
The LOOPS
Package

Computing with quasigroups and loops
in GAP

Version 3.1.0

Gábor P. Nagy
Petr Vojtěchovský
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Chapter 1

Introduction

LOOPS is a package for GAP4 whose purpose is to:

• provide researchers in nonassociative algebra with a powerful computational tool concerning
finite loops and quasigroups,

• extend GAP toward the realm of nonassociative structures.

LOOPS has been accepted as an official package of GAP in May 2015.

1.1 License

LOOPS is free software. You can redistribute it and/or modify it under the terms of the GNU General
Public License version 3 as published by the Free Software Foundation.

1.2 Installation

Have GAP 4.7 or newer installed on your computer.
If you do not see the subfolder pkg/loops in the main directory of GAP then download the

LOOPS package from the distribution website http://www.math.du.edu/loops and unpack the
downloaded file into the pkg subfolder.

The package LOOPS can then be loaded to GAP anytime by calling LoadPackage("loops");.
If you wish to load LOOPS automatically while starting GAP, start GAP, execute the following

commands,

gap> pref := UserPreference( "PackagesToLoad " );;

gap> Add( pref, "loops" );;

gap> SetUserPreference( "PackagesToLoad", pref );;

gap> WriteGapIniFile();;

quit GAP and restart it.

1.3 Documentation

The documentation has been prepared with the GAPDoc package and is therefore available in several
formats: LATEX, pdf, ps, html, and as an inline help in GAP. All these formats have been obtained

6
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directly from the master XML documentation file. Consequently, the different formats of the docu-
mentation differ only in their appearance, not in content.

The preferred format of the documentation is html with MathJax turned on.
All formats of the documentation can be found in the doc folder of LOOPS. You can also down-

load the documentation from the LOOPS distribution website.
The inline GAP help is available upon installing LOOPS and can be accessed in the usual way,

i.e., upon typing ?command, GAP displays the section of the LOOPS manual containing information
about command.

1.4 Test Files

Test files conforming to GAP standards are provided for LOOPS and can be found in the folder tst.
The command ReadPackage("loops","tst/testall.g") runs all tests for LOOPS.

1.5 Memory Management

Some libraries of loops are loaded only upon explicit demand and can occupy a lot of memory. For
instance, the library or RCC loops occupies close to 100 MB of memory when fully loaded. The
command LOOPS_FreeMemory(); will attempt to free memory by unbinding on-demand library data
loaded by LOOPS.

1.6 Feedback

We welcome all comments and suggestions on LOOPS, especially those concerning the future devel-
opment of the package. You can contact us by e-mail.

1.7 Acknowledgment

We thank the following people for sending us remarks and comments, and for suggesting new func-
tionality of the package: Muniru Asiru, Bjoern Assmann, Andreas Distler, Aleš Drápal, Steve Flam-
mia, Kenneth W. Johnson, Michael K. Kinyon, Alexander Konovalov, Frank Lübeck and Jonathan
D.H. Smith.

The library of Moufang loops of order 243 was generated from data provided by Michael C.
Slattery and Ashley L. Zenisek. The library of right conjugacy closed loops of order less than 28 was
generated from data provided by Katharina Artic.

Gábor P. Nagy was supported by OTKA grants F042959 and T043758, and Petr Vojtěchovský
was supported by the 2006 PROF grant of the University of Denver and by the Simons Foundation
Collaboration Grant 210176.



Chapter 2

Mathematical Background

We assume that you are familiar with the theory of quasigroups and loops, for instance with the
textbook of Bruck [Bru58] or Pflugfelder [Pfl90]. Nevertheless, we did include definitions and results
in this manual in order to unify terminology and improve legibility of the text. Some general concepts
of quasigroups and loops can be found in this chapter. More special concepts are defined throughout
the text as needed.

2.1 Quasigroups and Loops

A set with one binary operation (denoted · here) is called groupoid or magma, the latter name being
used in GAP.

An element 1 of a groupoid G is a neutral element or an identity element if 1 · x = x · 1 = x for
every x in G.

Let G be a groupoid with neutral element 1. Then an element x−1 is called a two-sided inverse of
x in G if x · x−1 = x−1 · x = 1.

Recall that groups are associative groupoids with an identity element and two-sided inverses.
Groups can be reached in another way from groupoids, namely via quasigroups and loops.

A quasigroup Q is a groupoid such that the equation x ·y = z has a unique solution in Q whenever
two of the three elements x, y, z of Q are specified. Note that multiplication tables of finite quasigroups
are precisely latin squares, i.e., square arrays with symbols arranged so that each symbol occurs in
each row and in each column exactly once. A loop L is a quasigroup with a neutral element.

Groups are clearly loops. Conversely, it is not hard to show that associative quasigroups are
groups.

2.2 Translations

Given an element x of a quasigroup Q, we can associative two permutations of Q with it: the left
translation Lx : Q→ Q defined by y 7→ x · y, and the right translation Rx : Q→ Q defined by y 7→ y · x.

The binary operation x\y = L−1
x (y) is called the left division, and x/y = R−1

y (x) is called the right
division.

Although it is possible to compose two left (right) translations of a quasigroup, the resulting
permutation is not necessarily a left (right) translation. The set {Lx|x ∈ Q} is called the left section of
Q, and {Rx|x ∈ Q} is the right section of Q.

8
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Let SQ be the symmetric group on Q. Then the subgroup Mltλ (Q) = 〈Lx|x ∈ Q〉 of SQ generated
by all left translations is the left multiplication group of Q. Similarly, Mltρ(Q) = 〈Rx|x ∈ Q〉 is the
right multiplication group of Q. The smallest group containing both Mltλ (Q) and Mltρ(Q) is called
the multiplication group of Q and is denoted by Mlt(Q).

For a loop Q, the left inner mapping group Innλ (Q) is the stabilizer of 1 in Mltλ (Q). The right
inner mapping group Innρ(Q) is defined dually. The inner mapping group Inn(Q) is the stabilizer of
1 in Q.

2.3 Subquasigroups and Subloops

A nonempty subset S of a quasigroup Q is a subquasigroup if it is closed under multiplication and the
left and right divisions. In the finite case, it suffices for S to be closed under multiplication. Subloops
are defined analogously when Q is a loop.

The left nucleus Nucλ (Q) of Q consists of all elements x of Q such that x(yz) = (xy)z for every
y, z in Q. The middle nucleus Nucµ(Q) and the right nucleus Nucρ(Q) are defined analogously. The
nucleus Nuc(Q) is the intersection of the left, middle and right nuclei.

The commutant C(Q) of Q consists of all elements x of Q that commute with all elements of Q.
The center Z(Q) of Q is the intersection of Nuc(Q) with C(Q).

A subloop S of Q is normal in Q if f (S) = S for every inner mapping f of Q.

2.4 Nilpotence and Solvability

For a loop Q define Z0(Q) = 1 and let Zi+1(Q) be the preimage of the center of Q/Zi(Q) in Q. A
loop Q is nilpotent of class n if n is the least nonnegative integer such that Zn(Q) = Q. In such case
Z0(Q)≤ Z1(Q)≤ . . .≤ Zn(Q) is the upper central series.

The derived subloop Q′ of Q is the least normal subloop of Q such that Q/Q′ is a commutative
group. Define Q(0) = Q and let Q(i+1) be the derived subloop of Q(i). Then Q is solvable of class n
if n is the least nonnegative integer such that Q(n) = 1. In such a case Q(0) ≥ Q(1) ≥ ·· · ≥ Q(n) is the
derived series of Q.

2.5 Associators and Commutators

Let Q be a quasigroup and let x, y, z be elements of Q. Then the commutator of x, y is the unique
element [x,y] of Q such that xy = [x,y](yx), and the associator of x, y, z is the unique element [x,y,z]
of Q such that (xy)z = [x,y,z](x(yz)).

The associator subloop A(Q) of Q is the least normal subloop of Q such that Q/A(Q) is a group.
It is not hard to see that A(Q) is the least normal subloop of Q containing all commutators, and Q′

is the least normal subloop of Q containing all commutators and associators.

2.6 Homomorphism and Homotopisms

Let K, H be two quasigroups. Then a map f : K → H is a homomorphism if f (x) · f (y) = f (x · y)
for every x, y ∈ K. If f is also a bijection, we speak of an isomorphism, and the two quasigroups are
called isomorphic.
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An ordered triple (α,β ,γ) of maps α , β , γ : K→ H is a homotopism if α(x) ·β (y) = γ(x · y) for
every x, y in K. If the three maps are bijections, then (α,β ,γ) is an isotopism, and the two quasigroups
are isotopic.

Isotopic groups are necessarily isomorphic, but this is certainly not true for nonassociative quasi-
groups or loops. In fact, every quasigroup is isotopic to a loop.

Let (K, ·), (K,◦) be two quasigroups defined on the same set K. Then an isotopism (α,β , idK)
is called a principal isotopism. An important class of principal isotopisms is obtained as follows:
Let (K, ·) be a quasigroup, and let f , g be elements of K. Define a new operation ◦ on K by x ◦ y =
R−1

g (x) ·L−1
f (y), where Rg, L f are translations. Then (K,◦) is a quasigroup isotopic to (K, ·), in fact a

loop with neutral element f ·g. We call (K,◦) a principal loop isotope of (K, ·).



Chapter 3

How the Package Works

The package consists of three complementary components:

• the core algorithms for quasigroup theoretical notions (see Chapters 4, 5, 6 and 7),

• algorithms for specific varieties of loops, mostly for Moufang loops (see Chapter 8),

• the library of small loops (see Chapter 9).

Although we do not explain the algorithms in detail here, we describe the general philosophy so that
users can anticipate the capabilities and behavior of LOOPS.

3.1 Representing Quasigroups

Since permutation representation in the usual sense is impossible for nonassociative structures, and
since the theory of nonassociative presentations is not well understood, we resorted to multiplication
tables to represent quasigroups in GAP. (In order to save storage space, we sometimes use one multi-
plication table to represent several quasigroups, for instance when a quasigroup is a subquasigroup of
another quasigroup. See Section 4.1 for more details.)

Consequently, the package is intended primarily for quasigroups and loops of small order, say up
to 1000.

The GAP categories IsQuasigroupElement, IsLoopElement, IsQuasigroup and IsLoop are
declared in LOOPS as follows:

DeclareCategory( "IsQuasigroupElement", IsMultiplicativeElement );

DeclareRepresentation( "IsQuasigroupElmRep",

IsPositionalObjectRep and IsMultiplicativeElement, [1] );

DeclareCategory( "IsLoopElement",

IsQuasigroupElement and IsMultiplicativeElementWithInverse );

DeclareRepresentation( "IsLoopElmRep",

IsPositionalObjectRep and IsMultiplicativeElementWithInverse, [1] );

## latin (auxiliary category for GAP to tell apart IsMagma and IsQuasigroup)

DeclareCategory( "IsLatin", IsObject );

DeclareCategory( "IsQuasigroup", IsMagma and IsLatin );

DeclareCategory( "IsLoop", IsQuasigroup and

IsMultiplicativeElementWithInverseCollection);

11
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3.2 Conversions between magmas, quasigroups, loops and groups

Whether an object is considered a magma, quasigroup, loop or group is a matter of declaration in
LOOPS. Loops are automatically quasigroups, and both groups and quasigroups are automatically
magmas. All standard GAP commands for magmas are therefore available for quasigroups and loops.

In GAP, functions of the type AsSomething(X) convert the domain X into Something, if pos-
sible, without changing the underlying domain X . For example, if X is declared as magma but is
associative and has neutral element and inverses, AsGroup(X) returns the corresponding group with
the underlying domain X .

We have opted for a more general kind of conversions in LOOPS (starting with version
2.1.0), using functions of the type IntoSomething(X). The two main features that distinguish
IntoSomething from AsSomething are:

• The function IntoSomething(X) does not necessarily return the same domain as X . The
reason is that X can be a group, for instance, defined on one of many possible domains, while
IntoLoop(X) must result in a loop, and hence be defined on a subset of some interval 1, . . ., n
(see Section 6.1).

• In some special situations, the function IntoSomething(X) allows to convert X into
Something even though X does not have all the properties of Something. For instance, ev-
ery quasigroup is isotopic to a loop, so it makes sense to allow the conversion IntoLoop(Q)

even if the quasigroup Q does not posses a neutral element.

Details of all conversions in LOOPS can be found in Section 4.10.

3.3 Calculating with Quasigroups

Although the quasigroups are ultimately represented by multiplication tables, the algorithms are
efficient because nearly all calculations are delegated to groups. The connection between quasigroups
and groups is facilitated via translations (see Section 2.2), and we illustrate it with a few examples:

EXAMPLE: This example shows how properties of quasigroups can be translated into properties
of translations in a straightforward way. Let Q be a quasigroup. We ask if Q is associative. We can
either test if (xy)z = x(yz) for every x, y, z in Q, or we can ask if Lxy = LxLy for every x, y in Q. Note
that since Lxy, Lx and Ly are elements of a permutation group, we do not have to refer directly to the
multiplication table once the left translations of Q are known.

EXAMPLE: This example shows how properties of loops can be translated into properties of
translations in a way that requires some theory. A left Bol loop is a loop satisfying x(y(xz)) = (x(yx))z.
We claim (without proof) that a loop Q is left Bol if and only if LxLyLx is a left translation for every
x, y in Q.

EXAMPLE: This example shows that many properties of loops become purely group-theoretical
once they are expressed in terms of translations. A loop is simple if it has no nontrivial congruences.
It is possible to show that a loop is simple if and only if its multiplication group is a primitive
permutation group.

The main idea of the package is therefore to:
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• calculate the translations and the associated permutation groups when they are needed,

• store them as attributes,

• use them in algorithms as often as possible.

