , z ∈ Q ,
or we can ask if Lxy = LxLy for every x , y ∈ Q . Note that since Lxy , Lx , Ly are elements of a permutation
group, we do not have to refer directly to the multiplication table once the left translations of Q are known.

Example 2: This example shows how properties of loops can be translated into properties of translations
in a way that requires some theory.

A left Bol loop is a loop satisfying x (y(xz )) = (x (yx ))z . We claim (without proof) that a loop L is left Bol
if and only if LxLyLx is a left translation for every x , y ∈ L.

Example 3: This example shows that many properties of loops become purely group-theoretical once they
are expresses in terms of translations.

A loop is simple if it has no nontrivial congruences. Then it is easy to see that a loop is simple if and only
if its multiplication group is a primitive permutation group.

The main idea of the package is therefore to:

◦ calculate the translations and the associated permutation groups when they are needed,

◦ store them as attributes,

◦ use them in algorithms as often as possible.

3.4 Naming, viewing and printing quasigroups and their elements

GAP displays information about objects in two modes:

◦ View (default, short),

◦ Print (longer).

Moreover, when the name of an object is set, it is always shown, no matter which display mode is used.

Only loops contained in the libraries of LOOPS are named. For instance, the loop obtained via MoufangLoop(
32, 4 ), the 4th Moufang loop of order 32, is named Moufang loop 32/4.

When Q is a quasigroup of order n, it is displayed as <quasigroup of order n>. Similarly, a loop of order
n appears as <loop of order n>.

The displayed information for a loop L is enhanced when it is known that L has certain additional properties.
At this point, we support:
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<associative loop ...>

<extra loop ...>

<Moufang loop ...>

<C loop ...>

<left Bol loop ...>

<right Bol loop ...>

<LC loop ...>

<RC loop ...>

<alternative loop ...>

<left alternative loop ...>

<right alternative loop ...>

<flexible loop ...>

The corresponding mathematical definitions and an example can be found in Section 7.4.

It is possible for a loop to have several of the above properties. In such a case, we display the first property
on the list that is satisfied.

By default, elements of a quasigroup appear as qn and elements of a loop appear as ln in both display
modes. The neutral element of a loop is always denoted by l1. However, one can change the names of
elements of a quasigroup Q or loop L to name with

1I SetQuasigroupElmName( Q, name ) O
I SetLoopElmName( L, name ) O

For quasigroups and loops in the Print mode, we display the multiplication table (if it is known), or we
display the elements.

In the following example, L is a loop with two elements.

gap> L;

<loop of order 2>

gap> Print( L );

<loop with multiplication table [ [ 1, 2 ], [ 2, 1 ] ]>

gap> Elements( L );

[ l1, l2 ]

gap> SetLoopElmName( L, "loop_element" );; Elements( L );

[ loop_element1, loop_element2 ]



4
Creating quasigroups

and loops

In this chapter we describe several ways in which quasigroups and loops can be created in LOOPS.

4.1 About Cayley tables

Let X = {x1, . . . , xn} be a set and · a binary operation on X . Then an n by n array with rows and columns
bordered by x1, . . ., xn , in this order, is a Cayley table, or a multiplication table of ·, if the entry in the row
xi and column xj is xi · xj .
A Cayley table is a quasigroup table if it is a Latin square, i.e., if every entry xi appears in every column
and every row exactly once.

An annoying feature of quasigroup tables in practice is that they are often not bordered, and it is up to the
reader to figure out what is meant. Throughout this manual and in LOOPS, we therefore make the following
assumption: All distinct entries in a quasigroup table must be integers, say x1 < x2 < · · · < xn , and if no
border is specified, we assume that the table is bordered by x1, . . ., xn , in this order. Note that we do not
assume that the distinct entries x1, . . ., xn form the interval 1, . . ., n. The significance of this observation
will become clear in Chapter 6.

Finally, we say that a quasigroup table is a loop table if the first row and the first column are the same, and
if the entries in the first row are ordered in an ascending fashion.

4.2 Testing Cayley tables

A square array with integral entries is called a matrix in GAP. The following synonymous operations test if
a matrix T is a quasigroup table, as defined above:

1I IsQuasigroupTable( T ) O
I IsQuasigroupCayleyTable( T ) O

The following synonymous operations test if a matrix T is a loop table:

2I IsLoopTable( T ) O
I IsLoopCayleyTable( T ) O

We would like to call attention to the fact that the package GUAVA also has some operations dealing with
Latin squares. In particular, IsLatinSquare is declared in GUAVA.

4.3 Canonical and normalized Cayley tables

Although we do not assume that a quasigroup table with distinct entries x1 < · · · < xn satisfies xi = i , it is
often desirable to present quasigroup tables in the latter way. The rather general operation

1I CanonicalCayleyTable( T ) O

takes any Cayley table T with distinct entries x1 < · · · < xn , and returns a Cayley table in which xi has
been replaced by i .

The operation

2I NormalizedQuasigroupTable( T ) O

makes a quasigroup table T into a loop table by:

◦ first calling CanonicalCayleyTable to rename the entries to 1, . . ., n,

◦ then permuting the columns of T so that the first row reads 1, . . ., n,

◦ and then permuting the rows of T so that the first column reads 1, . . ., n.
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4.4 Creating quasigroups and loops manually

When T is a quasigroup table, the corresponding quasigroup is obtained by

1I QuasigroupByCayleyTable( T ) O

Since CanonicalCayleyTable is called within the above operation, the resulting quasigroup will have a
Cayley table with distinct entries 1, . . ., n.

Here is the analogous operation for a loop table T :

2I LoopByCayleyTable( T ) O

And here is an example for methods concerning Cayley tables:

gap> ct := CanonicalCayleyTable( [[5,3],[3,5]] );

[ [ 2, 1 ], [ 1, 2 ] ]

gap> NormalizedQuasigroupTable( ct );

[ [ 1, 2 ], [ 2, 1 ] ]

gap> LoopByCayleyTable( last );

<loop of order 2>

gap> [ IsQuasigroupTable( ct ), IsLoopTable( ct ) ];

[ true, false ]

4.5 Creating quasigroups and loops from a file

Typing a large multiplication table manually is tedious and error-prone. We have therefore included a
universal algorithm in LOOPS that reads multiplication tables of quasigroups from a file.

Instead of writing a separate algorithm for each common format, our algorithm relies on the user to provide
a bit of information about the input file. Here is an outline of the algorithm, with file named F and a string
D as arguments on the input:

◦ read the entire content of F into a string S ,

◦ replace all end-of-line characters in S by spaces,

◦ replace by spaces all characters of S that appear in D ,

◦ split S into maximal substrings without spaces, called chunks,

◦ recognize distinct chunks (let n be the number of distinct chunks),

◦ if the number of chunks is not n2, report error,

◦ construct the multiplication table by assigning numerical values 1, . . ., n to chunks, depending on their
position among distinct chunks.

The following examples clarify the algorithm and document its versatility. All examples are of the form
F + D =⇒ T , meaning that an input file containing F together with the string D produce multiplication
table T .

Example 1: Data does not have to be arranged into an array of any kind.

0 1 2 1
2 0 2
0 1

+ ′′′′ =⇒
1 2 3
2 3 1
3 1 2

Example 2: Chunks can be any strings.

red green
green red

+ ′′′′ =⇒ 1 2
2 1

Example 3: A typical table produced by GAP is easily parsed by deleting brackets and commas.

[ [0, 1], [1, 0] ] + ′′[, ]′′ =⇒ 1 2
2 1
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Example 4: A typical TEX table with rows separated by lines is also easily converted. Note that we have
to use \\ to make sure that every occurrence of \ is deleted, since \\ represents the character \ in GAP.

x& y& z\cr
y& z& x\cr
z& x& y

+ ′′\\cr&′′ =⇒
1 2 3
2 3 1
3 1 2

And here are the needed LOOPS commands:

1I QuasigroupFromFile( F, D ) O
I LoopFromFile( F, D ) O

4.6 Creating quasigroups and loops by sections

Let P be a set of n permutations of an n-element set X . If at most one permutation of P is the identity
permutation, and if all other permutations of P move all points of X , the operation

1I CayleyTableByPerms( P ) O

returns an n × n Cayley table C such that C[i][j] = X[j]^P[i].

In particular, if P is the left section of a quasigroup Q , the above operation returns the multiplication table
of Q .

If P is a set of permutations corresponding to the left translations of a quasigroup (or loop) Q , the operation

2I QuasigroupByLeftSection( P ) O
I LoopByLeftSection( P ) O

returns the corresponding quasigroup (or loop). The order of permutations in P is important in the quasi-
group case, but it is disregarded in the loop case, since the order of rows in the corresponding multiplication
table is determined by the presence of the neutral element.

