loops : a GAP 4 package - Index
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
R
S
T
U
- A typical library 9.1
- About Cayley tables 4.1
- Acknowledgement 1.7
- Additional varieties of loops 7.7
- AllLoopsWithMltGroup 8.4.1
- AllLoopTablesInGroup 8.4.1
- AllProperLoopTablesInGroup 8.4.1
- AllSubloops 6.3.3
- AreEqualDiscriminators 6.13.2
- AssociatedLeftBruckLoop 8.1.1
- AssociatedRightBruckLoop 8.1.2
- Associativity, commutativity and generalizations 7.1
- Associator 5.4.1
- Associators and commutators 5.4
- AssociatorSubloop 6.7.5
- Automorphic loops 9.11
- AutomorphicLoop 9.11.1
- AutomorphismGroup 6.12.3
- Basic arithmetic operations 5.2
- Basic attributes 5.1
- Basic methods and attributes 5.0
- Calculating with quasigroups 3.3
- Canonical and normalized Cayley tables 4.3
- CanonicalCayleyTable 4.3.1
- CayleyTable 5.1.2
- CayleyTableByPerms 4.6.1
- CCLoop 9.7.1
- Center 6.7.4
- Code loops 9.4
- CodeLoop 9.4.1
- Commutant 6.7.3
- Commutator 5.4.1
- Comparing quasigroups with common parent 6.2
- Conjugacy closed loops (CC loops) 9.7
- Conjugacy closed loops and related properties 7.6
- ConjugacyClosedLoop 9.7.1
- Conversions 4.10
- Conversions between magmas, quasigroups, loops and groups 3.2
- Core methods for Bol loops 8.1
- Creating quasigroups and loops 4.0
- Creating quasigroups and loops by extensions 4.8
- Creating quasigroups and loops by folders 4.7
- Creating quasigroups and loops by sections 4.6
- Creating quasigroups and loops from a file 4.5
- Creating quasigroups and loops manually 4.4
- DerivedLength 6.11.1
- DerivedSubloop 6.11.1
- DirectProduct 4.11.1
- Discriminator 6.13.1
- DisplayLibraryInfo 9.1.3
- Documentation 1.3
- Elements 5.1.1
- Exponent 5.1.6
- Extensions 2.4
- Factor loops 6.9
- FactorLoop 6.9.1
- Feedback 1.6
- Files A.0
- Filters built into the package B.0
- FrattinifactorSize 6.11.1
- FrattiniSubloop 6.11.1
- Generators 5.5
- GeneratorsOfLoop 5.5.1
- GeneratorsOfQuasigroup 5.5.1
- GeneratorsSmallest 5.5.2
- HasAntiautomorphicInverseProperty 7.2.3
- HasAutomorphicInverseProperty 7.2.3
- HasInverseProperty 7.2.1
- HasLeftInverseProperty 7.2.1
- HasRightInverseProperty 7.2.1
- HasTwosidedInverses 7.2.1
- HasWeakInverseProperty 7.2.2
- Homomorphisms and homotopisms 2.3
- How are isomorphisms computed 6.13
- How the package works 3.0
- Inner mapping groups 6.6
- InnerMappingGroup 6.6.1
- Installation 1.2
- Interesting loops 9.12
- InterestingLoop 9.12.1
- IntoGroup 4.10.4
- IntoLoop 4.10.3
- IntoQuasigroup 4.10.1
- Introduction 1.0
- Inverse 5.3.1
- Inverse properties 7.2
- IsALoop 7.7.5
- IsAlternative 7.4.1
- IsAssociative 7.1.1
- IsAutomorphicLoop 7.7.4