3.4 Naming, Viewing and Printing Quasigroups and their Elements

GAP displays information about objects in two modes: the View mode (default, short), and the Print
mode (longer). Moreover, when the name of an object is set, the name is always shown, no matter
which display mode is used.

Only loops contained in the libraries of LOOPS are named. For instance, the loop obtained via
MoufangLoop(32,4), the 4th Moufang loop of order 32, is named "Moufang loop 32/4” and is shown
as <Moufang loop 32/4>.

A generic quasigroup of order n is displayed as <quasigroup of order n>. Similarly, a loop
of order n appears as <loop of order n>.

The displayed information of a generic loop is enhanced if more information about the loop be-
comes available. For instance, when it is established that a loop of order 12 has the left alterna-
tive property, the loop will be shown as <left alternative loop of order 12> until a stronger
property is obtained. Which property is diplayed is governed by the filters built into LOOPS (see
Appendix B).

3.4.1 SetQuasigroupElmName and SetLoopElmName

. SetQuasigroupElmName(Q, name) (function)

. SetLoopElmName(Q, name) (function)

The above functions change the names of elements of a quasigroup (resp. loop) Q to name .
By default, elements of a quasigroup appear as qi and elements of a loop appear as li in both

display modes, where i is a positive integer. The neutral element of a loop is always indexed by 1.

For quasigroups and loops in the Print mode, we display the multiplication table (if it is known),
otherwise we display the elements.

In the following example, L is a loop with two elements.
Example

gap> L;

<loop of order 2>

gap> Print( L );

<loop with multiplication table [ [ 1, 2 ], [ 2, 1 ] ]>

gap> Elements( L );

[ l1, l2 ]

gap> SetLoopElmName( L, "loop_element" );; Elements( L );

[ loop_element1, loop_element2 ]



Chapter 4

Creating Quasigroups and Loops

In this chapter we describe several ways in which quasigroups and loops can be created in LOOPS.

4.1 About Cayley Tables

Let X = {x1, . . . ,xn} be a set and · a binary operation on X . Then an n by n array with rows and
columns bordered by x1, . . ., xn, in this order, is a Cayley table, or a multiplication table of ·, if the
entry in the row xi and column x j is xi · x j.

A Cayley table is a quasigroup table if it is a latin square, i.e., if every entry xi appears in every
column and every row exactly once.

An unfortunate feature of multiplication tables in practice is that they are often not bordered, that
is, it is up to the reader to figure out what is meant. Throughout this manual and in LOOPS, we
therefore make the following assumption: All distinct entries in a quasigroup table must be positive
integers, say x1 < x2 < · · · < xn, and if no border is specified, we assume that the table is bordered
by x1, . . ., xn, in this order. Note that we do not assume that the distinct entries x1, . . ., xn form the
interval 1, . . ., n. The significance of this observation will become clear in Chapter 6.

Finally, we say that a quasigroup table is a loop table if the first row and the first column are the
same, and if the entries in the first row are ordered in an ascending fashion.

4.2 Testing Cayley Tables

4.2.1 IsQuasigroupTable and IsQuasigroupCayleyTable

. IsQuasigroupTable(T) (operation)

. IsQuasigroupCayleyTable(T) (operation)

Returns: true if T is a quasigroup table as defined above, else false.

4.2.2 IsLoopTable and IsLoopCayleyTable

. IsLoopTable(T) (operation)

. IsLoopCayleyTable(T) (operation)

Returns: true if T is a loop table as defined above, else false.

14
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REMARK:The package GUAVA also contains operations dealing with latin squares. In particular,
IsLatinSquare is declared in GUAVA.

4.3 Canonical and Normalized Cayley Tables

4.3.1 CanonicalCayleyTable

. CanonicalCayleyTable(T) (operation)

Returns: Canonical Cayley table constructed from Cayley table T by replacing entries xi with i.
A Cayley table is said to be canonical if it is based on elements 1, . . ., n. Although we do not

assume that every quasigroup table is canonical, it is often desirable to present quasigroup tables in
canonical way.

4.3.2 NormalizedQuasigroupTable

. NormalizedQuasigroupTable(T) (operation)

Returns: A normalized version of the Cayley table T .
A given Cayley table T is normalized in three steps as follows: first, CanonicalCayleyTable is

called to rename entries to 1, . . ., n, then the columns of T are permuted so that the first row reads 1,
. . ., n, and finally the rows of T are permuted so that the first column reads 1, . . ., n.

4.4 Creating Quasigroups and Loops From Cayley Tables

4.4.1 QuasigroupByCayleyTable and LoopByCayleyTable

. QuasigroupByCayleyTable(T) (operation)

. LoopByCayleyTable(T) (operation)

Returns: The quasigroup (resp. loop) with quasigroup table (resp. loop table) T .
Since CanonicalCayleyTable is called within the above operation, the resulting quasigroup will

have Cayley table with distinct entries 1, . . ., n.
Example

gap> ct := CanonicalCayleyTable( [[5,3],[3,5]] );

[ [ 2, 1 ], [ 1, 2 ] ]

gap> NormalizedQuasigroupTable( ct );

[ [ 1, 2 ], [ 2, 1 ] ]

gap> LoopByCayleyTable( last );

<loop of order 2>

gap> [ IsQuasigroupTable( ct ), IsLoopTable( ct ) ];

[ true, false ]

4.5 Creating Quasigroups and Loops from a File

Typing a large multiplication table manually is tedious and error-prone. We have therefore included a
general method in LOOPS that reads multiplication tables of quasigroups from a file.

Instead of writing a separate algorithm for each common format, our algorithm relies on the user
to provide a bit of information about the input file. Here is an outline of the algorithm, with file named
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filename and a string del as input (in essence, the characters of del will be ignored while reading
the file):

• read the entire content of filename into a string s ,

• replace all end-of-line characters in s by spaces,

• replace by spaces all characters of s that appear in del ,

• split s into maximal substrings without spaces, called chunks here,

• let n be the number of distinct chunks,

• if the number of chunks is not n2, report error,

• construct the multiplication table by assigning numerical values 1, . . ., n to chunks, depending
on their position among distinct chunks.

The following examples clarify the algorithm and document its versatility. All examples are of
the form F +D =⇒ T , meaning that an input file containing F together with the deletion string D
produce multiplication table T .

EXAMPLE: Data does not have to be arranged into an array of any kind.

0 1 2 1
2 0 2
0 1

+ ”” =⇒
1 2 3
2 3 1
3 1 2

EXAMPLE: Chunks can be any strings.

red green
green red

+ ”” =⇒ 1 2
2 1

EXAMPLE: A typical table produced by GAP is easily parsed by deleting brackets and commas.

[[0,1], [1,0]] + ”[, ]” =⇒ 1 2
2 1

EXAMPLE: A typical TEX table with rows separated by lines is also easily converted. Note that
we have to use \\ to ensure that every occurrence of \ is deleted, since \\ represents the character \
in GAP

x& y& z\\
y& z& x\\
z& x& y

+ ”\\&” =⇒
1 2 3
2 3 1
3 1 2

4.5.1 QuasigroupFromFile and LoopFromFile

. QuasigroupFromFile(filename, del) (operation)

. LoopFromFile(filename, del) (operation)

Returns: The quasigroup (resp. loop) whose multiplication table data is in file filename ,
ignoring the characters contained in the string del .
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4.6 Creating Quasigroups and Loops From Sections

4.6.1 CayleyTableByPerms

. CayleyTableByPerms(P) (operation)

Returns: If P is a set of n permutations of an n-element set X , returns Cayley table C such that
C[i][ j] = X [ j]P[i].

The cardinality of the underlying set is determined by the moved points of the first permutation
in P , unless the first permutation is the identity permutation, in which case the second permutation is
used.

In particular, if P is the left section of a quasigroup Q , CayleyTableByPerms(Q) returns the
multiplication table of Q .

4.6.2 QuasigroupByLeftSection and LoopByLeftSection

. QuasigroupByLeftSection(P) (operation)

. LoopByLeftSection(P) (operation)

Returns: If P is a set of permutations corresponding to the left translations of a quasigroup (resp.
loop), returns the corresponding quasigroup (resp. loop).

The order of permutations in P is important in the quasigroup case, but it is disregarded in the
loop case, since then the order of rows in the corresponding multiplication table is determined by the
presence of the neutral element.

4.6.3 QuasigroupByRightSection and LoopByRightSection

. QuasigroupByRightSection(P) (operation)

. LoopByRightSection(P) (operation)

These are the dual operations to QuasigroupByLeftSection and LoopByLeftSection.
Example

gap> S := Subloop( MoufangLoop( 12, 1 ), [ 3 ] );;

gap> ls := LeftSection( S );

[ (), (1,3,5), (1,5,3) ]

gap> CayleyTableByPerms( ls );

[ [ 1, 3, 5 ], [ 3, 5, 1 ], [ 5, 1, 3 ] ]

gap> CayleyTable( LoopByLeftSection( ls ) );

[ [ 1, 2, 3 ], [ 2, 3, 1 ], [ 3, 1, 2 ] ]

4.7 Creating Quasigroups and Loops From Folders

Let G be a group, H a subgroup of G, and T a right transversal to H in G. Let τ : G→ T be defined
by x ∈ Hτ(x). Then the operation ◦ defined on the right cosets Q = {Ht|t ∈ T} by Hs◦Ht = Hτ(st)
turns Q into a quasigroup if and only if T is a right transversal to all conjugates g−1Hg of H in G.
(In fact, every quasigroup Q can be obtained in this way by letting G = Mltρ(Q), H = Innρ(Q) and
T = {Rx|x ∈ Q}.)

We call the triple (G,H,T ) a right quasigroup (or loop) folder.
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4.7.1 QuasigroupByRightFolder and LoopByRightFolder

. QuasigroupByRightFolder(G, H, T) (operation)

. LoopByRightFolder(G, H, T) (operation)

Returns: The quasigroup (resp. loop) from the right folder (G , H , T ).
REMARK: We do not support the dual operations for left sections since, by default, actions in

GAP act on the right.

Here is a simple example in which T is actually the right section of the resulting loop.
Example

gap> T := [ (), (1,2)(3,4,5), (1,3,5)(2,4), (1,4,3)(2,5), (1,5,4)(2,3) ];;

gap> G := Group( T );; H := Stabilizer( G, 1 );;

gap> LoopByRightFolder( G, H, T );

<loop of order 5>

4.8 Creating Quasigroups and Loops By Nuclear Extensions

Let K, F be loops. Then a loop Q is an extension of K by F if K is a normal subloop of Q such that
Q/K is isomorphic to F . An extension Q of K by F is nuclear if K is an abelian group and K ≤ N(Q).

A map θ : F×F → K is a cocycle if θ(1,x) = θ(x,1) = 1 for every x ∈ F .
The following theorem holds for loops Q, F and an abelian group K: Q is a nuclear extension of

K by F if and only if there is a cocycle θ : F ×F → K and a homomorphism ϕ : F → Aut(Q) such
that K×F with multiplication (a,x)(b,y) = (aϕx(b)θ(x,y),xy) is isomorphic to Q.

4.8.1 NuclearExtension

. NuclearExtension(Q, K) (operation)

Returns: The data necessary to construct Q as a nuclear extension of the subloop K by Q/K ,
namely [K,F,ϕ,θ ] as above. Note that K must be a commutative subloop of the nucleus of Q .

If n = |F | and m = |K |, the cocycle θ is returned as an n×n array with entries in {1, . . . ,m}, and
the homomorphism ϕ is returned as a list of length n of permutations of {1, . . . ,m}.

4.8.2 LoopByExtension

. LoopByExtension(K, F, f, t) (operation)

Returns: The extension of an abelian group K by a loop F , using action f and cocycle t . The
arguments must be formatted as the output of NuclearExtension.

Example
gap> F := IntoLoop( Group( (1,2) ) );

<loop of order 2>

gap> K := DirectProduct( F, F );;

gap> phi := [ (), (2,3) ];;

gap> theta := [ [ 1, 1 ], [ 1, 3 ] ];;

gap> LoopByExtension( K, F, phi, theta );

<loop of order 8>

gap> IsAssociative( last );

false
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4.9 Random Quasigroups and Loops

An algorithm is said to select a latin square of order n at random if every latin square of order n is
returned by the algorithm with the same probability. Selecting a latin square at random is a nontrivial
problem.

In [JM96], Jacobson and Matthews defined a random walk on the space of latin squares and so-
called improper latin squares that visits every latin square with the same probability. The diameter of
the space is no more than 4(n−1)3 in the sense that no more than 4(n−1)3 properly chosen steps are
needed to travel from one latin square of order n to another.

The Jacobson-Matthews algorithm can be used to generate random quasigroups as follows: (i)
select any latin square of order n, for instance the canonical multiplication table of the cyclic group
of order n, (ii) perform sufficiently many steps of the random walk, stopping at a proper or improper
latin square, (iii) if necessary, perform a few more steps to end up with a proper latin square. Upon
normalizing the resulting latin square, we obtain a random loop of order n.

By the above result, it suffices to use about n3 steps to arrive at any latin square of order n from
the initial latin square. In fact, a smaller number of steps is probably sufficient.

4.9.1 RandomQuasigroup and RandomLoop

. RandomQuasigroup(n[, iter]) (operation)

. RandomLoop(n[, iter]) (operation)

Returns: A random quasigroup (resp. loop) of order n using the Jacobson-Matthews algorithm.
If the optional argument iter is omitted, n 3 steps are used. Otherwise iter steps are used.

If iter is small, the Cayley table of the returned quasigroup (resp. loop) will be close to the
canonical Cayley table of the cyclic group of order n .