Analogously, we define

3I QuasigroupByRightSection( P ) O
I LoopByRightSection( P ) O

Here is an example:

gap> S := Subloop( MoufangLoop( 12, 1 ), [ 3 ] );;

gap> ls := LeftSection( S );

[ (), (1,3,5), (1,5,3) ]

gap> CayleyTableByPerms( ls );

[ [ 1, 3, 5 ], [ 3, 5, 1 ], [ 5, 1, 3 ] ]

gap> CayleyTable( LoopByLeftSection( ls ) );

[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]

Let G be a group, H a subgroup, and T a right transversal to H in G . Then the operation ◦ defined on the
right cosets Q = {Ht ; t ∈ T} by Ht ◦ Ht ′ = H (tt ′) turns Q into a quasigroup if and only if T is a right
transversal to all conjugates g−1Hg of H in G . In fact, every quasigroup Q can be obtained in this way (let
G = Mlt(Q), H = RMlt(Q) and T = {Rx ; x ∈ Q}).
The resulting quasigroup (or loop) is returned via

4I QuasigroupByRightSection( G, H , T ) O
I LoopByRightSection( G, H , T ) O

We do not support the dual operations for left sections since, by default, actions in GAP act on the right.

To demonstrate LoopByRightSection, let us recall a construction due to Nagy [15]:

Let X be a simple group with subgroups Y0, Y1 such that Y0 ∩ Y1 = 1 and X = Y0Y1. Let G = X × X
and H = Y0 × Y1. Then T = {(x , x−1); x ∈ X } is a right transversal of H in G , and the corresponding
loop is a simple (right) Bol loop.

The next example illustrates this construction with X = A5, Y0 = A4, and Y1 = ⟨(1, 2, 3, 4, 5)⟩.
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gap> Shift := function( p ) # shifts permutation "up" by 5

> local ls;

> ls := ListPerm( p );

> ls := Concatenation( [1,2,3,4,5], List( ls, x -> x + 5 ) );

> return PermList( ls );

> end;

function( p ) ... end

gap> A := AlternatingGroup( 5 );;

gap> G := DirectProduct( A, A );;

gap> H := Subgroup( G, [ (1,2,3), (2,3,4), (6,7,8,9,10) ] );;

gap> T := List( A, x -> x * Shift(x)^(-1) );;

gap> L := LoopByRightSection( G, H, T );

<loop of order 60>

gap> [ IsRightBolLoop( L ), IsSimple( L ), IsMoufangLoop( L ) ];

[ true, true, false ]

4.7 Creating quasigroups and loops by extensions

If Q is a loop and K an abelian subgroup of N (Q) then

1I NuclearExtension( Q, K ) O

returns [K0,F , φ, θ], where K0
∼= K , F ∼= Q/K , φ : F → AutK is a homomorphism, θ : F × F → K is a

cocycle, and Q is isomorphic to K0 × F with multiplication (a, x )(b, y) = (aφx (b)θ(x , y), xy).

If n = |F | and m = |K |, the cocycle θ is returned as an n × n array with entries in {1, . . . ,m}, and φ is
returned as a list of length n of permutations of {1, . . . ,m}.
Conversely, given K , F , f = φ, and t = θ as above,

2I LoopByExtension( K, F, f , t ) O

returns the extension of K by F using the action f and cocycle t .

gap> F := IntoLoop( Group( (1,2) ) );

<loop of order 2>

gap> K := DirectProduct( F, F );;

gap> phi := [ (), (2,3) ];;

gap> theta := [ [ 1, 1 ], [ 1, 3 ] ];;

gap> LoopByExtension( K, F, phi, theta );

<loop of order 8>

gap> IsAssociative( last );

false

4.8 Random quasigroups and loops

We say that an algorithm selects a latin square of order n at random if every latin square of order n is
returned by the algorithm with the same probability. Selecting a latin square at random is a nontrivial
problem.

In [10], Jacobson and Matthews defined a random walk on the space of latin squares and so-called improper
latin squares that visits every latin square with the same probability. The diameter of the space is no more
than 4(n − 1)3, that is, no more than 4(n − 1)3 steps are needed to travel from one latin square of order n
to another.

The Jacobson-Matthews algorithm can be used to generate random quasigroups as follows: (i) select any
latin square of order n, for instance the canonical multiplication table of the cyclic group of order n, (ii)
perform sufficiently many steps of the random walk, stopping at a proper or improper latin square, (iii) if
necessary, perform a few more steps to end up with a proper latin square. Upon normalizing the resulting
latin square, we obtain a random loop of order n.

By the above result, it suffices to use about n3 steps to arrive at any latin square of order n from the initial
latin square. In fact, a much smaller number of steps is probably sufficient.
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1I RandomLoop( n ) O

returns a random loop of order n, using the Jacobson-Matthews algorithm with n3 steps. Every loop of order
n is potentially returned, but the method is slow for n > 50, say. You can control the trade-off between
randomness and speed with

2I RandomLoop( n, iter ) O

returns a random loop of order n, using the Jacobson-Matthews algorithm with iter many steps. When iter
is small, the returned loop will be close to the canonical Cayley table of the cyclic group of order n.

The corresponding commands for random quasigroups are

3I RandomQuasigroup( n ) O
I RandomQuasigroup( n, iter ) O

Finally,

4I RandomNilpotentLoop( lst ) O

returns a random nilpotent loop as follows (see Section 6.10 for more on nilpotency):

lst must be a list of positive integers and/or finite abelian groups. If lst = [a1] and a1 is an integer, a
random abelian group of order a1 is returned, else a1 is an abelian group and AsLoop( a1 ) is returned. If
lst = [a1, . . . , am ], a random central extension of RandomNilpotentLoop( [a1] ) by RandomNilpotentLoop(

[a2, . . . , am ] ) is returned.

To determine the nilpotency class c of the resulting loop, assume that lst has length at least 2, contains
only integers bigger than 1, and let m be the last entry of lst . If m > 2 then c = Length(lst), else c =
Length(lst)−1.

4.9 Conversions

As we have already mentioned, LOOPS contains methods that convert between magmas, quasigroups, loops
and groups, provided such conversions are possible.

If M is a declared magma that happens to be a quasigroup, the corresponding quasigroup is returned via

1I IntoQuasigroup( M ) O

Note that if M is already declared as a quasigroup, IntoQuasigroup( M ) merely returns M .

Given a quasigroup M and two of its elements f , g , the principal loop isotope x ◦ y = R−1
g (x ) ·L−1

f (y) turns
(M , ◦) into a loop with neutral element f · g (see Section 2.3). Since loops in LOOPS have to have neutral
element labeled as 1, the function

2I PrincipalLoopIsotope( M , f , g )

returns an isomorphic copy of the principal isotope (M , ◦) via the transposition (1, f · g).
If M is a declared magma that happens to be a quasigroup (not necessarily a loop!), the operation

3I IntoLoop( M ) O

returns a loop L as follows:

◦ if M is already declared as a loop, L = M , else

◦ if M possesses a neutral element e and f is the first element of M , then L is an isomorphic copy of M
via the transposition (e, f ), else

◦ if M does not posses a neutral element, L is returned as PrincipalLoopIsotope( M , M.1, M.1 )

One could obtain a loop from M in yet another way, by normalizing the Cayley table of M . These three
approaches can result in nonisomorphic loops in general.

Finally, when M is a declared magma that happens to be a group, the corresponding group is returned by

4I IntoGroup( M ) O

as follows:
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◦ if M is already declared as a group, M is returned, else

◦ RightMultiplciationGroup( IntoLoop( M ) ) is returned, i.e., a permutation group isomorphic to
M .

All three conversion methods return fail if the requested conversion is not possible.

Up to version 2.0.0, we have supported AsQuasigroup, AsLoop and AsGroup in place of IntoQuasigroup,
IntoLoop and IntoGroup, respectively. We have changed the terminology starting with version 2.1.0 in order
to comply with GAP naming rules for AsSomething, as explained in Chapter 3. Finally, the method AsGroup

is built into the core of GAP and it returns an fp group if its argument is an associative loop.

4.10 Products of loops

Let L1, . . ., Ln be a list consisting of loops and groups, where n ≥ 1. Then

1I DirectProduct( L1, ..., Ln) O

returns the direct product of L1, . . ., Ln.

If there are only groups among L1, . . ., Ln, a group is returned. Otherwise a loop is returned. If n = 1, L1
is returned.

4.11 Opposite quasigroups and loops

When Q is a quasigroup with multiplication ·, the opposite quasigroup of Q is a quasigroup with the same
underlying set as Q and with multiplication ∗ defined by x ∗ y = y · x .
Since the quasigroup-theoretical concepts are often chiral (cf. left Bol loops versus right Bol loops), it is
useful to have access to the opposite quasigroup of Q :

1I Opposite( Q ) O



5
Basic methods
and attributes

We describe the basic core methods and attributes of the LOOPS package in this chapter.

5.1 Basic attributes

We associate many attributes with quasigroups in order to speed up computation. This section lists some
basic attributes of quasigroups and loops.

The list of elements of a quasigroup Q is obtained by the usual command

1I Elements( Q ) A

The Cayley table of a quasigroup Q is returned with

2I CayleyTable( Q ) A

One can use Display( CayleyTable( Q ) ) for pretty matrix-style output of small Cayley tables.