- IsCCLoop 7.6.1
- IsCLoop 7.4.1
- IsCodeLoop 7.7.1
- IsCommutative 7.1.1
- IsConjugacyClosedLoop 7.6.2
- IsDiassociative 7.1.2
- IsDistributive 7.3.3
- IsEntropic 7.3.3
- IsExactGroupFactorization 8.1.3
- IsExtraLoop 7.4.1
- IsFlexible 7.4.1
- IsIdempotent 7.3.2
- IsLCCLoop 7.6.1
- IsLCLoop 7.4.1
- IsLDistributive 7.3.4
- IsLeftALoop 7.7.5
- IsLeftAlternative 7.4.1
- IsLeftAutomorphicLoop 7.7.4
- IsLeftBolLoop 7.4.1
- IsLeftBruckLoop 7.7.3
- IsLeftConjugacyClosedLoop 7.6.2
- IsLeftDistributive 7.3.3
- IsLeftKLoop 7.7.3
- IsLeftNuclearSquareLoop 7.4.1
- IsLeftPowerAlternative 7.5.1
- IsLoopCayleyTable 4.2.2
- IsLoopTable 4.2.2
- IsMedial 7.3.3
- IsMiddleALoop 7.7.5
- IsMiddleAutomorphicLoop 7.7.4
- IsMiddleNuclearSquareLoop 7.4.1
- IsMoufangLoop 7.4.1
- IsNilpotent 6.10.1
- IsNormal 6.8.1
- IsNuclearSquareLoop 7.4.1
- IsomorphicCopyByNormalSubloop 6.12.5
- IsomorphicCopyByPerm 6.12.4
- IsomorphismLoops 6.12.1
- Isomorphisms and automorphisms 6.12
- IsOsbornLoop 7.6.3
- IsotopismLoops 6.14.1
- Isotopisms 6.14
- IsPowerAlternative 7.5.1
- IsPowerAssociative 7.1.2
- IsQuasigroupCayleyTable 4.2.1
- IsQuasigroupTable 4.2.1
- IsRCCLoop 7.6.1
- IsRCLoop 7.4.1
- IsRDistributive 7.3.4
- IsRightALoop 7.7.5
- IsRightAlternative 7.4.1
- IsRightAutomorphicLoop 7.7.4
- IsRightBolLoop 7.4.1
- IsRightBruckLoop 7.7.3
- IsRightConjugacyClosedLoop 7.6.2
- IsRightDistributive 7.3.3
- IsRightKLoop 7.7.3
- IsRightNuclearSquareLoop 7.4.1
- IsRightPowerAlternative 7.5.1
- IsSemisymmetric 7.3.1
- IsSimple 6.8.3
- IsSolvable 6.11.1
- IsSteinerLoop 7.7.2
- IsSteinerQuasigroup 7.3.2
- IsStronglyNilpotent 6.10.2
- IsSubloop 6.3.2
- IsSubquasigroup 6.3.2
- IsTotallySymmetric 7.3.1
- IsUnipotent 7.3.2
- ItpSmallLoop 9.13.1
- LCCLoop 9.6.2
- Left Bol loops and right Bol loops 9.2
- LeftBolLoop 9.2.1
- LeftConjugacyClosedLoop 9.6.2
- LeftDivision 5.2.2
- LeftDivisionCayleyTable 5.2.3
- LeftInnerMapping 6.6.1
- LeftInnerMappingGroup 6.6.1
- LeftInverse 5.3.1
- LeftMultiplicationGroup 6.5.1
- LeftNucleus 6.7.1
- LeftSection 6.4.2
- LeftTranslation 6.4.1
- Libraries of loops up to isotopism 9.13
- Libraries of small loops 9.0
- LibraryLoop 9.1.2
- License 1.1
- LoopByCayleyTable 4.4.2
- LoopByCyclicModification 8.2.1
- LoopByDihedralModification 8.2.2
- LoopByExtension 4.8.2
- LoopByLeftSection 4.6.2
- LoopByRightFolder 4.7.1
- LoopByRightSection 4.6.3
- LoopFromFile 4.5.1
- LoopMG2 8.2.3
- Loops of Bol-Moufang type 7.4
- LOOPS_FreeMemory 1.5.1
- LoopsUpToIsomorphism 6.12.2
- LoopsUpToIsotopism 6.14.2
- LowerCentralSeries 6.10.4
- Mathematical background 2.0
- Memory management 1.5
- Methods based on permutation groups 6.0