4.9.2 RandomNilpotentLoop

. RandomNilpotentLoop(lst) (operation)

Returns: A random nilpotent loop as follows (see Section 6.9 for more information on nilpo-
tency): lst must be a list of positive integers and/or finite abelian groups. If lst=[a1] and a1 is an
integer, a random abelian group of order a1 is returned, else a1 is an abelian group and AsLoop(a1)

is returned. If lst= [a1,...,am], a random central extension of RandomNilpotentLoop([a1])
by RandomNilpotentLoop([a2,...,am]) is returned.

To determine the nilpotency class c of the resulting loop, assume that lst has length at least 2,
contains only integers bigger than 1, and let m be the last entry of lst . If m > 2 then c is equal to
Length(lst), else c is equal to Length(lst)-1.

4.10 Conversions

LOOPS contains methods that convert between magmas, quasigroups, loops and groups, provided
such conversions are possible. Each of the conversion methods IntoQuasigroup, IntoLoop and
IntoGroup returns fail if the requested conversion is not possible.

REMARK: Up to version 2.0.0 of LOOPS, we supported AsQuasigroup, AsLoop and AsGroup

in place of IntoQuasigroup, IntoLoop and IntoGroup, respectively. We have changed the termi-
nology starting with version 2.1.0 in order to comply with GAP naming rules for AsSomething, as
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explained in Chapter 3. Finally, the method AsGroup is a core method of GAP that returns an fp
group if its argument is an associative loop.

4.10.1 IntoQuasigroup

. IntoQuasigroup(M) (operation)

Returns: If M is a declared magma that happens to be a quasigroup, the corresponding quasigroup
is returned. If M is already declared as a quasigroup, M is returned.

4.10.2 PrincipalLoopIsotope

. PrincipalLoopIsotope(M, f, g) (operation)

Returns: An isomorphic copy of the principal isotope (M ,◦) via the transposition (1,f ·g). An
isomorphic copy is returned rather than (M ,◦) because in LOOPS all loops have to have neutral
element labeled as 1.

Given a quasigroup M and two of its elements f , g, the principal loop isotope x ◦ y = R−1
g (x) ·

L−1
f (y) turns (M,◦) into a loop with neutral element f ·g (see Section 2.6).

4.10.3 IntoLoop

. IntoLoop(M) (operation)

Returns: If M is a declared magma that happens to be a quasigroup (but not necessarily a loop!),
a loop is returned as follows: If M is already declared as a loop, M is returned. Else, if M possesses a
neutral element e and if f is the first element of M , then an isomorphic copy of M via the transposition
(e, f ) is returned. If M does not posses a neutral element, PrincipalLoopIsotope(M, M.1, M.1)

is returned.

REMARK: One could obtain a loop from a declared magma M in yet another way, by normalizing
the Cayley table of M . The three approaches can result in nonisomorphic loops in general.

4.10.4 IntoGroup

. IntoGroup(M) (operation)

Returns: If M is a declared magma that happens to be a group, the correspond-
ing group is returned as follows: If M is already declared as a group, M is returned, else
RightMultiplicationGroup(IntoLoop(M)) is returned, which is a permutation group isomorphic
to M .

4.11 Products of Loops

4.11.1 DirectProduct

. DirectProduct(L1, ..., Ln) (operation)

Returns: If each Li is either a declared loop or a declared group, the direct product of L1 , . . .,
Ln is returned. If every Li is a declared group, a group is returned, otherwise a loop is returned.
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4.12 Opposite Quasigroups and Loops

When Q is a quasigroup with multiplication ·, the opposite quasigroup of Q is a quasigroup with the
same underlying set as Q and with multiplication ∗ defined by x∗ y = y · x.

4.12.1 Opposite, OppositeQuasigroup and OppositeLoop

. Opposite(Q) (attribute)

. OppositeQuasigroup(Q) (operation)

. OppositeLoop(Q) (operation)

Returns: The opposite of the quasigroup (resp. loop) Q . Note that if OppositeQuasigroup(Q)
or OppositeLoop(Q) are called, then the returned quasigroup or loop is not stored as an attribute of
Q .



Chapter 5

Basic Methods And Attributes

In this chapter we describe the basic core methods and attributes of the LOOPS package.

5.1 Basic Attributes

We associate many attributes with quasigroups in order to speed up computation. This section lists
some basic attributes of quasigroups and loops.

5.1.1 Elements

. Elements(Q) (attribute)

Returns: The list of elements of a quasigroup Q .
See Section 3.4 for more information about element labels.

5.1.2 CayleyTable

. CayleyTable(Q) (attribute)

Returns: The Cayley table of a quasigroup Q .
See Section 4.1 for more information about quasigroup Cayley tables.

5.1.3 One

. One(Q) (attribute)

Returns: The identity element of a loop Q .
REMARK:If you want to know if a quasigroup Q has a neutral element, you can find out with the

standard function for magmas MultiplicativeNeutralElement(Q).

5.1.4 Size

. Size(Q) (attribute)

Returns: The size of a quasigroup Q .

22
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5.1.5 Exponent

. Exponent(Q) (attribute)

Returns: The exponent of a power associative loop Q . (The method does not test if Q is power
associative.)

When Q is a power associative loop, that is, the powers of elements are well-defined in Q , then
the exponent of Q is the smallest positive integer divisible by the orders of all elements of Q .

5.2 Basic Arithmetic Operations

Each quasigroup element in GAP knows to which quasigroup it belongs. It is therefore possible
to perform arithmetic operations with quasigroup elements without referring to the quasigroup. All
elements involved in the calculation must belong to the same quasigroup.

Two elements x, y of the same quasigroup are multiplied by x∗ y in GAP. Since multiplication of
at least three elements is ambiguous in the nonassociative case, we parenthesize elements by default
from left to right, i.e., x∗y∗z means ((x∗y)∗z). Of course, one can specify the order of multiplications
by providing parentheses.

5.2.1 LeftDivision and RightDivision

. LeftDivision(x, y) (operation)

. RightDivision(x, y) (operation)

Returns: The left division x\y (resp. the right division x/y ) of two elements x , y of the same
quasigroup.

. LeftDivision(S, x) (operation)

. LeftDivision(x, S) (operation)

. RightDivision(S, x) (operation)

. RightDivision(x, S) (operation)

Returns: The list of elements obtained by performing the specified arithmetical operation
elementwise using a list S of elements and an element x .

REMARK: We support / in place of RightDivision. But we do not support \ in place of
LeftDivision.

5.2.2 LeftDivisionCayleyTable and RightDivisionCayleyTable

. LeftDivisionCayleyTable(Q) (operation)

. RightDivisionCayleyTable(Q) (operation)

Returns: The Cayley table of the respective arithmetic operation of a quasigroup Q .

5.3 Powers and Inverses

Powers of elements are generally not well-defined in quasigroups. For magmas and a positive integral
exponent, GAP calculates powers in the following way: x1 = x, x2k = (xk) · (xk) and x2k+1 = (x2k) · x.
One can easily see that this returns xk in about log2(k) steps. For LOOPS, we have decided to
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keep this method, but the user should be aware that the method is sound only in power associative
quasigroups.

Let x be an element of a loop Q with neutral element 1. Then the left inverse xλ of x is the unique
element of Q satisfying xλ x = 1. Similarly, the right inverse xρ satisfies xxρ = 1. If xλ = xρ , we call
x−1 = xλ = xρ the inverse of x.

5.3.1 LeftInverse, RightInverse and Inverse

. LeftInverse(x) (operation)

. RightInverse(x) (operation)

. Inverse(x) (operation)

Returns: The left inverse, right inverse and inverse, respectively, of the quasigroup element x .
Example

gap> CayleyTable( Q );

[ [ 1, 2, 3, 4, 5 ],

[ 2, 1, 4, 5, 3 ],

[ 3, 4, 5, 1, 2 ],

[ 4, 5, 2, 3, 1 ],

[ 5, 3, 1, 2, 4 ] ]

gap> elms := Elements( Q );

gap> [ l1, l2, l3, l4, l5 ];

gap> [ LeftInverse( elms[3] ), RightInverse( elms[3] ), Inverse( elms[3] ) ];

[ l5, l4, fail ]

5.4 Associators and Commutators

See Section 2.5 for definitions of associators and commutators.

5.4.1 Associator

. Associator(x, y, z) (operation)

Returns: The associator of the elements x , y , z of the same quasigroup.

5.4.2 Commutator

. Commutator(x, y) (operation)

Returns: The commutator of the elements x , y of the same quasigroup.

5.5 Generators

5.5.1 GeneratorsOfQuasigroup and GeneratorsOfLoop

. GeneratorsOfQuasigroup(Q) (attribute)

. GeneratorsOfLoop(Q) (attribute)

Returns: A set of generators of a quasigroup (resp. loop) Q . (Both methods are synonyms of
GeneratorsOfMagma.)

As usual in GAP, one can refer to the ith generator of a quasigroup Q by Q.i. Note that while it
is often the case that Q.i = Elements(Q)[i], it is not necessarily so.
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5.5.2 GeneratorsSmallest

. GeneratorsSmallest(Q) (attribute)

Returns: A generating set {q0, . . ., qm} of Q such that Q0 = /0, Qm =Q , Qi = 〈q1, . . ., qi〉, and
qi+1 is the least element of Q\Qi.



Chapter 6

Methods Based on Permutation Groups

Most calculations in the LOOPS package are delegated to groups, taking advantage of the various
permutations and permutation groups associated with quasigroups. This chapter explains in detail
how the permutations associated with a quasigroup are calculated, and it also describes some of the
core methods of LOOPS based on permutations. Additional core methods can be found in Chapter 7.

6.1 Parent of a Quasigroup

Let Q be a quasigroup and S a subquasigroup of Q. Since the multiplication in S coincides with the
multiplication in Q, it is reasonable not to store the multiplication table of S. However, the quasigroup
S then must know that it is a subquasigroup of Q.

6.1.1 Parent

. Parent(Q) (attribute)

Returns: The parent quasigroup of the quasigroup Q .
When Q is not created as a subquasigroup of another quasigroup, the attribute Parent(Q) is set to

Q . When Q is created as a subquasigroup of a quasigroup H , we set Parent(Q) equal to Parent(H).
Thus, in effect, Parent(Q) is the largest quasigroup from which Q has been created.

6.1.2 Position

. Position(Q, x) (operation)

Returns: The position of x among the elements of Q .

Let Q be a quasigroup with parent P , where P is some n-element quasigroup. Let x be
an element of Q . Then x![1] is the position of x among the elements of P , i.e., x![1] =

Position(Elements(P),x).
While referring to elements of Q by their positions, the user should understand whether the posi-

tions are meant among the elements of Q , or among the elements of the parent P of Q . Since it requires
no calculation to obtain x![1], we always use the position of an element in its parent quasigroup in
LOOPS. In this way, many attributes of a quasigroup, including its Cayley table, are permanently tied
to its parent.

It is now clear why we have not insisted that Cayley tables of quasigroups must have entries
covering the entire interval 1, . . ., n for some n.

26
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6.1.3 PosInParent

. PosInParent(S) (operation)

Returns: When S is a list of quasigroup elements (not necessarily from the same quasigroup),
returns the corresponding list of positions of elements of S in the corresponding parent, i.e.,
PosInParent(S)[i] = S[i]![1] = Position(Parent(S[i]),S[i]).

Quasigroups with the same parent can be compared as follows. Assume that A, B are two quasi-
groups with common parent Q. Let GA, GB be the canonical generating sets of A and B, respectively,
obtained by the method GeneratorsSmallest (see Section 5.5). Then we define A < B if and only
if GA < GB lexicographically.

6.2 Subquasigroups and Subloops

6.2.1 Subquasigroup

. Subquasigroup(Q, S) (operation)

Returns: When S is a subset (of elements or indices) of a quasigroup Q , returns the smallest
subquasigroup (resp. subloop) of Q containing S .

We allow S to be a list of elements of Q , or a list of integers representing the positions of the
respective elements in the parent quasigroup (resp. loop) of Q .

If S is empty, Subloop(Q,S) returns the one-element subloop of Q , while
Subquasigroup(Q,S) returns the empty set.

REMARK: The empty set is sometimes considered to be a subquasigroup of Q (although not in
LOOPS). The above convention is useful for handling certain situations, for instance when the user
calls Center(Q) for a quasigroup Q with empty center.

6.2.2 Subloop

. Subloop(Q, S) (operation)

This is a loop analog of IsSubquasigroup(Q,S).

6.2.3 IsSubquasigroup and IsSubloop

. IsSubquasigroup(Q, S) (operation)

. IsSubloop(Q, S) (operation)

Returns: true if S is a subquasigroup (resp. subloop) of a quasigroup (resp. loop) Q , false
otherwise. In other words, returns true if S and Q are quasigroups (resp. loops) with the same parent
and S is a subset of Q .

6.2.4 AllSubloops

. AllSubloops(Q) (operation)

Returns: A list of all subloops of a loop Q .
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6.2.5 RightCosets

. RightCosets(Q, S) (function)

Returns: If S is a subloop of Q , returns a list of all right cosets of S in Q .
The coset S is listed first, and the elements of each coset are ordered in the same way as the

elements of S , i.e., if S= [s1, . . . ,sm], then Sx = [s1x, . . . ,smx].

6.2.6 RightTransversal

. RightTransversal(Q, S) (operation)

Returns: A right transversal of a subloop S in a loop Q . The transversal consists of the list of
first elements from the right cosets obtained by RightCosets(Q,S).

When S is a subloop of Q , the right transversal of S with respect to Q is a subset of Q containing
one element from each right coset of S in Q .