The neutral element of a loop L is obtained via

3I One( L ) A

If you want to know if a quasigroup Q has a neutral element, you can find out with the standard function
for magmas

4I MultiplicativeNeutralElement( Q ) A

The size of a quasigroup Q is calculated by

5I Size( Q ) A

When L is a power associative loop, i.e., the powers of elements are well-defined in L, the exponent of L is
the smallest positive integer divisible by orders of all elements of L. The following attribute calculates the
exponent without testing for power-associativity:

6I Exponent( L ) A

5.2 Basic arithmetic operations

Each quasigroup element in GAP knows which quasigroup it belongs to. It is therefore possible to perform
arithmetic operations with quasigroup elements without referring to the quasigroup. All elements involved
in the calculation must belong to the same quasigroup.

Two elements x , y of the same quasigroup are multiplied by x ∗ y in GAP. Since multiplication of at least
three elements is ambiguous in the nonassociative case, we by default parenthesize elements from left to
right, i.e., x ∗ y ∗ z means ((x ∗ y) ∗ z ). Of course, one can specify the order of multiplications by providing
parentheses.

Universal algebraists introduce two additional operations for quasigroups. Namely the left division x\y
defined by x · (x\y) = y , and the right division x/y defined by (x/y) · y = x . These two operations can be
found in LOOPS as:

1I LeftDivision( x, y ) O
I RightDivision( x, y ) O

When Q is a quasigroup, x is an element of Q , and S is a list of elements of Q , then
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2I LeftDivision( S, x ) O
I LeftDivision( x, S ) O
I RightDivision( S, x ) O
I RightDivision( x, S ) O

returns the list of elements obtained by performing the respective division of S by x , or of x by S , using
one element of S at a time.

We also support / in place of RightDivision. But we do not support \ in place of LeftDivision.

To obtain the Cayley tables for the operation left division or right division, use

3I LeftDivisionCayleyTable( Q ) O
I RightDivisionCayleyTable( Q ) O

5.3 Powers and inverses

Powers of elements are generally not well-defined in quasigroups. We say that the quasigroup Q is power
associative, if for any x ∈ Q , the submagma generated by x is associative.

For magmas and positive integer exponents, GAP defines the powers in the following way: x 1 = x , x 2k =
(x k ) · (x k ) and x 2k+1 = (x 2k ) · x . One can easily see that this returns x k in log2(k) steps. For LOOPS, we
have decided to keep this method, hoping that everybody will use it with care for quasigroups that are not
power associative.

Let x be an element of a loop L with neutral element 1. Then the left inverse xλ of x is the unique element
of L satisfying xλx = 1. Similarly, the right inverse xρ satisfies xxρ = 1. If xλ = xρ, we call x−1 = xλ = xρ

the inverse of x .

1I LeftInverse( x ) O
I RightInverse( x ) O
I Inverse( x ) O

The following examples illustrates the concept of inverses for a given loop M in which M .i coincides with
the ith element:

gap> CayleyTable( M );

[ [ 1, 2, 3, 4, 5 ],

[ 2, 1, 4, 5, 3 ],

[ 3, 4, 5, 1, 2 ],

[ 4, 5, 2, 3, 1 ],

[ 5, 3, 1, 2, 4 ] ]

gap> [ LeftInverse( M.3 ), RightInverse( M.3 ), Inverse( M.3 ) ];

[ l5, l4, fail ]

5.4 Associators and commutators

Let Q be a quasigroup and x , y , z ∈ Q . Then the associator of x , y , z is the unique element u such that
(xy)z = (x (yz ))u. The commutator of x , y is the unique element v such that xy = (yx )v .

1I Associator( x, y, z ) O
I Commutator( x, y ) O

5.5 Generators

The following two attributes are synonyms of GeneratorsOfMagma:

1I GeneratorsOfQuasigroup( Q ) A
I GeneratorsOfLoop( L ) A

As usual in GAP, one can refer to the ith generator of a quasigroup Q by Q.i. Note that it is not necessarily
the case that Q.i = Elements( Q )[ i ], since the set of generators can be a proper subset of the elements.

It is easy to prove that a quasigroup of order n can be generated by a subset containing at most log2 n
elements. When Q is a quasigroup

2I GeneratorsSmallest( Q ) A

returns a generating set {q0, . . ., qm} of Q such that Q0 = ∅, Qm = Q , Qi = ⟨q1, . . ., qi ⟩, qi+1 is the least
element of Q \Qi .
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Methods based on
permutation groups

Most calculations in the LOOPS package are delegated to groups, taking advantage of the various per-
mutations and permutation groups associated with quasigroups. This chapter explains in detail how the
permutations associated with a quasigroup are calculated, and it also describes some of the core methods of
LOOPS based on permutations. Additional core methods can be found in Chapter 7.

6.1 Parent of a quasigroup

Let Q be a quasigroup and S a subquasigroup of Q . Since the multiplication in S coincides with the
multiplication in Q , it is reasonable not to store the multiplication table of S . However, the quasigroup S
then must know that it is a subquasigroup of Q . In order to facilitate this relationship, we introduce the
attribute

1I Parent( Q ) A

for a quasigroup Q .

When Q is not created as a subquasigroup of another quasigroup, the attribute Parent( Q ) is set to Q .
When Q is created as a subquasigroup of a quasigroup H , we let Parent( Q ) := Parent( H ). Thus,
in effect, Parent( Q ) is the largest quasigroup from which Q has been created.

Let Q be a quasigroup with parent P , where P is some n-element quasigroup. Let x be an element of Q .
Then x![1] is the position of x among the elements of P , i.e., x![1] = Position( Elements( P ), x ).
The position of x among the elements of Q is obtained via

2I Position( Q, x ) O

While referring to elements of Q by their positions, we therefore must decide if the positions are meant
among the elements of Q , or among the elements of P . Since it requires no calculation to obtain x![1], we
always use the position of an element in its parent quasigroup. In this way, many attributes of a quasigroup,
including its Cayley table, are permanently tied to its parent. It is now clear why we have not insisted that
Cayley tables of quasigroups must have entries covering the entire interval 1, . . ., m, for some m.

When S is a list of quasigroup elements, not necessarily from the same quasigroup, the operation

3I PosInParent( S )

returns the list of positions of elements of S in the corresponding parent, i.e., PosInParent( S )[ i ] =

S[ i ]![ 1 ] = Position( Parent( S[ i ] ), S[ i ] ).

6.2 Comparing quasigroups with common parent

Assume that A, B are two quasigroups with common parent Q . Let GA, GB be the canonical generating sets
of A and B , respectively, obtained by the method GeneratorsSmallest, described above. Then we define
A < B if and only if GA < GB lexicographically.

Note that if A is a subquasigroup of B , we get A < B , but not necessarily vice versa.
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6.3 Subquasigroups and subloops

When S is a subset of a quasigroup Q (loop L), the smallest subquasigroup of Q (subloop of L) generated
by S is returned via:

1I Subquasigroup( Q, S ) O
I Subloop( L, S ) O

In fact, we allow S to be a list of integers, too, representing the positions of the respective elements in the
parent quasigroup (loop).

If S is empty, Subloop( L, S ) returns the one-element subloop of L, while Subquasigroup( Q, S )

returns the empty set. The empty set is obviously not a subquasigroup of Q , but this convention is useful
for handling certain situation, for instance when the user calls Center( Q ) for a quasigroup Q with empty
center.

The following two operations test if a quasigroup (loop) S is a subquasigroup (subloop) of a quasigroup Q .
They return true if and only if Q and S have the same parent, and if S is a subset of Q .

2I IsSubquasigroup( Q, S ) O
I IsSubloop( Q, S ) O

The operation

3I AllSubloops( L ) O

returns a list of all subloops of the loop L.

Let S be a subloop of L. The list of all right cosets of S in L is obtained via

4I RightCosets( L, S ) F

The coset S is listed first, and the elements of each coset are ordered in the same way as elements of S , i.e.,
if S = [s1, . . . , sm ] then Sx = [s1x , . . ., smx ].

When S is a subloop of L, the right transversal of S with respect to L is a subset of L containing one element
from each right coset of S in L. It is obtained by

5I RightTransversal( L, S ) O

and it returns the first element from each right coset obtained by RightCosets( L, S ).

6.4 Translations and sections

When x is an element of a quasigroup Q , the left translation Lx is a permutation of Q . In LOOPS, all permu-
tations associated with quasigroups and their elements are permutations in the sense of GAP, i.e., bijections
of some interval 1, . . ., n. Moreover, following our convention, the numerical entries of the permutation point
to the positions among elements of Parent( Q ), not Q .

The left and right translations by x in Q are obtained by

1I LeftTranslation( Q, x ) O
I RightTranslation( Q, x ) O

The following two attributes calculate the left and right section of a quasigroup Q :

2I LeftSection( Q ) A
I RightSection( Q ) A

Here is an example illustrating the main features of the subquasigroup construction and the relationship
between a quasigroup and its parent.