- MiddleInnerMapping 6.6.1
- MiddleInnerMappingGroup 6.6.1
- MiddleNucleus 6.7.1
- Moufang loops 9.3
- Moufang modifications 8.2
- MoufangLoop 9.3.1
- Multiplication groups 6.5
- MultiplicationGroup 6.5.1
- MultiplicativeNeutralElement 5.1.4
- MyLibraryLoop 9.1.1
- Naming, viewing and printing quasigroups and their elements 3.4
- NaturalHomomorphismByNormalSubloop 6.9.2
- Nilpotency and central series 6.10
- NilpotencyClassOfLoop 6.10.1
- Nilpotent loops 9.10
- NilpotentLoop 9.10.1
- Normal subloops 6.8
- NormalClosure 6.8.2
- NormalizedQuasigroupTable 4.3.2
- Nuc 6.7.1
- NuclearExtension 4.8.1
- Nuclei, commutant, center, and associator subloop 6.7
- NucleusOfLoop 6.7.2
- NucleusOfQuasigroup 6.7.2
- One 5.1.3
- OneLoopTableInGroup 8.4.1
- OneLoopWithMltGroup 8.4.1
- OneProperLoopTableInGroup 8.4.1
- Opposite 4.12.1
- Opposite quasigroups and loops 4.12
- Paige loops 9.9
- PaigeLoop 9.9.1
- Parent 6.1.1
- Parent of a quasigroup 6.1
- PosInParent 6.1.3
- Position 6.1.2
- Power alternative loops 7.5
- Powers and inverses 5.3
- PrincipalLoopIsotope 4.10.2
- Products of loops 4.11
- QuasigroupByCayleyTable 4.4.1
- QuasigroupByLeftSection 4.6.2
- QuasigroupByRightFolder 4.7.1
- QuasigroupByRightSection 4.6.3
- QuasigroupFromFile 4.5.1
- Quasigroups and loops 2.1
- Random quasigroups and loops 4.9
- RandomLoop 4.9.2
- RandomNilpotentLoop 4.9.4
- RandomQuasigroup 4.9.3
- RCCLoop 9.6.1
- Realizing groups as multiplication groups of loops 8.4
- RelativeLeftMultiplicationGroup 6.5.2
- RelativeMultiplicationGroup 6.5.2
- RelativeRightMultiplicationGroup 6.5.2
- Representing quasigroups 3.1
- Right conjugacy closed loops (RCC loops) and left conjugacy closed loops (LCC loops) 9.6
- RightBolLoop 9.2.2
- RightBolLoopByExactGroupFactorization 8.1.3
- RightConjugacyClosedLoop 9.6.1
- RightCosets 6.3.4
- RightDivision 5.2.2
- RightDivisionCayleyTable 5.2.3
- RightInnerMapping 6.6.1
- RightInnerMappingGroup 6.6.1
- RightInverse 5.3.1
- RightMultiplicationGroup 6.5.1
- RightNucleus 6.7.1
- RightSection 6.4.2
- RightTranslation 6.4.1
- RightTransversal 6.3.5
- SetLoopElmName 3.4.1
- SetQuasigroupElmName 3.4.1
- Size 5.1.5
- Small loops 9.8
- SmallLoop 9.8.1
- Solvability 6.11
- Some properties of quasigroups 7.3
- Specific methods 8.0
- Steiner loops 9.5
- SteinerLoop 9.5.1
- Subloop 6.3.1
- Subquasigroup 6.3.1
- Subquasigroups and subloops 6.3
- Test files 1.4
- Testing Cayley tables 4.2
- Testing properties of quasigroups and loops 7.0
- Translations 2.2
- Translations and sections 6.4
- Triality for Moufang loops 8.3
- TrialityPcGroup 8.3.2
- TrialityPermGroup 8.3.1
- UpperCentralSeries 6.10.3
[Up]
loops manual
jĂșlius 2015