6.3 Translations and Sections

When x is an element of a quasigroup Q, the left translation Lx is a permutation of Q. In LOOPS, all
permutations associated with quasigroups and their elements are permutations in the sense of GAP,
i.e., they are bijections of some interval 1, . . ., n. Moreover, following our convention, the numerical
entries of the permutations point to the positions among elements of the parent of Q, not among
elements of Q.

6.3.1 LeftTranslation and RightTranslation

. LeftTranslation(Q, x) (operation)

. RightTranslation(Q, x) (operation)

Returns: If x is an element of a quasigroup Q , returns the left translation (resp. right translation)
by x in Q .

6.3.2 LeftSection and RightSection

. LeftSection(Q) (operation)

. RightSection(Q) (operation)

Returns: The left section (resp. right section) of a quasigroup Q .

Here is an example illustrating the main features of the subquasigroup construction and the rela-
tionship between a quasigroup and its parent.

Note how the Cayley table of a subquasigroup is created only upon explicit demand. Also note
that changing the names of elements of a subquasigroup (subloop) automatically changes the names
of the elements of the parent subquasigroup (subloop). This is because the elements are shared.

Example
gap> M := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.5 ] );

<loop of order 3>

gap> [ Parent( S ) = M, Elements( S ), PosInParent( S ) ];

[ true, [ l1, l3, l5], [ 1, 3, 5 ] ]

gap> HasCayleyTable( S );

false
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gap> SetLoopElmName( S, "s" );; Elements( S ); Elements( M );

[ s1, s3, s5 ]

[ s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12 ]

gap> CayleyTable( S );

[ [ 1, 3, 5 ], [ 3, 5, 1 ], [ 5, 1, 3 ] ]

gap> LeftSection( S );

[ (), (1,3,5), (1,5,3) ]

gap> [ HasCayleyTable( S ), Parent( S ) = M ];

[ true, true ]

gap> L := LoopByCayleyTable( CayleyTable( S ) );; Elements( L );

[ l1, l2, l3 ]

gap> [ Parent( L ) = L, IsSubloop( M, S ), IsSubloop( M, L ) ];

[ true, true, false ]

gap> LeftSection( L );

[ (), (1,2,3), (1,3,2) ]

6.4 Multiplication Groups

6.4.1 LeftMutliplicationGroup, RightMultiplicationGroup and MultiplicationGroup

. LeftMultiplicationGroup(Q) (attribute)

. RightMultiplicationGroup(Q) (attribute)

. MultiplicationGroup(Q) (attribute)

Returns: The left multiplication group, right multiplication group, resp. multiplication group of
a quasigroup Q .

6.4.2 RelativeLeftMultiplicationGroup, RelativeRightMultiplicationGroup and Rela-
tiveMultiplicationGroup

. RelativeLeftMultiplicationGroup(Q, S) (operation)

. RelativeRightMultiplicationGroup(Q, S) (operation)

. RelativeMultiplicationGroup(Q, S) (operation)

Returns: The relative left multiplication group, the relative right multiplication group, resp. the
relative multiplication group of a quasigroup Q with respect to a subquasigroup S of Q .

Let S be a subquasigroup of a quasigroup Q. Then the relative left multiplication group of Q with
respect to S is the group 〈L(x)|x ∈ S〉, where L(x) is the left translation by x in Q restricted to S. The
relative right multiplication group and the relative multiplication group are defined analogously.

6.5 Inner Mapping Groups

By a result of Bruck, the left inner mapping group of a loop is generated by all left inner map-
pings L(x,y) = L−1

yx LyLx, and the right inner mapping group is generated by all right inner mappings
R(x,y) = R−1

xy RyRx.
In analogy with group theory, we define the conjugations or the middle inner mappings as T (x) =

L−1
x Rx. The middle inner mapping grroup is then the group generated by all conjugations.
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6.5.1 LeftInnerMapping, RightInnerMapping, MiddleInnerMapping

. LeftInnerMapping(Q, x, y) (operation)

. RightInnerMapping(Q, x, y) (operation)

. MiddleInnerMapping(Q, x) (operation)

Returns: The left inner mapping L(x ,y), the right inner mapping R(x ,y), resp. the middle inner
mapping T (x) of a loop Q .

6.5.2 LeftInnerMappingGroup, RightInnerMappingGroup, MiddleInnerMapping-
Group

. LeftInnerMappingGroup(Q) (attribute)

. RightInnerMappingGroup(Q) (attribute)

. MiddleInnerMappingGroup(Q) (attribute)

Returns: The left inner mapping group, right inner mapping group, resp. middle inner mapping
group of a loop Q .

6.5.3 InnerMappingGroup

. InnerMappingGroup(Q) (attribute)

Returns: The inner mapping group of a loop Q .

Here is an example for multiplication groups and inner mapping groups:
Example

gap> M := MoufangLoop(12,1);

<Moufang loop 12/1>

gap> LeftSection(M)[2];

(1,2)(3,4)(5,6)(7,8)(9,12)(10,11)

gap> Mlt := MultiplicationGroup(M); Inn := InnerMappingGroup(M);

<permutation group of size 2592 with 23 generators>

Group([ (4,6)(7,11), (7,11)(8,10), (2,6,4)(7,9,11), (3,5)(9,11), (8,12,10) ])

gap> Size(Inn);

216

6.6 Nuclei, Commutant, Center, and Associator Subloop

See Section 2.3 for the relevant definitions.

6.6.1 LeftNucles, MiddleNucleus, and RightNucleus

. LeftNucleus(Q) (attribute)

. MiddleNucleus(Q) (attribute)

. RightNucleus(Q) (attribute)

Returns: The left nucleus, middle nucleus, resp. right nucleus of a quasigroup Q .

6.6.2 Nuc, NucleusOfQuasigroup and NucleusOfLoop

. Nuc(Q) (attribute)

. NucleusOfQuasigroup(Q) (attribute)
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. NucleusOfLoop(Q) (attribute)

Returns: These synonymous attributes return the nucleus of a quasigroup Q .
Since all nuclei are subquasigroups of Q , they are returned as subquasigroups (resp. subloops).

When Q is a loop then all nuclei are in fact groups, and they are returned as associative loops.
REMARK: The name Nucleus is a global function of GAP with two variables. We have therefore

used Nuc rather than Nucleus for the nucleus. This abbreviation is sometimes used in the literature,
too.

6.6.3 Commutant

. Commutant(Q) (attribute)

Returns: The commutant of a quasigroup Q .

6.6.4 Center

. Center(Q) (attribute)

Returns: The center of a quasigroup Q .
If Q is a loop, the center of Q is a subgroup of Q and it is returned as an associative loop.

6.6.5 AssociatorSubloop

. AssociatorSubloop(Q) (attribute)

Returns: The associator subloop of a loop Q .
We calculate the associator subloop of Q as the smallest normal subloop of Q containing all ele-

ments x\α(x), where x is an element of Q and α is a left inner mapping of Q .

6.7 Normal Subloops and Simple Loops

6.7.1 IsNormal

. IsNormal(Q, S) (operation)

Returns: true if S is a normal subloop of a loop Q .
A subloop S of a loop Q is normal if it is invariant under all inner mappings of Q.

6.7.2 NormalClosure

. NormalClosure(Q, S) (operation)

Returns: The normal closure of a subset S of a loop Q .
For a subset S of a loop Q, the normal closure of S in Q is the smallest normal subloop of Q

containing S.

6.7.3 IsSimple

. IsSimple(Q) (operation)

Returns: true if Q is a simple loop.
A loop Q is simple if {1} and Q are the only normal subloops of Q.
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6.8 Factor Loops

6.8.1 FactorLoop

. FactorLoop(Q, S) (operation)

Returns: When S is a normal subloop of a loop Q , returns the factor loop Q/S .

6.8.2 NaturalHomomorphismByNormalSubloop

. NaturalHomomorphismByNormalSubloop(Q, S) (operation)

Returns: When S is a normal subloop of a loop Q , returns the natural projection from Q onto
Q/S .

Example
gap> M := MoufangLoop( 12, 1 );; S := Subloop( M, [ M.3 ] );

<loop of order 3>

gap> IsNormal( M, S );

true

gap> F := FactorLoop( M, S );

<loop of order 4>

gap> NaturalHomomorphismByNormalSubloop( M, S );

MappingByFunction( <loop of order 12>, <loop of order 4>,

function( x ) ... end )

6.9 Nilpotency and Central Series

See Section 2.4 for the relevant definitions.

6.9.1 IsNilpotent

. IsNilpotent(Q) (property)

Returns: true if Q is a nilpotent loop.

6.9.2 NilpotencyClassOfLoop

. NilpotencyClassOfLoop(Q) (attribute)

Returns: The nilpotency class of a loop Q if Q is nilpotent, fail otherwise.

6.9.3 IsStronglyNilpotent

. IsStronglyNilpotent(Q) (property)

Returns: true if Q is a strongly nilpotent loop.
A loop Q is said to be strongly nilpotent if its multiplication group is nilpotent.

6.9.4 UpperCentralSeries

. UpperCentralSeries(Q) (attribute)

Returns: When Q is a nilpotent loop, returns the upper central series of Q , else returns fail.
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6.9.5 LowerCentralSeries

. LowerCentralSeries(Q) (attribute)

Returns: When Q is a nilpotent loop, returns the lower central series of Q , else returns fail.
The lower central series for loops is defined analogously to groups.

6.10 Solvability, Derived Series and Frattini Subloop

See Section 2.4 for definitions of solvability an derived subloop.

6.10.1 IsSolvable

. IsSolvable(Q) (property)

Returns: true if Q is a solvable loop.

6.10.2 DerivedSubloop

. DerivedSubloop(Q) (attribute)

Returns: The derived subloop of a loop Q .

6.10.3 DerivedLength

. DerivedLength(Q) (attribute)

Returns: If Q is solvable, returns the derived length of Q , else returns fail.

6.10.4 FrattiniSubloop and FrattinifactorSize

. FrattiniSubloop(Q) (attribute)

Returns: The Frattini subloop of Q . The method is implemented only for strongly nilpotent
loops.

Frattini subloop of a loop Q is the intersection of maximal subloops of Q.

6.10.5 FrattinifactorSize

. FrattinifactorSize(Q) (attribute)

6.11 Isomorphisms and Automorphisms

6.11.1 IsomorphismLoops

. IsomorphismLoops(Q, L) (operation)

Returns: An isomorphism from a loop Q to a loop L if the loops are isomorphic, fail otherwise.
If an isomorphism exists, it is returned as a permutation f of 1, . . . , |Q |, where i f = j means that

the ith element of Q is mapped onto the jth element of L . Note that this convention is used even if the
underlying sets of L , M are not indexed by consecutive integers.
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6.11.2 LoopsUpToIsomorphism

. LoopsUpToIsomorphism(ls) (operation)

Returns: Given a list ls of loops, returns a sublist of ls consisting of representatives of isomor-
phism classes of loops from ls .

6.11.3 AutomorphismGroup

. AutomorphismGroup(Q) (attribute)

Returns: The automorphism group of a loop Q , with the same convention on permutations as in
the case of IsomorphismLoops.

REMARK: Since two isomorphisms differ by an automorphism, all isomorphisms from Q to L

can be obtained by a combination of IsomorphismLoops(Q,L) and AutomorphismGroup(L).

While dealing with Cayley tables, it is often useful to rename or reorder the elements of the
underlying quasigroup without changing the isomorphism type of the quasigroups. LOOPS contains
several functions for this purpose.

6.11.4 IsomorphicCopyByPerm

. IsomorphicCopyByPerm(Q, f) (operation)

Returns: When Q is a quasigroup and f is a permutation of 1, . . . , |Q |, returns a quasigroup
defined on the same set as Q with multiplication ∗ defined by x ∗ y =f(f−1(x)f−1(y)). When Q is a
declared loop, a loop is returned. Consequently, when Q is a declared loop and f(1) = k 6= 1, then f

is first replaced with f◦(1,k), to make sure that the resulting Cayley table is normalized.

6.11.5 IsomorphicCopyByNormalSubloop

. IsomorphicCopyByNormalSubloop(Q, S) (operation)

Returns: When S is a normal subloop of a loop Q , returns an isomorphic copy of Q in which
the elements are ordered according to the right cosets of S . In particular, the Cayley table of S will
appear in the top left corner of the Cayley table of the resulting loop.

In order to speed up the search for isomorphisms and automorphisms, we first calculate some
loop invariants preserved under isomorphisms, and then we use these invariants to partition the loop
into blocks of elements preserved under isomorphisms. The following two operations are used in the
search.

6.11.6 Discriminator

. Discriminator(Q) (operation)

Returns: A data structure with isomorphism invariants of a loop Q . See [Voj06] or the file
iso.gi for more details.

If two loops have different discriminators, they are not isomorphic. If they have identical discrim-
inators, they may or may not be isomorphic.
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6.11.7 AreEqualDiscriminators

. AreEqualDiscriminators(D1, D2) (operation)

Returns: true if D1 , D2 are equal discriminators for the purposes of isomorphism searches.

6.12 Isotopisms

At the moment, LOOPS contains only slow methods for testing if two loops are isotopic. The method
works as follows: It is well known that if a loop K is isotopic to a loop L then there exist a principal
loop isotope P of K such that P is isomorphic to L. The algorithm first finds all principal isotopes of
K, then filters them up to isomorphism, and then checks if any of them is isomorphic to L. This is
rather slow already for small orders.

6.12.1 IsotopismLoops

. IsotopismLoops(K, L) (operation)

Returns: fail if K , L are not isotopic loops, else it returns an isotopism as a triple of bijections
on 1, . . . , |K |.

6.12.2 LoopsUpToIsotopism

. LoopsUpToIsotopism(ls) (operation)

Returns: Given a list ls of loops, returns a sublist of ls consisting of representatives of iso-
topism classes of loops from ls .