Note how the Cayley table of the subquasigroup is created only upon explicit demand. Also note that
changing the names of elements of a subquasigroup (subloop) automatically changes the names of the
elements of the parent subquasigroup (subloop). This is because the elements are shared.
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gap> M := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.5 ] );

<loop of order 3>

gap> [ Parent( S ) = M, Elements( S ), PosInParent( S ) ];

[ true, [ l1, l3, l5], [ 1, 3, 5 ] ]

gap> HasCayleyTable( S );

false

gap> SetLoopElmName( S, "s" );; Elements( S ); Elements( M );

[ s1, s3, s5 ]

[ s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12 ]

gap> CayleyTable( S );

[ [ 1, 3, 5 ], [ 3, 5, 1 ], [ 5, 1, 3 ] ]

gap> LeftSection( S );

[ (), (1,3,5), (1,5,3) ]

gap> [ HasCayleyTable( S ), Parent( S ) = M ];

[ true, true ]

gap> L := LoopByCayleyTable( CayleyTable( S ) );; Elements( L );

[ l1, l2, l3 ]

gap> [ Parent( L ) = L, IsSubloop( M, S ), IsSubloop( M, L ) ];

[ true, true, false ]

gap> LeftSection( L );

[ (), (1,2,3), (1,3,2) ]

6.5 Multiplication groups

The left multiplication group, right multiplication group and the multiplication group of a quasigroup Q
are calculated as follows:

1I LeftMultiplicationGroup( Q ) A
I RightMultiplicationGroup( Q ) A
I MultiplicationGroup( Q ) A

Let S be a subloop of a loop L. Then the relative left multiplication group of L with respect to S is the group
⟨L(x )|x ∈ S ⟩, where L(x ) is the left translation by x in Q restricted to S . The relative right multiplication
group and relative multiplication group are defined analogously.

2I RelativeLeftMultiplicationGroup( L, S ) O
I RelativeRightMultiplicationGroup( L, S ) O
I RelativeMultiplicationGroup( L, S ) O

See Section 8.4 for more on that topic.

6.6 Inner mapping groups

The inner mapping group of a loop L is the stabilizer of the unit element in Mlt(L). The elements of this
stabilizer are called inner maps of L.

The left inner mapping group of a loop L is the stabilizer of the unit element in LMlt(L). The right inner
mapping group is defined dually.

Equivalently, the left inner mapping group is generated by all left inner mappings L(x , y) = L−1
yx LyLx , and

the right inner mapping group is generated by all right inner mappings R(x , y) = R−1
xy RyRx .

In analogy with group theory, we define the conjugation, or themiddle inner mapping by x as T (x ) = L−1
x Rx .

The middle inner mapping grroup is then the subgroup of Mlt(L) generated by all conjugations.

The corresponding commands in LOOPS are
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1I LeftInnerMapping( L, x, y ) O
I MiddleInnerMapping( L, x ) O
I RightInnerMapping( L, x, y ) O
I LeftInnerMappingGroup( L ) A
I MiddleInnerMappingGroup( L ) A
I RightInnerMappingGroup( L ) A
I InnerMappingGroup( L ) A

Here is an example for multiplication groups and inner mapping groups:

gap> M := MoufangLoop( 12, 1 );

<Moufang loop 12/1>

gap> LeftSection( M )[ 2 ];

(1,2)(3,4)(5,6)(7,8)(9,12)(10,11)

gap> Mlt := MultiplicationGroup( M ); Inn := InnerMappingGroup( M );

<permutation group of size 2592 with 23 generators>

Group([ (4,6)(7,11), (7,11)(8,10), (2,6,4)(7,9,11), (3,5)(9,11), (8,12,10) ])

gap> Size( Inn );

216

6.7 Nuclei, commutant, center, and associator subloop

Let Q be a quasigroup. The left nucleus Nλ(Q) of Q is the set {x ∈ Q |x (yz ) = (xy)z for every y , z ∈ Q}.
One defines similarly the middle nucleus Nµ(Q) and the right nucleus Nρ(Q). Then the nucleus N (Q) of
Q is the intersection of the three nuclei.

The nuclei are calculated in LOOPS as follows:

1I LeftNucleus( Q ) A
I MiddleNucleus( Q ) A
I RightNucleus( Q ) A
I Nuc( Q ) A

Unfortunately, the word Nucleus is reserved in the core of GAP for a global function with two variables.
That is the reason why we have used the abbreviation Nuc, which is also common in the literature. However,
we support these synonyms of Nuc:

2I NucleusOfLoop( Q ) A
I NucleusOfQuasigroup( Q ) A

Since all nuclei are subquasigroups of Q , they are returned as subquasigroups (resp. subloops). When Q is
a loop then all nuclei are in fact groups, and they are returned as associative loops.

The commutant C (Q) of Q is the set {x ∈ Q | xy = yx for every y ∈ Q}. It is obtained via

3I Commutant( Q ) A

The center Z (Q) is defined as the intersection of C (Q) and N (Q), and it is obtained via

4I Center( Q ) A

It is a subgroup of Q and is therefore returned as an associative loop.

Finally, the associator subloop of a loop L is the smallest normal subloop A(L) of L containing all associators
of L. Equivalently, A(L) is the smallest normal subloop K such that L/K is associative. We use another
equivalent reformulation for the purposes of computation: A(L) is the smallest normal subloop of L containing
{x \ α(x ) | x ∈ L, α is a left inner mapping}.

5I AssociatorSubloop( L ) A
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6.8 Normal subloops

A subloop S of a loop L is normal if it is invariant under all inner mappings of L. Normality is tested via:

1I IsNormal( L, S ) O

When S is a subset of a loop L or a subloop of L, the normal closure of S in L is the smallest normal subloop
of L containing S . It is obtained by

2I NormalClosure( L, S ) O

A loop L is simple if all normal subloops of L are trivial. The corresponding test in LOOPS is:

3I IsSimple( L ) O

6.9 Factor loops

When N is a normal subloop of a loop L, the factor loop L/N can be obtained directly via the command
L/N, or by

1I FactorLoop( L, N ) O

The natural projection from L to L/N is returned by

2I NaturalHomomorphismByNormalSubloop( L, N ) O

Here is an illustrating example:

gap> M := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.3 ] );

<loop of order 3>

gap> IsNormal( M, S );

true

gap> F := FactorLoop( M, S );

<loop of order 4>

gap> NaturalHomomorphismByNormalSubloop( M, S );

MappingByFunction( <loop of order 12>, <loop of order 4>,

function( x ) ... end )

6.10 Nilpotency and central series

The definition of nilpotency and nilpotence class is the same as in group theory. The corresponding commands
are:

1I NilpotencyClassOfLoop( L ) A
I IsNilpotent( L ) P

When L is not nilpotent, NilpotencyClassOfLoop( L ) returns fail.

A loop L is said to be strongly nilpotent if its multiplication group is nilpotent. This property is obtained by

2I IsStronglyNilpotent( L ) P

Let L be a loop. Define iterated centers Zi (L) as follows: Z0(L) = Z (L), Zi+1(L) = π−1
i (Zi (L)), where πi is

the canonical projection L → L/Zi (L). The longest series Zi (L), Zi−1(L), . . ., Z0(L) with Zi (L) > Zi−1(L) >
· · · > Z0(L) is called the upper central series of L, and is returned via

3I UpperCentralSeries( L ) A

The lower central series, defined in the usual way, is obtained by

4I LowerCentralSeries( L ) A
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6.11 Solvability

The definition of solvability, derived subloop, derived length, Frattini subloop and Frattini factor size is the
same as for groups. Frattini subloop is calculated only for strongly nilpotent loops.

1I IsSolvable( L ) P
I DerivedSubloop( L ) A
I DerivedLength( L ) A
I FrattiniSubloop( L ) A
I FrattinifactorSize( L ) A

6.12 Isomorphisms and automorphisms

All isomorphisms between two loops can be found with LOOPS. The operation

1I IsomorphismLoops( L, M ) O

returns a single isomorphism between loops L, M if the loops are isomorphic, and fail otherwise.

If an isomorphism exists, it is returned as a permutation p of 1, . . ., |L|, where ip = j means that the ith
element of L is mapped onto the j th element of M . This is true even if L or M are not their own parents.

Since one frequently needs to filter a list of loops up to isomorphism, we support

2I LoopsUpToIsomorphism( ls ) O

Given a list ls of loops, the operation returns a sublist of ls containing one loop from each isomorphism class
of loops present in ls.

The attribute

3I AutomorphismGroup( L ) A

returns the automorphism group of the loop L, with the same convention on permutations as in the case of
IsomorphismLoops.

Since two isomorphisms ”differ” by an automorphism, all isomorphisms can be obtained by the above two
functions.

While dealing with Cayley tables, it is often useful to rename or reorder the elements without changing the
isomorphism type. When Q is a quasigroup of size n and p is a permutation of {1, . . . ,n},

4I IsomorphicCopyByPerm( Q, p )

returns quasigroup (Q , ◦) such that p(xy) = p(x )◦p(y), i.e., x ◦y = p(p−1(x )p−1(y)). When Q is a declared
loop, a loop is returned. Consequently, when Q is a declared loop and p(1) = k ̸= 1, then p is first replaced
by p ◦ (1, k), to make sure that the Cayley table is normalized.

When S is a normal subloop of L,

5I IsomorphicCopyByNormalSubloop( L, S )

returns an isomorphic copy of L in which the elements are ordered according to the right cosets of S . In
particular, the Cayley table of S will appear in the top left corner of the Cayley table of the resulting loop.

6.13 How are isomorphisms computed

In order to speed up the search for isomorphisms and automorphisms, we first calculate some loop invariants
preserved under isomorphisms, and use these invariants to partition the loop into blocks of elements preserved
under isomorphisms. These invariants for a loop L can be obtained via

1I Discriminator( L ) O

Since the details are technical, we will not present them here. See [21] or the file iso.gi for more.

If two loops have different discriminators, they are not isomorphic. If they have identical discriminators,
they may or may not be isomorphic. The operation

2I AreEqualDiscriminators( D1, D2 ) O

returns true if the discriminators D1, D2 are equal.
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6.14 Isotopisms

The package contains a slow method for testing if two loops are isotopic:

1I IsotopismLoops( K, L ) O

It returns fail if K , L are not isotopic, else it returns an isotopism as a triple of bijections on {1, . . . , |K |}.
The method works as follows: It is well known that if a loop K is isotopic to a loop L then there exist a
principal loop isotope P of K such that P is isomorphic to L. The algorithm first finds all principal isotopes
of K , then filters them up to isomorphism, and then checks if any of them is isomorphic to L. This is rather
slow already for small orders, say 30.

The function

2I LoopsUpToIsotopism( ls ) O

filters the list ls in a way similar to LoopsUpToIsomorphism, but using isotopism as the underlying equiva-
lence relation.
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Testing properties of

quasigroups and loops

The reader should be aware that although loops are quasigroups, it is often the case in the literature that
a property named P can differ for quasigroups and loops. For instance, a Steiner loop is not necessarily a
Steiner quasigroup.

To avoid such ambivalences, we often include the noun Loop or Quasigroup as part of the name of the
property, e.g. IsSteinerQuasigroup versus IsSteinerLoop.

On the other hand, some properties coincide for quasigroups and loops and we therefore do not include
Loop, Quasigroup as part of the name of the property, e.g. IsCommutative.

7.1 Associativity, commutativity and generalizations

The following properties test if a quasigroup Q is associative and commutative:

1I IsAssociative( Q ) P
I IsCommutative( Q ) P

A loop L is said to be power associative (resp. diassociative) if every monogenic subloop of L (resp. every
2-generated subloop of L) is a group.

2I IsPowerAssociative( L ) P
I IsDiassociative( L ) P

7.2 Inverse properties

A loop L has the left inverse property if xλ(xy) = y for every x , y ∈ L, where xλ is the left inverse of x .
Dually, L has the right inverse property if (yx )xρ = y for every x , y ∈ L, where xρ is the right inverse of x .
If L has both the left and right inverse properties, it has the inverse property . We say that L has two-sided
inverses if xλ = xρ for every x ∈ L.

1I HasLeftInverseProperty( L ) P
I HasRightInverseProperty( L ) P
I HasInverseProperty( L ) P
I HasTwosidedInverses( L ) P

A loop has the weak inverse property if (xy)λx = yλ. Equivalently, a loop has the weak inverse property if
x (yx )ρ = yρ.

2I HasWeakInverseProperty( L ) P

According to [1], a loop L has the automorphic inverse property if (xy)λ = xλyλ, or, equivalently, (xy)ρ =
xρyρ. (In particular, when L has two-sided inverses and the automorphic inverse property, it satisfies
(xy)−1 = x−1y−1.) Similarly, L has the antiautomorphic inverse property if (xy)λ = yλxλ, or, equivalently,
(xy)ρ = yρxρ.

3I HasAutomorphicInverseProperty( L ) P
I HasAntiautomorphicInverseProperty( L ) P

The following implications among inverse properties hold and are implemented in LOOPS:

◦ Inverse property implies left and right inverse properties, two-sided inverses, weak inverse property, and
antiautomorphic inverse property.

◦ Antiautomorphic inverse property loops have two-sided inverses.

◦ If a loop has any two of the left inverse property, right inverse property, weak inverse property or
antiautomorphic inverse property, it also has the inverse property.
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7.3 Some properties of quasigroups

A quasigroup Q is semisymmetric if (xy)x = y for every x , y ∈ Q . Equivalently, Q is semisymmetric if
x (yx ) = y for every x , y ∈ Q . A semisymmetric commutative quasigroup is known as totally symmetric.
Totally symmetric quasigroups are precisely quasigroups satisfying xy = x\y = x/y .

1I IsSemisymmetric( Q ) P
I IsTotallySymmetric( Q ) P

A quasigroup Q is idempotent if x 2 = x for every x ∈ Q . Idempotent totally symmetric quasigroups are
known as Steiner quasigroups. A quasigroup Q is unipotent if x 2 = y2 for every x , y ∈ Q .

2I IsIdempotent( Q ) P
I IsSteinerQuasigroup( Q ) P
I IsUnipotent( Q ) P

A quasigroup is left distributive if it satisfies x (yz ) = (xy)(xz ). Similarly, it is right distributive if it satisfies
(xy)z = (xz )(yz ). A distributive quasigroup is a quasigroup that is both left and right distributive. A
quasigroup is called entropic or medial if it satisfies (xy)(zw) = (xz )(yw).

3I IsLeftDistributive( Q ) P
I IsRightDistributive( Q ) P
I IsDistributive( Q ) P
I IsEntropic( Q ) P
I IsMedial( Q ) P

In order to be compatible with GAP’s terminology, we also support the synonyms

4I IsLDistributive( Q ) P
I IsRDistributive( Q ) P

for IsLeftDistributive and IsRightDistributive respectively.

7.4 Loops of Bol-Moufang type

Following [8] and [19], a variety of loops is said to be of Bol-Moufang type if it is defined by a single identity
of Bol-Moufang type, i.e., by an identity that:

◦ contains the same 3 variables on both sides,

◦ exactly one of the variables occurs twice on both sides,

◦ the variables occur in the same order on both sides.

It is proved in [19] that there are 13 varieties of nonassociative loops of Bol-Moufang type. These are:

◦ left alternative loops, defined by x (xy) = (xx )y ,

◦ right alternative loops, defined by x (yy) = (xy)y ,

◦ left nuclear square loops, defined by (xx )(yz ) = ((xx )y)z ,

◦ middle nuclear square loops, defined by x ((yy)z ) = (x (yy))z ,

◦ right nuclear square loops, defined by x (y(zz )) = (xy)(zz ),

◦ flexible loops, defined by x (yx ) = (xy)x ,

◦ left Bol loops, defined by x (y(xz )) = (x (yx ))z , always left alternative,

◦ right Bol loops, defined by x ((yz )y) = ((xy)z )y , always right alternative,

◦ LC-loops, defined by (xx )(yz ) = (x (xy))z , always left alternative, left and middle nuclear square,

◦ RC-loops, defined by x ((yz )z ) = (xy)(zz ), always right alternative, right and middle nuclear square,

◦ Moufang loops, defined by (xy)(zx ) = (x (yz ))x , always flexible, left and right Bol,

◦ C-loops, defined by x (y(yz )) = ((xy)y)z , always LC and RC,

◦ extra loops, defined by x (y(zx )) = ((xy)z )x , always Moufang and C.



28 Chapter 7. Testing properties of quasigroups and loops

Note that although some of the defining identities are not of Bol-Moufang type, they are equivalent to
a Bol-Moufang identity. Moreover, many varieties are defined in several ways, by equivalent identities of
Bol-Moufang type.

There are several varieties related to loops of Bol-Moufang type. A loop is said to be alternative if it is both
left and right alternative, and nuclear square if it is left, middle and right nuclear square.

Here are the corresponding LOOPS commands (argument L indicates that the property applies only to loops,
argument Q indicates that the property applies also to quasigroups):

1I IsExtraLoop( L ) P
I IsMoufangLoop( L ) P
I IsCLoop( L ) P
I IsLeftBolLoop( L ) P
I IsRightBolLoop( L ) P
I IsLCLoop( L ) P
I IsRCLoop( L ) P
I IsLeftNuclearSquareLoop( L ) P
I IsMiddleNuclearSquareLoop( L ) P
I IsRightNuclearSquareLoop( L ) P
I IsNuclearSquareLoop( L ) P
I IsFlexible( Q ) P
I IsLeftAlternative( Q ) P
I IsRightAlternative( Q ) P
I IsAlternative( Q ) P

While listing the varieties of loops of Bol-Moufang type, we have also listed all inclusions among them. These
inclusions are built into LOOPS.