Chapter 7

Testing Properties of Quasigroups and
Loops

Although loops are quasigroups, it is often the case in the literature that a property of the same name
can differ for quasigroups and loops. For instance, a Steiner loop is not necessarily a Steiner quasi-
group.

To avoid such ambivalences, we often include the noun Loop or Quasigroup as part of the name
of the property, e.g., IsSteinerQuasigroup versus IsSteinerLoop.

On the other hand, some properties coincide for quasigroups and loops and we therefore do not
include Loop, Quasigroup as part of the name of the property, e.g., IsCommutative.

7.1 Associativity, Commutativity and Generalizations

7.1.1 IsAssociative

. IsAssociative(Q) (property)

Returns: true if Q is an associative quasigroup.

7.1.2 IsCommutative

. IsCommutative(Q) (property)

Returns: true if Q is a commutative quasigroup.

7.1.3 IsPowerAssociative

. IsPowerAssociative(Q) (property)

Returns: true if Q is a power associative loop.
A loop Q is said to be power associative if every element of Q generates an associative loop.

7.1.4 IsDiassociative

. IsDiassociative(Q) (property)

Returns: true if Q is a diassociative loop.
A loop Q is said to be diassociative if any two elements of Q generate an associative sublop.

36
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7.2 Inverse Propeties

For an element x of a loop Q, the left inverse of x is the element xλ of Q such that xλ ·x = 1, while the
right inverse of x is the element xρ of Q such that x · xρ = 1.

7.2.1 HasLeftInverseProperty, HasRightInverseProperty and HasInverseProperty

. HasLeftInverseProperty(Q) (property)

. HasRightInverseProperty(Q) (property)

. HasInverseProperty(Q) (property)

Returns: true if a loop Q has the left inverse property, right inverse property, resp. inverse
property.

A loop Q has the left inverse property if xλ (xy) = y for every x, y in Q. Dually, Q has the right
inverse property if (yx)xρ = y for every x, y in Q. If Q has both the left inverse property and the right
inverse property, it has the inverse property.

7.2.2 HasTwosidedInverses

. HasTwosidedInverses(Q) (property)

Returns: true if a loop Q has two-sided inverses.
A loop Q is said to have two-sided inverses if xλ = xρ for every x in Q.

7.2.3 HasWeakInverseProperty

. HasWeakInverseProperty(Q) (property)

Returns: true if a loop Q has the weak inverse property.
A loop Q has the weak inverse property if (xy)λ x = yλ (equivalently, x(yx)ρ = yρ ) holds for every

x, y in Q.

7.2.4 HasAutomorphicInverseProperty

. HasAutomorphicInverseProperty(Q) (property)

Returns: true if a loop Q has the automorphic inverse property.
According to [Art59], a loop Q has the automorphic inverse property if (xy)λ = xλ yλ , or, equiva-

lently, (xy)ρ = xρyρ holds for every x, y in Q.

7.2.5 HasAntiautomorphicInverseProperty

. HasAntiautomorphicInverseProperty(Q) (property)

Returns: true if a loop Q has the antiautomorphic inverse property.
A loop Q has the antiautomorphic inverse property if (xy)λ = yλ xλ , or, equivalently, (xy)ρ = yρxρ

holds for every x, y in Q.

See Appendix B for implications implemented in LOOPS among various inverse properties.
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7.3 Some Properties of Quasigroups

7.3.1 IsSemisymmetric

. IsSemisymmetric(Q) (property)

Returns: true if Q is a semisymmetric quasigroup.
A quasigroup Q is semisymmetric if (xy)x = y, or, equivalently x(yx) = y holds for every x, y in Q.

7.3.2 IsTotallySymmetric

. IsTotallySymmetric(Q) (property)

Returns: true if Q is a totally symmetric quasigroup.
A commutative semisymmetric quasigroup is called totally symmetric. Totally symmetric quasi-

groups are precisely the quasigroups satisfying xy = x\y = x/y.

7.3.3 IsIdempotent

. IsIdempotent(Q) (property)

Returns: true if Q is an idempotent quasigroup.
A quasigroup is idempotent if it satisfies x2 = x.

7.3.4 IsSteinerQuasigroup

. IsSteinerQuasigroup(Q) (property)

Returns: true if Q is a Steiner quasigroup.
A totally symmetric idempotent quasigroup is called a Steiner quasigroup.

7.3.5 IsUnipotent

A quasigroup Q is unipotent if it satisfies x2 = y2 for every x, y in Q.. IsUnipotent(Q) (property)

Returns: true if Q is a unipotent quasigroup.

7.3.6 IsLeftDistributive, IsRightDistributive, IsDistributive

. IsLeftDistributive(Q) (property)

. IsRightDistributive(Q) (property)

. IsDistributive(Q) (property)

Returns: true if Q is a left distributive quasigroup, resp. a right distributive quasigroup, resp. a
distributive quasigroup.

A quasigroup is left distributive if it satisfies x(yz) = (xy)(xz), right distributive if it satisfies
(xy)z = (xz)(yz), and distributive if it is both left distributive and right distributive.

REMARK: In order to be compatible with GAPs terminology, we also support the synonyms
IsLDistributive and IsRDistributive of IsLeftDistributive and IsRightDistributive,
respectively.
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7.3.7 IsEntropic and IsMedial

. IsEntropic(Q) (property)

. IsMedial(Q) (property)

Returns: true if Q is an entropic (aka medial) quasigroup.
A quasigroup is entropic or medial if it satisfies the identity (xy)(uv) = (xu)(yv).

7.4 Loops of Bol Moufang Type

Following [Fen69] and [PV05], a variety of loops is said to be of Bol-Moufang type if it is defined by
a single identity of Bol-Moufang type, i.e., by an identity that contains the same 3 variables on both
sides, exactly one of the variables occurs twice on both sides, and the variables occur in the same
order on both sides.

It is proved in [PV05] that there are 13 varieties of nonassociative loops of Bol-Moufang type.
These are:

• left alternative loops defined by x(xy) = (xx)y,

• right alternative loops defined by x(yy) = (xy)y,

• left nuclear square loops defined by (xx)(yz) = ((xx)y)z,

• middle nuclear square loopsdefined by x((yy)z) = (x(yy))z,

• right nuclear square loops defined by x(y(zz)) = (xy)(zz),

• flexible loops defined by x(yx) = (xy)x,

• left Bol loops defined by x(y(xz)) = (x(yx))z, always left alternative,

• right Bol loops defined by x((yz)y) = ((xy)z)y, always right alternative,

• LC loops defined by (xx)(yz) = (x(xy))z, always left alternative, left nuclear square and middle
nuclear square,

• RC loops defined by x((yz)z) = (xy)(zz), always right alternative, right nuclear square and mid-
dle nuclear square,

• Moufang loops defined by (xy)(zx) = (x(yz))x, always flexible, left Bol and right Bol,

• C loops defined by x(y(yz)) = ((xy)y)z, always LC and RC,

• extra loops defined by x(y(zx)) = ((xy)z)x, always Moufang and C.

Note that although some of the defining identities are not of Bol-Moufang type, they are equivalent
to a Bol-Moufang identity. Moreover, many varieties of loops of Bol-Moufang type can be defined by
one of several equivalent identities of Bol-Moufang type.

There are also several varieties related to loops of Bol-Moufang type. A loop is said to be alter-
native if it is both left alternative and right alternative. A loop is nuclear square if it is left nuclear
square, middle nuclear square and right nuclear square.
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7.4.1 IsExtraLoop

. IsExtraLoop(Q) (property)

Returns: true if Q is an extra loop.

7.4.2 IsMoufangLoop

. IsMoufangLoop(Q) (property)

Returns: true if Q is a Moufang loop.

7.4.3 IsCLoop

. IsCLoop(Q) (property)

Returns: true if Q is a C loop.

7.4.4 IsLeftBolLoop

. IsLeftBolLoop(Q) (property)

Returns: true if Q is a left Bol loop.

7.4.5 IsRightBolLoop

. IsRightBolLoop(Q) (property)

Returns: true if Q is a right Bol loop.

7.4.6 IsLCLoop

. IsLCLoop(Q) (property)

Returns: true if Q is an LC loop.

7.4.7 IsRCLoop

. IsRCLoop(Q) (property)

Returns: true if Q is an RC loop.

7.4.8 IsLeftNuclearSquareLoop

. IsLeftNuclearSquareLoop(Q) (property)

Returns: true if Q is a left nuclear square loop.

7.4.9 IsMiddleNuclearSquareLoop

. IsMiddleNuclearSquareLoop(Q) (property)

Returns: true if Q is a middle nuclear square loop.

7.4.10 IsRightNuclearSquareLoop

. IsRightNuclearSquareLoop(Q) (property)

Returns: true if Q is a right nuclear square loop.
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7.4.11 IsNuclearSquareLoop

. IsNuclearSquareLoop(Q) (property)

Returns: true if Q is a nuclear square loop.

7.4.12 IsFlexible

. IsFlexible(Q) (property)

Returns: true if Q is a flexible quasigroup.

7.4.13 IsLeftAlternative

. IsLeftAlternative(Q) (property)

Returns: true if Q is a left alternative quasigroup.

7.4.14 IsRightAlternative

. IsRightAlternative(Q) (property)

Returns: true if Q is a right alternative quasigroup.

7.4.15 IsAlternative

. IsAlternative(Q) (property)

Returns: true if Q is an alternative quasigroup.

While listing the varieties of loops of Bol-Moufang type, we have also listed all inclusions among
them. These inclusions are built into LOOPS as filters.

The following trivial example shows some of the implications and the naming conventions of
LOOPS at work:

Example
gap> L := LoopByCayleyTable( [ [ 1, 2 ], [ 2, 1 ] ] );

<loop of order 2>

gap> [ IsLeftBolLoop( L ), L ]

[ true, <left Bol loop of order 2> ]

gap> [ HasIsLeftAlternativeLoop( L ), IsLeftAlternativeLoop( L ) ];

[ true, true ]

gap> [ HasIsRightBolLoop( L ), IsRightBolLoop( L ) ];

[ false, true ]

gap> L;

<Moufang loop of order 2>

gap> [ IsAssociative( L ), L ];

[ true, <associative loop of order 2> ]

The analogous terminology for quasigroups of Bol-Moufang type is not standard yet, and hence
is not supported in LOOPS except for the situations explicitly noted above.
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7.5 Power Alternative Loops

A loop is left power alternative if it is power associative and satisfies xn(xmy) = xn+my for all elements
x, y and all integers m, n. Similarly, a loop is right power alternative if it is power associative and
satisfies (xyn)ym = xyn+m for all elements x, y and all integers m, n. A loop is power alternative if it is
both left power alternative and right power alternative.

Left power alternative loops are left alternative and have the left inverse property. Left Bol loops
and LC loops are left power alternative.

7.5.1 IsLeftPowerAlternative, IsRightPowerAlternative and IsPowerAlternative

. IsLeftPowerAlternative(Q) (property)

. IsRightPowerAlternative(Q) (property)

. IsPowerAlternative(Q) (property)

Returns: true if Q is a left power alternative loop, resp. a right power alternative loop, resp. a
power alternative loop.

7.6 Conjugacy Closed Loops and Related Properties

A loop Q is left conjugacy closed if the set of left translations of Q is closed under conjugation (by
itself). Similarly, a loop Q is right conjugacy closed if the set of right translations of Q is closed under
conjugation. A loop is conjugacy closed if it is both left conjugacy closed and right conjugacy closed.
It is common to refer to these loops as LCC, RCC, and CC loops, respectively.

The equivalence LCC + RCC = CC is built into LOOPS.

7.6.1 IsLCCLoop

. IsLCCLoop(Q) (property)

. IsLeftConjugacyClosedLoop(Q) (property)

Returns: true if Q is a left conjugacy closed loop.

7.6.2 IsRCCLoop

. IsRCCLoop(Q) (property)

. IsRightConjugacyClosedLoop(Q) (property)

Returns: true if Q is a right conjugacy closed loop.

7.6.3 IsCCLoop

. IsCCLoop(Q) (property)

. IsConjugacyClosedLoop(Q) (property)

Returns: true if Q is a conjugacy closed loop.

7.6.4 IsOsbornLoop

. IsOsbornLoop(Q) (property)

Returns: true if Q is an Osborn loop.
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A loop is Osborn if it satisfies x(yz · x) = (xλ\y)(zx). Both Moufang loops and CC loops are
Osborn.

7.7 Automorphic Loops

A loop Q whose all left (resp. middle, resp. right) inner mappings are automorphisms of Q is known
as a left automorphic loop (resp. middle automorphic loop, resp. right automorphic loop).

A loop Q is an automorphic loop if all inner mappings of Q are automorphisms of Q.
Automorphic loops are also known as A loops, and similar terminology exists for left, right and

middle automorphic loops.
Diassociative automorphic loops are Moufang by [KKP02]. See the built-in filters for additional

properties of automorphic loops.

7.7.1 IsLeftAutomorphicLoop

. IsLeftAutomorphicLoop(Q) (property)

. IsLeftALoop(Q) (property)

Returns: true if Q is a left automorphic loop.

7.7.2 IsMiddleAutomorphicLoop

. IsMiddleAutomorphicLoop(Q) (property)

. IsMiddleALoop(Q) (property)

Returns: true if Q is a middle automorphic loop.

7.7.3 IsRightAutomorphicLoop

. IsRightAutomorphicLoop(Q) (property)

. IsRightALoop(Q) (property)

Returns: true if Q is a right automorphic loop.