The following trivial example shows some of the implications and the naming conventions of LOOPS at work:

gap> L := LoopByCayleyTable( [ [ 1, 2 ], [ 2, 1 ] ] );

<loop of order 2>

gap> [ IsLeftBolLoop( L ), L ]

[ true, <left Bol loop of order 2> ]

gap> [ HasIsLeftAlternativeLoop( L ), IsLeftAlternativeLoop( L ) ];

[ true, true ]

gap> [ HasIsRightBolLoop( L ), IsRightBolLoop( L ) ];

[ false, true ]

gap> L;

<Moufang loop of order 2>

gap> [ IsAssociative( L ), L ];

[ true, <associative loop of order 2> ]

The analogous terminology for quasigroups of Bol-Moufang type is not standard yet, and hence is not
supported in LOOPS.

7.5 Power alternative loops

A loop is left power alternative if it is power associative and x n(xmy) = x n+my for every x , y and all integers
n, m. Similarly, a loop is right power alternative if it is power associative and (xyn)ym = xyn+m for all x , y
and all integers n, m. A loop that is both left and right power alternative is said to be power alternative.

Left power alternative loops are left alternative and have the left inverse property. Left Bol loops and
LC-loops are left power alternative.

1I IsLeftPowerAlternative( L ) P
I IsRightPowerAlternative( L ) P
I IsPowerAlternative( L ) P
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7.6 Conjugacy closed loops and related properties

A loop is left (resp. right) conjugacy closed if its left (resp. right) translations are closed under conjugation.
A loop that is both left and right conjugacy closed is called conjugacy closed . It is common to refer to these
loops as LCC-, RCC-, CC-loops, respectively.

1I IsLCCLoop( L ) P
I IsRCCLoop( L ) P
I IsCCLoop( L ) P

The equivalence LCC + RCC = CC is built into LOOPS.

A loop is Osborn if it satisfies x (yz · x ) = (xλ\y)(zx ), where xλ is the left inverse of x . Both Moufang loops
and CC-loops are Osborn.

2I IsOsbornLoop( L ) P

7.7 Additional varieties of loops

An (even) code loop is a Moufang 2-loop with Frattini subloop of order 1 or 2. Code loops are extra and
conjugacy closed.

1I IsCodeLoop( L ) P

Steiner loop is an inverse property loop of exponent 2. Steiner loops are commutative.

2I IsSteinerLoop( L ) P

A left (resp. right) Bol loop with the automorphic inverse property is known as left (resp. right) Bruck loop.
Bruck loops are also known as K-loops.

3I IsLeftBruckLoop( L ) P
I IsLeftKLoop( L ) P
I IsRightBruckLoop( L ) P
I IsRightKLoop( L ) P

A loop whose all left (resp. middle, right) inner mappings are automorphisms is called a left (resp. middle,
right) automorphic loop. A loop whose every inner mapping is an automorphism is known as an automorphic
loop. Diassociative automorphic loops are Moufang by [11]. See the built-in filters for additional properties
of automorphic loops.

4I IsLeftAutomorphicLoop( L ) P
I IsMiddleAutomorphicLoop( L ) P
I IsRightAutomorphicLoop( L ) P
I IsAutomorphicLoop( L ) P

Automorphic loops have historically been called A-loops. We therefore support the synonyms

5I IsLeftALoop( L ) P
I IsMiddleALoop( L ) P
I IsRightALoop( L ) P
I IsALoop( L ) P

Be careful not to confuse IsALoop and IsLoop.



8 Specific methods

This chapter describes methods of LOOPS that apply to some special loops, mostly Bol and Moufang loops.

8.1 Core methods for Bol loops

Let L be a left Bol loop such that the mapping x 7→ x 2 is a permutation of L. Define a new operation ∗
on L by x ∗ y = (x (y2x ))1/2. Then Bruck showed that (L, ∗) is a left Bruck loop, called the assoicated left
Bruck loop.. (In fact, Bruck used the isomorphic operation x ∗y = x 1/2(yx 1/2) instead. Our approach is more
natural, since the associated left Bruck loop to a left Bruck loop L is identical to L then.) The associated
left Bruck loop of L is returned via

1I AssociatedLeftBruckLoop( L ) A

8.2 Moufang modifications

Aleš Drápal discovered two prominent families of extensions of Moufang loops. It turns out that these
extensions can be used to obtain all nonassociative Moufang loops of order at most 64. We call these
two constructions Moufang modifications. The library of Moufang loops included with LOOPS is based on
Moufang modifications. We describe the two modifications briefly here. See [7] for details.

Assume that L is a Moufang loop with normal subloop S such that L/S is a cyclic group of order 2m. Let
h ∈ S ∩ Z (L). Let α be a generator of L/S and write L =

∪
i∈M αi , where M = {−m + 1, . . ., m}. Let

σ : Z → M be defined by σ(i) = 0 if i ∈ M , σ(i) = 1 if i > m, and σ(i) = −1 if i < −m + 1. Introduce a
new multiplication ∗ on L defined by

x ∗ y = xyhσ(i+j ),

where x ∈ αi , y ∈ αj , i ∈ M , j ∈ M . Then (L, ∗) is a Moufang loop, a cyclic modification of L.

When L, S , α, h are as above and when a is any element of α, the corresponding cyclic modification is
obtained via

1I LoopByCyclicModification( L, S, a, h ) F

Now assume that L is a Moufang loop with normal subloop S such that L/S is a dihedral group of order
4m, with m ≥ 1. Let M and σ be defined as in the cyclic case. Let β, γ ∈ L/S be two involutions of L/S
such that α = βγ generates a cyclic subgroup of L/S of order 2m. Let e ∈ β and f ∈ γ be arbitrary. Then
L can be written as a disjoint union L =

∪
i∈M (αi ∪ eαi ), and also L =

∪
i∈M (αi ∪ αi f . Let G0 =

∪
i∈M αi ,

and G1 = L \G0. Let h ∈ S ∩N (L) ∩ Z (G0). Introduce a new multiplication ∗ on L defined by

x ∗ y = xyh(−1)rσ(i+j ),

where x ∈ αi ∪ eαi , y ∈ αj ∪ αj f , i ∈ M , j ∈ M , y ∈ Gr , r ∈ {0, 1}. Then (L, ∗) is a Moufang loop, a
dihedral modification of L.

When L, S , e, f and h are as above, the corresponding dihedral modification is obtained via

2I LoopByDihedralModification( L, S, e, f , h ) F

In order to apply the cyclic and dihedral modifications, it is beneficial to have access to a class of nonasso-
ciative Moufang loops. The following construction is due to Chein:

Let G be a group. Let G = {g ; g ∈ G} be a set of new elements. Define multiplication ∗ on L = G ∪G by

g ∗ h = gh, g ∗ h = hg , g ∗ h = gh−1, g ∗ h = h−1g ,

where g , h ∈ G . Then L = M (G , 2) is a Moufang loop that is nonassociative if and only if G is nonabelian.

The loop M (G , 2) can be obtained from a finite group G with

3I LoopMG2( G ) F
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8.3 Triality for Moufang loops

Let G be a group and σ, ρ be automorphisms of G , satisfying σ2 = ρ3 = (σρ)2 = 1. We write the
automorphisms of a group as exponents and [g , σ] for g−1gσ. We say that the triple (G , ρ, σ) is a group with

triality if [g , σ][g , σ]ρ[g , σ]ρ
2

= 1 holds for all g ∈ G . It is known that one can associate a group with triality
(G , ρ, σ) in a canonical way with a Moufang loop L. See [16] for more details.

For any Moufang loop L, we can calculate the triality group as a permutation group acting on 3|L| points.
If the multiplication group of L is polycyclic, then we can also represent the triality group as a pc group. In
both cases, the automorphisms σ and ρ are in the same family as the elements of G .

Given a Moufang loop L, the function

1I TrialityPermGroup( L ) F

returns a record [G , ρ, σ], where G is the group with triality associated with L, and ρ, σ are the corresponding
triality automorphisms.

The function

2I TrialityPcGroup( L ) F

differs from TrialityPermGroup only in that G is returned as a pc group.

8.4 Realizing groups as multiplication groups of loops

The following commands look for loops such that the multiplication group is contained in a given transitive
permutation group G .

The resulting loops are given by their right sections.

1I AllLoopTablesInGroup( G[, depth[, infolevel]] ) O
I AllProperLoopTablesInGroup( G[, depth[, infolevel]] ) O
I OneLoopTableInGroup( G[, depth[, infolevel]] ) O
I OneProperLoopTableInGroup( G[, depth[, infolevel]] ) O
I AllLoopsWithMltGroup( G[, depth[, infolevel]] ) O
I OneLoopWithMltGroup( G[, depth[, infolevel]] ) O

One can speed up the search by setting the argument depth higher, the price is much higher memory
consumption. depth is optimally chosen if in the permutation group G , there are not many permutations
fixing depth elements. You can omit the argument depth or set it equal to 2 with little harm.

The parameter infolevel determines the amount of information you get during the search. With infolevel=0,
no information is provided. With infolevel=1, you get the information on timing and hits. With infolevel=2,
the results are printed, as well.

gap> g:=PGL(3,3);

Group([ (6,7)(8,11)(9,13)(10,12), (1,2,5,7,13,3,8,6,10,9,12,4,11) ])

gap> a:=AllLoopTablesInGroup(g,3,0);; Size(a);

56

gap> a:=AllLoopsWithMltGroup(g,3,0);; Size(a);

52



9 Libraries of small loops

Libraries of small loops form an integral part of LOOPS. Loops in libraries are stored up to isomorphism or
up to isotopism. The name of a library up to isotopism starts with itp.

9.1 A typical library

A library named my Library is stored in file data/mylibrary.tbl, and the corresponding data structure is
named LOOPS my library data.

In most cases, the array my library data consists of three lists

◦ LOOPS my library data[ 1 ] is a list of orders for which there is at least one loop in the library,

◦ LOOPS my library data[ 2 ][ k ] is the number of loops of order LOOPS my library data[ 1 ][ k

] in the library,

◦ LOOPS my library data[ 3 ][ s ] contains data necessary to produce the sth loop in the library.

The format of LOOPS my library data[ 3 ] depends on the particular library and is not standardized in
any way.

The user can retrieve the mth loop of order n from library named my Library according to the template

1I MyLibraryLoop( n, m ) F

It is also possible to obtain the same loop with

2I LibraryLoop( name, n, m ) F

where name is the name of the library.

For example, when the library is called left Bol , the corresponding data file is called data/leftbol.tbl,
the corresponding data structure is named LOOPS left bol data, and the mth left Bol loop of order n is
obtained via

LeftBolLoop( n, m )

or via

LibraryLoop("left Bol", n, m )

We are now going to describe the individual libraries in detail. A brief information about the library named
name can also be obtained in LOOPS with

3I DisplayLibraryInfo( name ) F

9.2 Left Bol loops

The library named left Bol contains all nonassociative left Bol loops of order less than 17, including Moufang
loops. There are 6 such loops of order 8, 1 of order 12, 2 of order 15, and 2038 of order 16. (The classification of
left Bol loops of order 16 was first accomplished by Moorhouse [14]. Our library was generated independently,
and agrees with Moorhouse’s results.)

Following the general pattern, the mth nonassociative left Bol loop of order n is obtained by

1I LeftBolLoop( n, m ) F
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9.3 Moufang loops

The library named Moufang contains all nonassociative Moufang loops of order n ≤ 64 and n ∈ {81, 243}.
The mth nonassociative Moufang loop of order n is obtained by

1I MoufangLoop( n, m ) F

For n ≤ 63, our catalog numbers coincide with those of Goodaire et al. [9]. The classification of Moufang
loops of order 64 and 81 was carried out in [17]. The classification of Moufang loops of order 243 was carried
out by Slattery and Zenisek [20].

The extent of the library is summarized below:

order 12 16 20 24 28 32 36 40 42 44 48 52 54 56 60 64 81 243
loops in the libary 1 5 1 5 1 71 4 5 1 1 51 1 2 4 5 4262 5 72

The octonion loop of order 16 (i.e., the multiplication loop of the ± basis elements in the 8-dimensional
standard real octonion algebra) is MoufangLoop( 16, 3 ).

9.4 Code loops

The library named code contains all nonassociative code loops of order less than 65. There are 5 such loops
of order 16, 16 of order 32, and 80 of order 64, all Moufang. The library merely points to the corresponding
Moufang loops. See [17] for a classification of small code loops.

The mth nonassociative code loop of order n is obtained by

1I CodeLoop( n, m ) F

9.5 Steiner loops

Here is how the libary Steiner is described within LOOPS:

gap> DisplayLibraryInfo( "Steiner" );

The library contains all nonassociative Steiner loops of order less or equal to 16.

It also contains the associative Steiner loops of order 4 and 8.

------

Extent of the library:

1 loop of order 4

1 loop of order 8

1 loop of order 10

2 loops of order 14

80 loops of order 16

true

The mth Steiner loop of order n is obtained by

1I SteinerLoop( n, m ) F

Our catalog numbers coincide with those of Colbourn and Rosa [4].
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9.6 CC-loops

By results of Kunen [12], for every odd prime p there are precisely 3 nonassociative conjugacy closed loops
of order p2. Csörgő and Drápal [5] described these 3 loops by multiplicative formulas on Zp2 and Zp × Zp .

Case m = 1: Let k be the smallest positive integer relatively prime to p and such that k is a square modulo
p (i.e., k = 1). Define multiplication on Zp2 by x · y = x + y + kpx 2y .

Case m = 2: Let k be the smallest positive integer relatively prime to p and such that k is not a square
modulo p. Define multiplication on Zp2 by x · y = x + y + kpx 2y .

Case m = 3: Define multiplication on Zp × Zp by (x , a)(y , b) = (x + y , a + b + x 2y).

Moreover, Wilson [22] constructed a nonassociative CC-loop of order 2p for every odd prime p, and Kunen
[12] showed that there are no other nonassociative CC-loops of this order. Here is the construction:

Let N be an additive cyclic group of order n > 2, N = ⟨1⟩. Let G be the additive cyclic group of order 2.
Define multiplication on L = G ×N as follows:

(0,m)(0,n) = (0,m + n), (0,m)(1,n) = (1,−m + n),
(1,m)(0,n) = (1,m + n), (1,m)(1,n) = (0, 1−m + n)·

The CC-loops described above can be obtained by

1I CCLoop( n, m ) F

9.7 Small loops

The library named small contains all nonassociative loops of order 5 and 6. There are 5 and 107 such loops,
respectively. The loops are obtained by

1I SmallLoop( n, m ) F

9.8 Paige loops

Paige loops are nonassociative finite simple Moufang loops. By [13], there is precisely one Paige loop for
every finite field GF(q).

The library named Paige contains the smallest nonassociative simple Moufang loop

1I PaigeLoop( 2 ) F

9.9 Nilpotent loops

The library named nilpotent contains all nonassociative nilpotent loops of order less than 12, up to isomor-
phism. There are 2 nonassociative nilpotent loops of order 6, 134 of order 8, 8 of order 9 and 1043 of order
10. They are obtained as usual with

1I NilpotentLoop( n, m ) F

See [6] for more on enumeration of nilpotent loops. For instance, there are 2623755 nilpotent loops of order
12, and 123794003928541545927226368 nilpotent loops of order 22.

9.10 Automorphic loops

The library named automorphic contains all nonassociative automorphic loops of order less that 16, up to
isomorphism. There is 1 such loop of order 6, 7 of order 8, 3 of order 10, 2 of order 12, 5 of order 14, and 2
of order 15. They are obtained as usual with

1I AutomorphicLoop( n, m ) F
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9.11 Interesting loops

The library named interesting contains some loops that are illustrative for the theory of loops. At this
point, the library contains a nonassociative loop of order 5, a nonassociative nilpotent loop of order 6, a
nonMoufang left Bol loop of order 16, and the loop of sedenions of order 32 (sedenions generalize octonions).

The loops are obtained with

1I InterestingLoop( n, m ) F

9.12 Libraries of loops up to isotopism

For the library small we also provide the corresponding library of loops up to isotopism.

In general, given a library named lib, the corresponding library up to isotopism is named itp lib, and the
loops can be retrieved by the template function ItpLibLoop( n, m ). Thus we have

1I ItpSmallLoop( n, m ) O

Here is an example:

gap> SmallLoop( 6, 14 );

<small loop 6/14>

gap> ItpSmallLoop( 6, 14 );

<small loop 6/42>

gap> LibraryLoop( "itp small", 6, 14 );

<small loop 6/42>

Note that loops up to isotopism form a subset of the corresponding library of loops up to isomorphism. For
instance, the above example shows that the 14th small loop of order 6 up to isotopism is in fact the 42nd
small loop of order 6 up to isomorphism.

Here is the list of all supported libraries up to isotopism and their extent, as displayed by LOOPS:

gap> DisplayLibraryInfo("itp small");

The library contains all nonassociative loops of order less than 7 up to

isotopism.

------

Extent of the library:

1 loop of order 5

20 loops of order 6



A Files

Below is a list of all relevant files forming the LOOPS package. Some technical files are not mentioned. You
do not need any of this information unless you want to modify the package. All paths are relative to the
loops folder.