7.7.4 IsAutomorphicLoop

. IsAutomorphicLoop(Q) (property)

. IsALoop(Q) (property)

Returns: true if Q is an automorphic loop.
REMARK: Be careful not to confuse IsALoop and IsLoop.

7.8 Additonal Varieties of Loops

7.8.1 IsCodeLoop

. IsCodeLoop(Q) (property)

Returns: true if Q is a code loop.
A code loop is a Moufang 2-loop with a Frattini subloop of order 1 or 2. Code loops are extra and

conjugacy closed.
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7.8.2 IsSteinerLoop

. IsSteinerLoop(Q) (property)

Returns: true if Q is a Steiner loop.
A Steiner loop is an inverse property loop of exponent 2. Steiner loops are commutative.

7.8.3 IsLeftBruckLoop and IsLeftKLoop

. IsLeftBruckLoop(Q) (property)

. IsLeftKLoop(Q) (property)

Returns: true if Q is a left Bruck loop (aka left K loop).
A left Bol loop with the automorphic inverse property is known as a left Bruck loop or a left K

loop.

7.8.4 IsRightBruckLoop and IsRightKLoop

. IsRightBruckLoop(Q) (property)

. IsRightKLoop(Q) (property)

Returns: true if Q is a right Bruck loop (aka right K loop).
A right Bol loop with the automorphic inverse property is known as a right Bruck loop or a right

K loop.



Chapter 8

Specific Methods

This chapter describes methods of LOOPS that apply to specific classes of loops, mostly Bol and
Moufang loops.

8.1 Core Methods for Bol Loops

8.1.1 AssociatedLeftBruckLoop and AssociatedRightBruckLoop

. AssociatedLeftBruckLoop(Q) (attribute)

. AssociatedRightBruckLoop(Q) (attribute)

Returns: The left (resp. right) Bruck loop associated with a uniquely 2-divisible left (resp. right)
Bol loop Q .

Let Q be a left Bol loop such that the mapping x 7→ x2 is a permutation of Q. Define a new
operation ∗ on Q by x ∗ y = (x(y2x))1/2. Then (Q,∗) is a left Bruck loop, called the associated left
Bruck loop. (In fact, Bruck used the isomorphic operation x∗y = x1/2(yx1/2) instead. Our approach is
more natural in the sense that the left Bruck loop associated with a left Bruck loop is identical to the
original loop.) Associated right Bruck loops are defined dually.

8.1.2 IsExactGroupFactorization

. IsExactGroupFactorization(G, H1, H2) (operation)

Returns: true if (G , H1 , H2 ) is an exact group factorization.
Many right Bol loops can be constructed from exact group factorizations. The triple (G,H1,H2)

is an exact group factorization if H1, H2 are subgroups of G such that H1H2 = G and H1∩H2 = 1.

8.1.3 RightBolLoopByExactGroupFactorization

If (G,H1,H2) is an exact group factorization then (G×G,H1×H2,T ) with T = {(x,x−1)|x ∈ G} is a
loop folder that gives rise to a right Bol loop.. RightBolLoopByExactGroupFactorization(arg)

(function)

Returns: The right Bol loop constructed from an exact group factorization. The argument arg
can either be an exact group factorization [G,H1,H2], or the tuple [G,H], where H is a regular sub-
group of G. We also allow arg to be separate entries rather than a list of entries.
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8.2 Moufang Modifications

Drápal [Drá03] described two prominent families of extensions of Moufang loops. It turns out that
these extensions suffice to obtain all nonassociative Moufang loops of order at most 64 if one starts
with so-called Chein loops. We call the two constructions Moufang modifications. The library of
Moufang loops included in LOOPS is based on Moufang modifications. See [DV06] for details.

8.2.1 LoopByCyclicModification

. LoopByCyclicModification(Q, S, a, h) (function)

Returns: The cyclic modification of a Moufang loop Q obtained from S , a= α and h described
below.

Assume that Q is a Moufang loop with a normal subloop S such that Q/S is a cyclic group of order
2m. Let h ∈ S∩Z(L). Let α be a generator of Q/S and write Q =

⋃
i∈M α i, where M = {−m+1, . . .,

m}. Let σ : Z→M be defined by σ(i) = 0 if i ∈M, σ(i) = 1 if i > m, and σ(i) =−1 if i <−m+1.
Introduce a new multiplication ∗ on Q by x ∗ y = xyhσ(i+ j), where x ∈ α i, y ∈ α j, i ∈M and j ∈M.
Then (Q,∗) is a Moufang loop, a cyclic modification of Q.

8.2.2 LoopByDihedralModification

. LoopByDihedralModification(Q, S, e, f, h) (function)

Returns: The dihedral modification of a Moufang loop Q obtained from S , e , f and h as de-
scribed below.

Let Q be a Moufang loop with a normal subloop S such that Q/S is a dihedral group of order
4m, with m ≥ 1. Let M and σ be defined as in the cyclic case. Let β , γ be two involutions of Q/S
such that α = βγ generates a cyclic subgroup of Q/S of order 2m. Let e ∈ β and f ∈ γ be arbitrary.
Then Q can be written as a disjoint union Q =

⋃
i∈M(α i ∪ eα i), and also Q =

⋃
i∈M(α i ∪α i f ). Let

G0 =
⋃

i∈M α i, and G1 = L\G0. Let h ∈ S∩N(L)∩Z(G0). Introduce a new multiplication ∗ on Q by
x ∗ y = xyh(−1)rσ(i+ j), where x ∈ α i ∪ eα i, y ∈ α j ∪α j f , i ∈M, j ∈M, y ∈ Gr and r ∈ {0,1}. Then
(Q,∗) is a Moufang loop, a dihedral modification of Q.

8.2.3 LoopMG2

. LoopMG2(G) (function)

Returns: The Chein loop constructed from a group G .
Let G be a group. Let G = {g|g ∈ G} be a disjoint copy of elements of G. Define multiplication

∗ on Q = G∪G by g ∗ h = gh, g ∗ h = hg, g ∗ h = gh−1 and g ∗ h = h−1g, where g, h ∈ G. Then
(Q,∗) = M(G,2) is a so-called Chein loop, which is always a Moufang loop, and it is associative if
and only if G is commutative.

8.3 Triality for Moufang Loops

Let G be a group and σ , ρ be automorphisms of G satisfying σ2 = ρ3 = (σρ)2 = 1. Below we write
automorphisms as exponents and [g,σ ] for g−1gσ . We say that the triple (G,ρ,σ) is a group with
triality if [g,σ ][g,σ ]ρ [g,σ ]ρ

2
= 1 holds for all g ∈ G. It is known that one can associate a group with

triality (G,ρ,σ) in a canonical way with a Moufang loop Q. See [NV03] for more details.
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For any Moufang loop Q, we can calculate the triality group as a permutation group acting on 3|Q|
points. If the multiplication group of Q is polycyclic, then we can also represent the triality group as
a pc group. In both cases, the automorphisms σ and ρ are in the same family as the elements of G.

8.3.1 TrialityPermGroup

. TrialityPermGroup(Q) (function)

Returns: A record with components G, rho, sigma, where G is the canonical group with triality
associated with a Moufang loop Q , and rho, sigma are the corresponding triality automorphisms.

8.3.2 TrialityPcGroup

. TrialityPcGroup(Q) (function)

This is a variation of TrialityPermGroup in which G is returned as a pc group.

8.4 Realizing Groups as Multiplication Groups of Loops

It is difficult to determine which groups can occur as multiplication groups of loops.
The following operations search for loops whose multiplication groups are contained within a

specified transitive permutation group G . In all these operations, one can speed up the search by
increasing the optional argument depth , the price being a much higher memory consumption. The
argument depth is optimally chosen if in the permutation group G there are not many permutations
fixing depth elements. It is safe to omit the argument or set it equal to 2.

The optional argument infolevel determines the amount of information displayed during the
search. With infolevel=0, no information is provided. With infolevel=1, you get some informa-
tion on timing and hits. With infolevel=2, the results are printed as well.

8.4.1 AllLoopTablesInGroup

. AllLoopTablesInGroup(G[, depth[, infolevel]]) (operation)

Returns: All Cayley tables of loops whose multiplication group is contained in the transitive
permutation group G .

8.4.2 AllProperLoopTablesInGroup

. AllProperLoopTablesInGroup(G[, depth[, infolevel]]) (operation)

Returns: All Cayley tables of nonassociative loops whose multiplication group is contained in
the transitive permutation group G .

8.4.3 OneLoopTableInGroup

. OneLoopTableInGroup(G[, depth[, infolevel]]) (operation)

Returns: A Cayley table of a loop whose multiplication group is contained in the transitive
permutation group G .



The LOOPS Package 48

8.4.4 OneProperLoopTableInGroup

. OneProperLoopTableInGroup(G[, depth[, infolevel]]) (operation)

Returns: A Cayley table of a nonassociative loop whose multiplication group is contained in the
transitive permutation group G .

8.4.5 AllLoopsWithMltGroup

. AllLoopsWithMltGroup(G[, depth[, infolevel]]) (operation)

Returns: A list of all loops (given as sections) whose multiplication group is equal to the transi-
tive permutation group G .

8.4.6 OneLoopWithMltGroup

. OneLoopWithMltGroup(G[, depth[, infolevel]]) (operation)

Returns: One loop (given as a section) whose multiplication group is equal to the transitive
permutation group G .

Example
gap> g:=PGL(3,3);

Group([ (6,7)(8,11)(9,13)(10,12), (1,2,5,7,13,3,8,6,10,9,12,4,11) ])

gap> a:=AllLoopTablesInGroup(g,3,0);; Size(a);

56

gap> a:=AllLoopsWithMltGroup(g,3,0);; Size(a);
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Chapter 9

Libraries of Loops

Libraries of small loops form an integral part of LOOPS. The loops are stored in libraries up to
isomorphism and, sometimes, up to isotopism.

9.1 A Typical Library

A library named my Library is stored in file data/mylibrary.tbl, and the corresponding data
structure is named LOOPS_my_library_data. For example, when the library is called left Bol, the
corresponding data file is called data/leftbol.tbl and the corresponding data structure is named
LOOPS_left_bol_data.

In most cases, the array LOOPS_my_library_data consists of three lists:

• LOOPS_my_library_data[1] is a list of orders for which there is at least one loop in the
library,

• LOOPS_my_library_data[2][k] is the number of loops of order
LOOPS_my_library_data[1][k] in the library,

• LOOPS_my_library_data[3][k][s] contains data necessary to produce the sth loop of order
LOOPS_my_library_data[1][k] in the library.

The format of LOOPS_my_library_data[3] depends heavily on the particular library and is not
standardized in any way. The data is often coded to save space.

9.1.1 LibraryLoop

. LibraryLoop(libname, n, m) (function)

Returns: The m th loop of order n from the library named libname .

9.1.2 MyLibraryLoop

. MyLibraryLoop(n, m) (function)

This is a template function that retrieves the m th loop of order n from the library named my library.
For example, the m th left Bol loop of order n is obtained via LeftBolLoop(n,m) or via

LibraryLoop("left Bol",n,m).
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9.1.3 DisplayLibraryInfo

. DisplayLibraryInfo(libname) (function)

Returns: Brief information about the loops contained in the library named libname .

We are now going to describe the individual libraries.

9.2 Left Bol Loops and Right Bol Loops

The library named left Bol contains all nonassociative left Bol loops of order less than 17, including
Moufang loops, as well as all left Bol loops of order pq for primes p > q > 2. There are 6 such loops
of order 8, 1 of order 12, 2 of order 15, 2038 of order 16, and (p+q−4)/2 of order pq.

The classification of left Bol loops of order 16 was first accomplished by Moorhouse [Moo]. Our
library was generated independently and it agrees with Moorhouse’s results. The left Bol loops of
order pq were classified in [KNV15].

9.2.1 LeftBolLoop

. LeftBolLoop(n, m) (function)

Returns: The m th left Bol loop of order n in the library.

9.2.2 RightBolLoop

. RightBolLoop(n, m) (function)

Returns: The m th right Bol loop of order n in the library.
REMARK: Only left Bol loops are stored in the library. Right Bol loops are retrieved by calling

Opposite on left Bol loops.

9.3 Moufang Loops

The library named Moufang contains all nonassociative Moufang loops of order n ≤ 64 and n ∈
{81,243}.

9.3.1 MoufangLoop

. MoufangLoop(n, m) (function)

Returns: The m th Moufang loop of order n in the library.
For n≤ 63, our catalog numbers coincide with those of Goodaire et al. [GMR99]. The classifica-

tion of Moufang loops of order 64 and 81 was carried out in [NV07]. The classification of Moufang
loops of order 243 was carried out by Slattery and Zenisek [SZ12].

The extent of the library is summarized below:

order 12 16 20 24 28 32 36 40 42 44 48 52 54 56 60 64 81 243
loops 1 5 1 5 1 71 4 5 1 1 51 1 2 4 5 4262 5 72

The octonion loop of order 16 (i.e., the multiplication loop of the basis elements in the 8-
dimensional standard real octonion algebra) can be obtained as MoufangLoop(16,3).
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9.4 Code Loops

The library named code contains all nonassociative code loops of order less than 65. There are 5 such
loops of order 16, 16 of order 32, and 80 of order 64, all Moufang. The library merely points to the
corresponding Moufang loops. See [NV07] for a classification of small code loops.

9.4.1 CodeLoop

. CodeLoop(n, m) (function)

Returns: The m th code loop of order n in the library.

9.5 Steiner Loops

Here is how the libary named Steiner is described within LOOPS:
Example

gap> DisplayLibraryInfo( "Steiner" );

The library contains all nonassociative Steiner loops of order less or equal to 16.

It also contains the associative Steiner loops of order 4 and 8.