../README.loops (installation and usage instructions)

init.g (declarations)

PackageInfo.g (loading info for GAP 4.4)

read.g (implementations)

data/cc.tbl (library of CC-loops)

data/code.tbl (library of code loops)

data/interesting.tbl (library of interesting loops)

data/itp_small.tbl (library of small loops up to isotopism)

data/leftbol.tbl (library of left Bol loops)

data/moufang.tbl (library of Moufang loops

data/paige.tbl (library of Paige loops)

data/small.tbl (library of small loops)

data/steiner.tbl (library of Steiner loops)

doc/manual.* (documentation files in all but html format)

gap/banner.g (banner of LOOPS)

gap/bol_core_methods.gd .gi (core methods for Bol loops)

gap/classes.gd .gi (properties of quasigroups and loops)

gap/core_methods.gd .gi (core methods for quasigroups and loops)

gap/elements.gd .gi (elements and basic arithmetic operations)

gap/examples.gd .gi (methods for libraries of loops)

gap/extensions.gd .gi (methods for extensions of loops)

gap/iso.gd .gi (methods for isomorphisms and isotopisms of loops)

gap/mlt_search.gd .gi (realizing groups as multiplication groups of loops)

gap/moufang_modifications.gd .gi (methods for Moufang modifications)

gap/moufang_triality.gd .gi (methods for triality of Moufang loops)

gap/quasigroups.gd .gi (representing, creating and displaying quasigroups)

gap/random.gd .gi (random quasigroups and loops)

htm/*.htm (documentation files in html format)

tst/bol.tst (test file for Bol loops)

tst/core_methods.tst (test file for core methods)

tst/iso.tst (test file for isomorphisms and automorphisms)

tst/lib.tst (test file for libraries of loops, except Moufang loops)

tst/nilpot.tst (test file for nilpotency and triality)

tst/testall.g (batch for all tets files)



B
Filters built into

the package

Many implications among properties of loops are built directly into LOOPS. A sizeable portion of these
properties are of trivial character or are based on definitions (e.g., alternative loops = left alternative loops
+ right alternative loops). The remaining implications are theorems.

All filters of LOOPS are summarized below, using the GAP convention that the property on the left is implied
by the property (properties) on the right.

( IsExtraLoop, IsAssociative and IsLoop )

( IsExtraLoop, IsCodeLoop )

( IsCCLoop, IsCodeLoop )

( HasTwosidedInverses, IsPowerAssociative )

( IsPowerAlternative, IsDiassociative )

( IsFlexible, IsDiassociative )

( HasAntiautomorphicInverseProperty, HasAutomorphicInverseProperty and IsCommutative )

( HasAutomorphicInverseProperty, HasAntiautomorphicInverseProperty and IsCommutative )

( HasLeftInverseProperty, HasInverseProperty )

( HasRightInverseProperty, HasInverseProperty )

( HasWeakInverseProperty, HasInverseProperty )

( HasAntiautomorphicInverseProperty, HasInverseProperty )

( HasTwosidedInverses, HasAntiautomorphicInverseProperty )

( HasInverseProperty, HasLeftInverseProperty and IsCommutative )

( HasInverseProperty, HasRightInverseProperty and IsCommutative )

( HasInverseProperty, HasLeftInverseProperty and HasRightInverseProperty )

( HasInverseProperty, HasLeftInverseProperty and HasWeakInverseProperty )

( HasInverseProperty, HasRightInverseProperty and HasWeakInverseProperty )

( HasInverseProperty, HasLeftInverseProperty and HasAntiautomorphicInverseProperty )

( HasInverseProperty, HasRightInverseProperty and HasAntiautomorphicInverseProperty )

( HasInverseProperty, HasWeakInverseProperty and HasAntiautomorphicInverseProperty )

( HasTwosidedInverses, HasLeftInverseProperty )

( HasTwosidedInverses, HasRightInverseProperty )

( HasTwosidedInverses, IsFlexible and IsLoop )

( IsMoufangLoop, IsExtraLoop )

( IsCLoop, IsExtraLoop )

( IsExtraLoop, IsMoufangLoop and IsLeftNuclearSquareLoop )

( IsExtraLoop, IsMoufangLoop and IsMiddleNuclearSquareLoop )

( IsExtraLoop, IsMoufangLoop and IsRightNuclearSquareLoop )

( IsLeftBolLoop, IsMoufangLoop )

( IsRightBolLoop, IsMoufangLoop )

( IsDiassociative, IsMoufangLoop )

( IsMoufangLoop, IsLeftBolLoop and IsRightBolLoop )

( IsLCLoop, IsCLoop )

( IsRCLoop, IsCLoop )

( IsDiassociative, IsCLoop and IsFlexible)

( IsCLoop, IsLCLoop and IsRCLoop )

( IsRightBolLoop, IsLeftBolLoop and IsCommutative )

( IsLeftPowerAlternative, IsLeftBolLoop )

( IsLeftBolLoop, IsRightBolLoop and IsCommutative )

( IsRightPowerAlternative, IsRightBolLoop )

( IsLeftPowerAlternative, IsLCLoop )
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( IsLeftNuclearSquareLoop, IsLCLoop )

( IsMiddleNuclearSquareLoop, IsLCLoop )

( IsRCLoop, IsLCLoop and IsCommutative )

( IsRightPowerAlternative, IsRCLoop )

( IsRightNuclearSquareLoop, IsRCLoop )

( IsMiddleNuclearSquareLoop, IsRCLoop )

( IsLCLoop, IsRCLoop and IsCommutative )

( IsRightNuclearSquareLoop, IsLeftNuclearSquareLoop and IsCommutative )

( IsLeftNuclearSquareLoop, IsRightNuclearSquareLoop and IsCommutative )

( IsLeftNuclearSquareLoop, IsNuclearSquareLoop )

( IsRightNuclearSquareLoop, IsNuclearSquareLoop )

( IsMiddleNuclearSquareLoop, IsNuclearSquareLoop )

( IsNuclearSquareLoop, IsLeftNuclearSquareLoop

and IsRightNuclearSquareLoop and IsMiddleNuclearSquareLoop )

( IsFlexible, IsCommutative )

( IsRightAlternative, IsLeftAlternative and IsCommutative )

( IsLeftAlternative, IsRightAlternative and IsCommutative )

( IsLeftAlternative, IsAlternative )

( IsRightAlternative, IsAlternative )

( IsAlternative, IsLeftAlternative and IsRightAlternative )

( IsLeftAlternative, IsLeftPowerAlternative )

( HasLeftInverseProperty, IsLeftPowerAlternative )

( IsPowerAssociative, IsLeftPowerAlternative )

( IsRightAlternative, IsRightPowerAlternative )

( HasRightInverseProperty, IsRightPowerAlternative )

( IsPowerAssociative, IsRightPowerAlternative )

( IsLeftPowerAlternative, IsPowerAlternative )

( IsRightPowerAlternative, IsPowerAlternative )

( IsAssociative, IsLCCLoop and IsCommutative )

( IsExtraLoop, IsLCCLoop and IsMoufangLoop )

( IsAssociative, IsRCCLoop and IsCommutative )

( IsExtraLoop, IsRCCLoop and IsMoufangLoop )

( IsLCCLoop, IsCCLoop )

( IsRCCLoop, IsCCLoop )

( IsCCLoop, IsLCCLoop and IsRCCLoop )

( IsOsbornLoop, IsMoufangLoop )

( IsOsbornLoop, IsCCLoop )

( HasAutomorphicInverseProperty, IsLeftBruckLoop )

( IsLeftBolLoop, IsLeftBruckLoop )

( IsRightBruckLoop, IsLeftBruckLoop and IsCommutative )

( IsLeftBruckLoop, IsLeftBolLoop and HasAutomorphicInverseProperty )

( HasAutomorphicInverseProperty, IsRightBruckLoop )

( IsRightBolLoop, IsRightBruckLoop )

( IsLeftBruckLoop, IsRightBruckLoop and IsCommutative )

( IsRightBruckLoop, IsRightBolLoop and HasAutomorphicInverseProperty )

( IsCommutative, IsSteinerLoop )

( IsCLoop, IsSteinerLoop )

( IsLeftAutomorphicLoop, IsAutomorphicLoop )

( IsRightAutomorphicLoop, IsAutomorphicLoop )

( IsMiddleAutomorphicLoop, IsAutomorphicLoop )

( IsMiddleAutomorphicLoop, IsCommutative )

( IsAutomorphicLoop, IsLeftAutomorphicLoop and IsCommutative )

( IsAutomorphicLoop, IsRightAutomorphicLoop and IsCommutative )

( IsLeftAutomorphicLoop, IsRightAutomorphicLoop and HasAntiautomorphicInverseProperty )

( IsRightAutomorphicLoop, IsLeftAutomorphicLoop and HasAntiautomorphicInverseProperty )

( IsFlexible, IsMiddleAutomorphicLoop )

( HasAntiautomorphicInverseProperty, IsFlexible and IsLeftAutomorphicLoop )

( HasAntiautomorphicInverseProperty, IsFlexible and IsRightAutomorphicLoop )
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( IsMoufangLoop, IsAutomorphicLoop and IsLeftAlternative )

( IsMoufangLoop, IsAutomorphicLoop and IsRightAlternative )

( IsMoufangLoop, IsAutomorphicLoop and HasLeftInverseProperty )

( IsMoufangLoop, IsAutomorphicLoop and HasRightInverseProperty )

( IsMoufangLoop, IsAutomorphicLoop and HasWeakInverseProperty )

( IsLeftAutomorphicLoop, IsLeftBruckLoop )

( IsLeftAutomorphicLoop, IsLCCLoop )

( IsRightAutomorphicLoop, IsRightBruckLoop )

( IsRightAutomorphicLoop, IsRCCLoop )

( IsAutomorphicLoop, IsCommutative and IsMoufangLoop )
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