------

Extent of the library:

1 loop of order 4

1 loop of order 8

1 loop of order 10

2 loops of order 14

80 loops of order 16

true

Our labeling of Steiner loops of order 16 coincides with the labeling of Steiner triple systems of
order 15 in [CR99].

9.5.1 SteinerLoop

. SteinerLoop(n, m) (function)

Returns: The m th Steiner loop of order n in the library.

9.6 Conjugacy Closed Loops

The library named RCC contains all nonassocitive right conjugacy closed loops of order n≤ 27 up to
isomorphism. The data for the library was generated by Katharina Artic [Art15] who can also provide
additional data for all right conjugacy closed loops of order n≤ 31.

Let Q be a right conjugacy closed loop, G its right multiplication group and T its right section.
Then 〈T 〉= G is a transitive group, and T is a union of conjugacy classes of G. Every right conjugacy
closed loop of order n can therefore be represented as a union of certain conjugacy classes of a transi-
tive group of degree n. This is how right conjugacy closed loops of order less than 28 are represented
in LOOPS. The following table summarizes the number of right conjugacy closed loops of a given
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order up to isomorphism:

order 6 8 9 10 12 14 15 16 18 20
loops 3 19 5 16 155 97 17 6317 1901 8248
order 21 22 24 25 26 27
loops 119 10487 471995 119 151971 152701

9.6.1 RCCLoop and RightConjugacyClosedLoop

. RCCLoop(n, m) (function)

. RightConjugacyClosedLoop(n, m) (function)

Returns: The m th right conjugacy closed loop of order n in the library.

9.6.2 LCCLoop and LeftConjugacyClosedLoop

. LCCLoop(n, m) (function)

. LeftConjugacyClosedLoop(n, m) (function)

Returns: The m th left conjugacy closed loop of order n in the library.
REMARK: Only the right conjugacy closed loops are stored in the library. Left conjugacy closed

loops are obtained from right conjugacy closed loops via Opposite.

The library named CC contains all nonassociative conjugacy closed loops of order n ≤ 27 and
also of orders 2p and p2 for all primes p.

By results of Kunen [Kun00], for every odd prime p there are precisely 3 nonassociative conju-
gacy closed loops of order p2. Csörgő and Drápal [CD05] described these 3 loops by multiplicative
formulas on Zp2 and Zp×Zp as follows:

• Case m= 1:Let k be the smallest positive integer relatively prime to p and such that k is a square
modulo p (i.e., k = 1). Define multiplication on Zp2 by x · y = x+ y+ kpx2y.

• Case m = 2: Let k be the smallest positive integer relatively prime to p and such that k is not a
square modulo p. Define multiplication on Zp2 by x · y = x+ y+ kpx2y.

• Case m = 3: Define multiplication on Zp×Zp by (x,a)(y,b) = (x+ y,a+b+ x2y).

Moreover, Wilson [WJ75] constructed a nonassociative conjugacy closed loop of order 2p for
every odd prime p, and Kunen [Kun00] showed that there are no other nonassociative conjugacy
closed oops of this order. Here is the relevant multiplication formula on Z2×Zp: (0,m)(0,n) =
(0,m+n), (0,m)(1,n) = (1,−m+n), (1,m)(0,n) = (1,m+n), (1,m)(1,n) = (0,1−m+n).

9.6.3 CCLoop and ConjugacyClosedLoop

. CCLoop(n, m) (function)

. ConjugacyClosedLoop(n, m) (function)

Returns: The m th conjugacy closed loop of order n in the library.

9.7 Small Loops

The library named small contains all nonassociative loops of order 5 and 6. There are 5 and 107 such
loops, respectively.
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9.7.1 SmallLoop

. SmallLoop(n, m) (function)

Returns: The m th loop of order n in the library.

9.8 Paige Loops

Paige loops are nonassociative finite simple Moufang loops. By [Lie87], there is precisely one Paige
loop for every finite field.

The library named Paige contains the smallest nonassociative simple Moufang loop.

9.8.1 PaigeLoop

. PaigeLoop(q) (function)

Returns: The Paige loop constructed over the finite field of order q . Only the case q=2 is
implemented.

9.9 Nilpotent Loops

The library named nilpotent contains all nonassociative nilpotent loops of order less than 12 up to
isomorphism. There are 2 nonassociative nilpotent loops of order 6, 134 of order 8, 8 of order 9 and
1043 of order 10.

See [DV09] for more on enumeration of nilpotent loops. For instance, there are 2623755 nilpotent
loops of order 12, and 123794003928541545927226368 nilpotent loops of order 22.

9.9.1 NilpotentLoop

. NilpotentLoop(n, m) (function)

Returns: The m th nilpotent loop of order n in the library.

9.10 Automorphic Loops

The library named automorphic contains all nonassociative automorphic loops of order less than 16
up to isomorphism. There is 1 such loop of order 6, 7 of order 8, 3 of order 10, 2 of order 12, 5 of
order 14, and 2 of order 15.

9.10.1 AutomorphicLoop

. AutomorphicLoop(n, m) (function)

Returns: The m th automorphic loop of order n in the library.

9.11 Interesting Loops

The library named interesting contains some loops that are illustrative in the theory of loops. At this
point, the library contains a nonassociative loop of order 5, a nonassociative nilpotent loop of order
6, a non-Moufang left Bol loop of order 16, the loop of sedenions of order 32 (sedenions generalize
octonions), and the unique nonassociative simple right Bol loop of order 96 and exponent 2.
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9.11.1 InterestingLoop

. InterestingLoop(n, m) (function)

Returns: The m th interesting loop of order n in the library.

9.12 Libraries of Loops Up To Isotopism

For the library named small we also provide the corresponding library of loops up to isotopism. In
general, given a library named libname, the corresponding library of loops up to isotopism is named
itp lib, and the loops can be retrieved by the template ItpLibLoop(n,m).

9.12.1 ItpSmallLoop

. ItpSmallLoop(n, m) (function)

Returns: The m th small loop of order n up to isotopism in the library.
Example

gap> SmallLoop( 6, 14 );

<small loop 6/14>

gap> ItpSmallLoop( 6, 14 );

<small loop 6/42>

gap> LibraryLoop( "itp small", 6, 14 );

<small loop 6/42>

Note that loops up to isotopism form a subset of the corresponding library of loops up to isomor-
phism. For instance, the above example shows that the 14th small loop of order 6 up to isotopism is
in fact the 42nd small loop of order 6 up to isomorphism.



Appendix A

Files

Below is a list of all relevant files forming the LOOPS package. Some technical files are not
included. A typical user will not need to know any of this information. All paths are relative to the
pkg/loops folder.

../README.loops (installation and usage instructions)
init.g (declarations)
PackageInfo.g (loading info for GAP 4.4)
read.g (implementations)
data/automorphic.tbl (library of automorphic loops)
data/cc.tbl (library of conjugacy closed loops)
data/code.tbl (library of code loops)
data/interesting.tbl (library of interesting loops)
data/itp_small.tbl (library of small loops up to isotopism)
data/leftbol.tbl (library of left Bol loops)
data/moufang.tbl (library of Moufang loops)
data/nilpotent.tbl (library of small nilpotent loops)
data/rcc.tbl (library of right conjugacy closed loops)
data/rcc/*.* (additional files for the library of right conjugacy closed loops)
data/paige.tbl (library of Paige loops)
data/small.tbl (library of small loops)
data/steiner.tbl (library of Steiner loops)
doc/*.* (all documentation files)
doc/loops.xml (the main documentation file for GAPDoc)
doc/loops.bib (the main bibliography file for documentation)
gap/banner.g (banner of LOOPS)
gap/bol_core_methods.gd .gi (core methods for Bol loops)
gap/classes.gd .gi (properties of quasigroups and loops)
gap/convert.gd .gi (methods for data conversion and compression)
gap/core_methods.gd .gi (core methods for quasigroups and loops)
gap/elements.gd .gi (elements and basic arithmetic operations)
gap/examples.gd .gi (methods for libraries of loops)
gap/extensions.gd .gi (methods for extensions of loops)
gap/iso.gd .gi (methods for isomorphisms and isotopisms of loops)
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gap/memory.gd .gi (memory management)
gap/mlt_search.gd .gi (realizing groups as multiplication groups of loops)
gap/moufang_modifications.gd .gi (methods for Moufang modifications)
gap/moufang_triality.gd .gi (methods for triality of Moufang loops)
gap/quasigroups.gd .gi (representing, creating and displaying quasigroups)
gap/random.gd .gi (random quasigroups and loops)
tst/bol.tst (test file for Bol loops)
tst/core_methods.tst (test file for core methods)
tst/iso.tst (test file for isomorphisms and automorphisms)
tst/lib.tst (test file for libraries of loops, except Moufang loops)
tst/nilpot.tst (test file for nilpotency and triality)
tst/testall.g (batch for all tets files)



Appendix B

Filters

Many implications among properties of loops are built directly into LOOPS. A sizeable portion of
these properties are of trivial character or are based on definitions (e.g., alternative loops = left alter-
native loops + right alternative loops). The remaining implications are theorems.

All filters of LOOPS are summarized below, using the GAP convention that the property on the
left is implied by the property (properties) on the right.

( IsExtraLoop, IsAssociative and IsLoop )

( IsExtraLoop, IsCodeLoop )

( IsCCLoop, IsCodeLoop )

( HasTwosidedInverses, IsPowerAssociative )

( IsPowerAlternative, IsDiassociative )

( IsFlexible, IsDiassociative )

( HasAntiautomorphicInverseProperty, HasAutomorphicInverseProperty and

IsCommutative )

( HasAutomorphicInverseProperty, HasAntiautomorphicInverseProperty and

IsCommutative )

( HasLeftInverseProperty, HasInverseProperty )

( HasRightInverseProperty, HasInverseProperty )

( HasWeakInverseProperty, HasInverseProperty )

( HasAntiautomorphicInverseProperty, HasInverseProperty )

( HasTwosidedInverses, HasAntiautomorphicInverseProperty )

( HasInverseProperty, HasLeftInverseProperty and IsCommutative )

( HasInverseProperty, HasRightInverseProperty and IsCommutative )

( HasInverseProperty, HasLeftInverseProperty and HasRightInverseProperty )

( HasInverseProperty, HasLeftInverseProperty and HasWeakInverseProperty )

( HasInverseProperty, HasRightInverseProperty and HasWeakInverseProperty )

( HasInverseProperty, HasLeftInverseProperty and HasAntiautomorphicInverseProperty

)

( HasInverseProperty, HasRightInverseProperty and HasAntiautomorphicInverseProperty

)

( HasInverseProperty, HasWeakInverseProperty and HasAntiautomorphicInverseProperty

)

( HasTwosidedInverses, HasLeftInverseProperty )
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( HasTwosidedInverses, HasRightInverseProperty )

( HasTwosidedInverses, IsFlexible and IsLoop )

( IsMoufangLoop, IsExtraLoop )

( IsCLoop, IsExtraLoop )

( IsExtraLoop, IsMoufangLoop and IsLeftNuclearSquareLoop )

( IsExtraLoop, IsMoufangLoop and IsMiddleNuclearSquareLoop )

( IsExtraLoop, IsMoufangLoop and IsRightNuclearSquareLoop )

( IsLeftBolLoop, IsMoufangLoop )

( IsRightBolLoop, IsMoufangLoop )

( IsDiassociative, IsMoufangLoop )

( IsMoufangLoop, IsLeftBolLoop and IsRightBolLoop )

( IsLCLoop, IsCLoop )

( IsRCLoop, IsCLoop )

( IsDiassociative, IsCLoop and IsFlexible)

( IsCLoop, IsLCLoop and IsRCLoop )

( IsRightBolLoop, IsLeftBolLoop and IsCommutative )

( IsLeftPowerAlternative, IsLeftBolLoop )

( IsLeftBolLoop, IsRightBolLoop and IsCommutative )

( IsRightPowerAlternative, IsRightBolLoop )

( IsLeftPowerAlternative, IsLCLoop )

( IsLeftNuclearSquareLoop, IsLCLoop )

( IsMiddleNuclearSquareLoop, IsLCLoop )

( IsRCLoop, IsLCLoop and IsCommutative )

( IsRightPowerAlternative, IsRCLoop )

( IsRightNuclearSquareLoop, IsRCLoop )

( IsMiddleNuclearSquareLoop, IsRCLoop )

( IsLCLoop, IsRCLoop and IsCommutative )

( IsRightNuclearSquareLoop, IsLeftNuclearSquareLoop and IsCommutative )

( IsLeftNuclearSquareLoop, IsRightNuclearSquareLoop and IsCommutative )

( IsLeftNuclearSquareLoop, IsNuclearSquareLoop )

( IsRightNuclearSquareLoop, IsNuclearSquareLoop )

( IsMiddleNuclearSquareLoop, IsNuclearSquareLoop )

( IsNuclearSquareLoop, IsLeftNuclearSquareLoop and IsRightNuclearSquareLoop

and IsMiddleNuclearSquareLoop )

( IsFlexible, IsCommutative )

( IsRightAlternative, IsLeftAlternative and IsCommutative )

( IsLeftAlternative, IsRightAlternative and IsCommutative )

( IsLeftAlternative, IsAlternative )

( IsRightAlternative, IsAlternative )

( IsAlternative, IsLeftAlternative and IsRightAlternative )

( IsLeftAlternative, IsLeftPowerAlternative )

( HasLeftInverseProperty, IsLeftPowerAlternative )

( IsPowerAssociative, IsLeftPowerAlternative )

( IsRightAlternative, IsRightPowerAlternative )

( HasRightInverseProperty, IsRightPowerAlternative )

( IsPowerAssociative, IsRightPowerAlternative )

( IsLeftPowerAlternative, IsPowerAlternative )
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( IsRightPowerAlternative, IsPowerAlternative )

( IsAssociative, IsLCCLoop and IsCommutative )

( IsExtraLoop, IsLCCLoop and IsMoufangLoop )

( IsAssociative, IsRCCLoop and IsCommutative )

( IsExtraLoop, IsRCCLoop and IsMoufangLoop )

( IsLCCLoop, IsCCLoop )

( IsRCCLoop, IsCCLoop )

( IsCCLoop, IsLCCLoop and IsRCCLoop )

( IsOsbornLoop, IsMoufangLoop )

( IsOsbornLoop, IsCCLoop )

( HasAutomorphicInverseProperty, IsLeftBruckLoop )

( IsLeftBolLoop, IsLeftBruckLoop )

( IsRightBruckLoop, IsLeftBruckLoop and IsCommutative )

( IsLeftBruckLoop, IsLeftBolLoop and HasAutomorphicInverseProperty )

( HasAutomorphicInverseProperty, IsRightBruckLoop )

( IsRightBolLoop, IsRightBruckLoop )

( IsLeftBruckLoop, IsRightBruckLoop and IsCommutative )

( IsRightBruckLoop, IsRightBolLoop and HasAutomorphicInverseProperty )

( IsCommutative, IsSteinerLoop )

( IsCLoop, IsSteinerLoop )

( IsLeftAutomorphicLoop, IsAutomorphicLoop )

( IsRightAutomorphicLoop, IsAutomorphicLoop )

( IsMiddleAutomorphicLoop, IsAutomorphicLoop )

( IsMiddleAutomorphicLoop, IsCommutative )

( IsAutomorphicLoop, IsLeftAutomorphicLoop and IsCommutative )

( IsAutomorphicLoop, IsRightAutomorphicLoop and IsCommutative )

( IsLeftAutomorphicLoop, IsRightAutomorphicLoop and HasAntiautomorphicInverseProperty

)

( IsRightAutomorphicLoop, IsLeftAutomorphicLoop and HasAntiautomorphicInverseProperty

)

( IsFlexible, IsMiddleAutomorphicLoop )

( HasAntiautomorphicInverseProperty, IsFlexible and IsLeftAutomorphicLoop )

( HasAntiautomorphicInverseProperty, IsFlexible and IsRightAutomorphicLoop )

( IsMoufangLoop, IsAutomorphicLoop and IsLeftAlternative )

( IsMoufangLoop, IsAutomorphicLoop and IsRightAlternative )

( IsMoufangLoop, IsAutomorphicLoop and HasLeftInverseProperty )

( IsMoufangLoop, IsAutomorphicLoop and HasRightInverseProperty )

( IsMoufangLoop, IsAutomorphicLoop and HasWeakInverseProperty )

( IsLeftAutomorphicLoop, IsLeftBruckLoop )

( IsLeftAutomorphicLoop, IsLCCLoop )

( IsRightAutomorphicLoop, IsRightBruckLoop )

( IsRightAutomorphicLoop, IsRCCLoop )

( IsAutomorphicLoop, IsCommutative and IsMoufangLoop )
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AllLoopsWithMltGroup, 48
AllLoopTablesInGroup, 47
AllProperLoopTablesInGroup, 47
AllSubloops, 27
alternative loop, 39

left, 39
right, 39

antiautomorphic inverse property, 37
AreEqualDiscriminators, 35
AssociatedLeftBruckLoop, 45
AssociatedRightBruckLoop, 45
Associator, 24
associator, 9
associator subloop, 9
AssociatorSubloop, 31
automorphic inverse property, 37
automorphic loop, 43

left, 43
middle, 43
right, 43

AutomorphicLoop, 53
AutomorphismGroup, 34

Bol loop
left, 12, 39, 45
right, 39

Bruck loop
associated left, 45
left, 44
right, 44

C loop, 39
CanonicalCayleyTable, 15
Cayley table, 14

canonical, 15
CayleyTable, 22
CayleyTableByPerms, 17
CCLoop, 52
Center, 31

center, 9
central series

lower, 33
upper, 9

Chein loop, 46
cocycle, 18
code loop, 43
CodeLoop, 51
Commutant, 31
commutant, 9
Commutator, 24
commutator, 9
conjugacy closed loop, 42

left, 42
right, 42

ConjugacyClosedLoop, 52
conjugation, 29
coset, 28

derived series, 9
derived subloop, 9
DerivedLength, 33
DerivedSubloop, 33
diassociative loop, 36
DirectProduct, 20
Discriminator, 34
DisplayLibraryInfo, 50
distributive quasigroup, 38

left, 38
right, 38

division
left, 8
right, 8

Elements, 22
entropic quasigroup, 39
exact group factorization, 45
Exponent, 23
exponent, 23
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extension, 18
nuclear, 18

extra loop, 39

FactorLoop, 32
flexible loop, 39
folder

quasigroup, 17
Frattini subloop, 33
FrattinifactorSize, 33
FrattiniSubloop, 33

GeneratorsOfLoop, 24
GeneratorsOfQuasigroup, 24
GeneratorsSmallest, 25
group, 8
group with triality, 46
groupoid, 8

HasAntiautomorphicInverseProperty, 37
HasAutomorphicInverseProperty, 37
HasInverseProperty, 37
HasLeftInverseProperty, 37
HasRightInverseProperty, 37
HasTwosidedInverses, 37
HasWeakInverseProperty, 37
homomorphism, 9
homotopism, 10

idempotent quasigroup, 38
identity

element, 8
of Bol-Moufang type, 39

inner mapping
left, 29
middle, 29
right, 29

inner mapping group, 9
left, 9
middle, 29
right, 9

InnerMappingGroup, 30
InterestingLoop, 54
IntoGroup, 20
IntoLoop, 20
IntoQuasigroup, 20
Inverse, 24
inverse, 24

left, 24, 37
right, 24, 37
two-sided, 8, 37

inverse property, 37
antiautomorphic, 37
automorphic, 37
left, 37
right, 37
weak, 37

IsALoop, 43
IsAlternative, 41
IsAssociative, 36
IsAutomorphicLoop, 43
IsCCLoop, 42
IsCLoop, 40
IsCodeLoop, 43
IsCommutative, 36
IsConjugacyClosedLoop, 42
IsDiassociative, 36
IsDistributive, 38
IsEntropic, 39
IsExactGroupFactorization, 45
IsExtraLoop, 40
IsFlexible, 41
IsIdempotent, 38
IsLCCLoop, 42
IsLCLoop, 40
IsLeftALoop, 43
IsLeftAlternative, 41
IsLeftAutomorphicLoop, 43
IsLeftBolLoop, 40
IsLeftBruckLoop, 44
IsLeftConjugacyClosedLoop, 42
IsLeftDistributive, 38
IsLeftKLoop, 44
IsLeftNuclearSquareLoop, 40
IsLeftPowerAlternative, 42
IsLoop, 11
IsLoopCayleyTable, 14
IsLoopElement, 11
IsLoopTable, 14
IsMedial, 39
IsMiddleALoop, 43
IsMiddleAutomorphicLoop, 43
IsMiddleNuclearSquareLoop, 40
IsMoufangLoop, 40
IsNilpotent, 32
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IsNormal, 31
IsNuclearSquareLoop, 41
IsomorphicCopyByNormalSubloop, 34
IsomorphicCopyByPerm, 34
isomorphism, 9
IsomorphismLoops, 33
IsOsbornLoop, 42
isotopism, 10

principal, 10
IsotopismLoops, 35
IsPowerAlternative, 42
IsPowerAssociative, 36
IsQuasigroup, 11
IsQuasigroupCayleyTable, 14
IsQuasigroupElement, 11
IsQuasigroupTable, 14
IsRCCLoop, 42
IsRCLoop, 40
IsRightALoop, 43
IsRightAlternative, 41
IsRightAutomorphicLoop, 43
IsRightBolLoop, 40
IsRightBruckLoop, 44
IsRightConjugacyClosedLoop, 42
IsRightDistributive, 38
IsRightKLoop, 44
IsRightNuclearSquareLoop, 40
IsRightPowerAlternative, 42
IsSemisymmetric, 38
IsSimple, 31
IsSolvable, 33
IsSteinerLoop, 44
IsSteinerQuasigroup, 38
IsStronglyNilpotent, 32
IsSubloop, 27
IsSubquasigroup, 27
IsTotallySymmetric, 38
IsUnipotent, 38
ItpSmallLoop, 54

K loop
left, 44
right, 44

latin square, 8, 14
random, 19

LC loop, 39

LCCLoop, 52
LeftBolLoop, 50
LeftConjugacyClosedLoop, 52
LeftDivision, 23
LeftDivisionCayleyTable, 23
LeftInnerMapping, 30
LeftInnerMappingGroup, 30
LeftInverse, 24
LeftMultiplicationGroup, 29
LeftNucleus, 30
LeftSection, 28
LeftTranslation, 28
LibraryLoop, 49
loop, 8

alternative, 39
associated left Bruck, 45
automorphic, 43
C, 39
Chein, 46
code, 43
conjugacy closed, 42
diassociative, 36
extra, 39
flexible, 39
LC, 39
left alternative, 39
left automorphic, 43
left Bol, 12, 39, 45
left Bruck, 44
left conjugacy closed, 42
left K, 44
left nuclear square, 39
left power alternative, 42
middle automorphic, 43
middle nuclear square, 39
Moufang, 39
nilpotent, 9, 19
nuclear square, 39
octonion, 50
of Bol-Moufang type, 39
Osborn, 43
Paige, 53
power alternative, 42
power associative, 23, 36
RC, 39
right alternative, 39
right automorphic, 43
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right Bol, 39
right Bruck, 44
right conjugacy closed, 42
right K, 44
right nuclear square, 39
right power alternative, 42
sedenion, 53
simple, 12, 31
solvable, 9
Steiner, 44
strongly nilpotent, 32

loop isotope
principal, 10

loop table, 14
LoopByCayleyTable, 15
LoopByCyclicModification, 46
LoopByDihedralModification, 46
LoopByExtension, 18
LoopByLeftSection, 17
LoopByRightFolder, 18
LoopByRightSection, 17
LoopFromFile, 16
LoopMG2, 46
LoopsUpToIsomorphism, 34
LoopsUpToIsotopism, 35
LowerCentralSeries, 33

magma, 8
medial quasigroup, 39
MiddleInnerMapping, 30
MiddleInnerMappingGroup, 30
MiddleNucleus, 30
modification

cyclic, 46
dihedral, 46
Moufang, 46

Moufang loop, 39
MoufangLoop, 50
multiplication group, 9

left, 9
relative, 29
relative left, 29
relative right , 29
right, 9

multiplication table, 14
MultiplicationGroup, 29
MyLibraryLoop, 49

NaturalHomomorphismByNormalSubloop, 32
neutral element, 8
nilpotence class, 9
NilpotencyClassOfLoop, 32
nilpotent loop, 9

strongly, 32
NilpotentLoop, 53
normal closure, 31
normal subloop, 31
NormalClosure, 31
NormalizedQuasigroupTable, 15
Nuc, 30
nuclear square loop, 39

left, 39
middle, 39
right, 39

NuclearExtension, 18
nucleus, 9

left, 9
middle, 9
right, 9

NucleusOfLoop, 31
NucleusOfQuasigroup, 30

octonion loop, 50
One, 22
OneLoopTableInGroup, 47
OneLoopWithMltGroup, 48
OneProperLoopTableInGroup, 48
Opposite, 21
opposite quasigroup, 21
OppositeLoop, 21
OppositeQuasigroup, 21
Osborn loop, 43

Paige loop, 53
PaigeLoop, 53
Parent, 26
PosInParent, 27
Position, 26
power alternative loop, 42

left, 42
right, 42

power associative loop, 23, 36
PrincipalLoopIsotope, 20

quasigroup, 8
distributive, 38
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entropic, 39
idempotent, 38
left distributive, 38
medial, 39
opposite, 21
right distributive, 38
semisymmetric, 38
Steiner, 38
totally symmetric, 38
unipotent, 38

quasigroup table, 14
QuasigroupByCayleyTable, 15
QuasigroupByLeftSection, 17
QuasigroupByRightFolder, 18
QuasigroupByRightSection, 17
QuasigroupFromFile, 16

RandomLoop, 19
RandomNilpotentLoop, 19
RandomQuasigroup, 19
RC loop, 39
RCCLoop, 52
RelativeLeftMultiplicationGroup, 29
RelativeMultiplicationGroup, 29
RelativeRightMultiplicationGroup, 29
RightBolLoop, 50
RightBolLoopByExactGroupFactorization,

45
RightConjugacyClosedLoop, 52
RightCosets, 28
RightDivision, 23
RightDivisionCayleyTable, 23
RightInnerMapping, 30
RightInnerMappingGroup, 30
RightInverse, 24
RightMultiplicationGroup, 29
RightNucleus, 30
RightSection, 28
RightTranslation, 28
RightTransversal, 28

section
left, 8
right, 8

sedenion loop, 53
semisymmetric quasigroup, 38
SetLoopElmName, 13

SetQuasigroupElmName, 13
simple loop, 12, 31
Size, 22
SmallLoop, 53
solvability class, 9
solvable loop, 9
Steiner loop, 44
Steiner quasigroup, 38
SteinerLoop, 51
strongly nilpotent loop, 32
Subloop, 27
subloop, 9

normal, 9, 31
Subquasigroup, 27
subquasigroup, 9

totally symmetric quasigroup, 38
translation

left, 8
right, 8

transversal, 28
TrialityPcGroup, 47
TrialityPermGroup, 47

unipotent quasigroup, 38
UpperCentralSeries, 32
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